首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
双轴卧式和面机的和面效果及其对面条质量的影响   总被引:5,自引:2,他引:3  
为了明确和面速度和搅拌杆构型不同的双轴卧式和面机的和面效果及其对面条质量的影响,该研究以3种小麦粉(高筋一等粉、富强粉、上白粉)为材料,采用550型棒状杆恒速和面机和765型角度桨叶状搅拌杆调速和面机和面,比较分析和面效果和面条质量。结果表明,2种类型和面机的和面效果存在较大差异,对面条质量有较大影响。与550型棒状杆恒速和面机相比,765型调速和面机制作的面絮胚粒大小中等、大颗粒(粒径≥4000μm)胚粒比例明显较低;复合后的面坯色泽均匀,鲜面条拉伸特性较好,且熟面条硬度较大、耐咀嚼。765型和面机采用2种不同的和面参数,即高速和低速搅拌的时间组合不同,得到的和面效果也不相同。和面方式Ⅱ(高速和面300 s、低速和面480 s)制作的面絮颗粒相对偏小,面坯较厚、更为亮白,而熟面条的回复性弱于和面方式Ⅲ(高速和面500 s、低速和面280 s)。研究结果表明,不同品质的面粉应选择不同的和面方式,面筋质量高且颗粒度大的高筋一等粉适合高速搅拌时间较长的和面方式Ⅲ,制作的鲜面条拉伸阻力和熟面条硬度、胶着性、咀嚼性、回复性均显著大于搅拌强度较小的和面方式Ⅱ。  相似文献   

2.
基于低场核磁和差示量热扫描的面条面团水分状态研究   总被引:3,自引:8,他引:3  
为了解低水分面条面团中水分的存在状态,明确真空度及和面时间对水分状态的影响,该研究以3个小麦品种(济麦20、宁春4号、济麦22)磨制的面粉为材料,采用真空和面制作低水分面条面团(含水率35%),采用低场核磁共振技术(LF-NMR,low-field nuclear magnetic resonance)和差示量热扫描(DSC,differential scanning calorimetry)2种技术,测定不同真空度(0、0.06、0.09 MPa)和搅拌时间(4、8、12 min)下面团中水分的形态和分布,并进一步分析2种技术测定水分形态结果的相关性。结果表明,在低水分面条面团中,水分主要以弱结合水形态存在。不同品种的小麦粉面团的水分形态及分布存在差异,强筋小麦粉(济麦20)制作面团的水分自由度较低。真空和面(0.06 MPa)可以促进水分与面筋蛋白的相互作用,降低面团中水分子流动性,促进水分结构化;而非真空或过高真空度均会导致面团中水分自由度增加。济麦20、济麦22小麦粉和面时间为8 min时,面团水分流动性较低;而宁春4号小麦粉面团在4 min时,水分自由度较低;继续搅拌,深层结合水减少、弱结合水增多。LF-NMR和DSC测得面团水分状态的结果具有一致性。LF-NMR测得的弱结合水峰面积百分比与DSC测得的可冻结水百分比具有相同的变化趋势(r=0.695),且深层结合水峰面积百分比与非冻结水百分比具有相同的变化趋势(r=0.564)。研究结果为认识制面过程中水分的作用,优化和面工艺和调整产品特性提供参考。  相似文献   

3.
张毅  陈洁  汪磊  付俊辉 《农业工程学报》2020,36(14):299-306
为研究加水量对不同和面时间下面片质构及蛋白特性的影响,该研究采用质构仪、傅里叶红外光谱仪和高效液相色谱仪分别探究面片质构、二级结构和蛋白含量的变化,同时对面片色泽、巯基含量进行测定。结果显示随着加水量的增加,面片的拉伸力与硬度呈下降趋势,延展性与黏性呈上升趋势,面片亮度(L*)值和红-绿(a*)值升高。加水量为40%时,蛋白质二级结构中稳定型的β-折叠与α-螺旋含量较高,巯基、大分子量聚合体蛋白含量较低,面片综合质构特性较好,有利于高水分含量面制食品的生产。不同加水量下,和面时间对面片质构及蛋白特性的影响不同。和面15 min时,面片延展性较好,拉伸力、硬度适中,黏性、巯基含量较低,β-折叠含量较高,适度的和面时间能够促进面片面筋网络的形成,有利于提高面片的品质特性。  相似文献   

4.
为揭示小麦粉面团形成过程水分状态和比例、面团结构的变化,以及这种变化与粉质仪和拉伸仪表征的质量特性之间的关系;认识面团形成过程表征筋力强弱的物质基础和变化机理。选用中筋(宁春4号)和强筋(师栾02-1)小麦品种为试验材料,利用低场核磁共振技术测定粉质仪和面过程、拉伸仪醒发拉伸过程不同时间点面团水分状态和比例的变化;利用红外显微成像技术分析面团形成过程不同取样点蛋白质和淀粉的分布及结构变化。结果表明,面粉原料中主要为弱结合水。面粉在粉质仪加水搅拌形成面团后,水分状态和比例发生显著变化,面团中的水可以分为强结合水(T_(21))、弱结合水(T_(22))和自由水(T_(23))。面团搅拌形成过程中,中筋小麦品种宁春4号面团中的强结合水比例显著降低;师栾02-1的强结合水的弛豫时间在和面终点消失,弱结合水的弛豫时间显著延长,而自由水的比例显著增加(P0.05)。强筋小麦粉强结合水的保持时间较长。拉伸过程加盐和不加盐对同一取样点、同一种水分状态之间的水分弛豫时间和比例无显著影响;宁春4号自由水的弛豫时间在加盐和不加盐处理时都显著缩短(P0.05)。湿面筋含量高、筋力较强面团的蛋白质网络结构致密。粉质仪和面过程强结合水和弱结合水弛豫时间和比例的变化,与面筋含量和强度有关。该结论可为面制品加工过程和面工艺选择与优化等方面提供一定的理论参考。  相似文献   

5.
坡面片蚀强度具有沿程空间变化性,阐明坡面不同坡位的片蚀过程对于完善坡面土壤侵蚀理论具有重要意义。采用组合小区模拟降雨试验方法对黄土坡面下坡位片蚀过程进行了研究,结果表明:(1)坡面下坡位片蚀特征与坡面上坡位及全坡面片蚀特征存在差异,下坡位片蚀规律性较差;(2)坡面下坡位片蚀随降雨过程、雨强和坡度的变化均呈现波动性,总体上随降雨过程先增大后稳定,随雨强及坡度的增大而增大;(3)坡面下坡位片蚀随雨强和坡度的变化可用二元线性方程描述,雨强的影响远大于坡度;(4)坡面上坡位汇流和下坡位产流及上坡位输沙对下坡位片蚀的影响可用二元线性方程描述,其中前者贡献率为56.9%,后者贡献率为25.4%,水的作用显著大于沙的作用。采取增加坡面入渗、减少径流的水保措施可有效防治坡面下坡位片蚀。  相似文献   

6.
莲子薄层热风干燥特性与水分变化规律   总被引:6,自引:4,他引:2  
为了解莲子干燥过程中水分传递过程,监控、预测水分变化,该文通过开展莲子薄层热风干燥试验,考察了莲子在不同干燥温度(50、60、70、80、90℃)下干燥特性,建立了莲子热风干燥试验模型;利用低场核磁共振技术(nuclear magnetic resonance,NMR),弛豫时间(transverse relaxation time,T2)和成像(nuclear magnetic resonance imaging,MRI),考察了干燥过程中莲子内部水分分布状态与变化规律。结果表明,莲子干燥一直处于降速干燥段;干燥温度显著影响干燥过程(P0.05),干燥温度升高,干燥时间缩短;通过比较4种数学模型,发现莲子干燥过程采用Midilli模型(决定系数R20.998)进行准确模拟(相对误差E10%);有效扩散系数在6.056 7×10-10~1.660 3×10-9 m2/s之间,并随着干燥温度的升高而增大;活化能为24.268 5 k J/mol。核磁共振试验表明,半结合水是莲子的特征水分,占新鲜莲子总水分的85.59%,其脱除过程呈现指数特征(R20.91);干燥过程中,不同状态的水分流动性变差。莲子内部存在水分梯度,表层最先失去水分,莲芯水分最后脱除;干燥终止时,剩余水分主要存在于莲芯部位。MRI为确定莲子干燥终点提供了直观的参考依据。研究结果可为控制莲子热风干燥过程、优化干燥工艺参数提供理论依据。  相似文献   

7.
以不同小麦粉为材料制作面片,用动态热机械分析仪(Dynamic Mechanical Thermal Analysis,DMTA)研究面片从20℃至-80℃和从-80℃至20℃的降温和升温过程中动态热机械性能,目的是探求冷冻面制品加工过程中的变化规律,冷冻面制品玻璃化转变温度及其影响因素.结果表明:不同小麦品种面片之间、同一小麦品种不同制粉细度面片之间、同一小麦粉不同加水量面片之间的降温和升温过程中的动态热机械性能均有差异,特别是玻璃化温度Tg′峰差异较大;在降温过程中,粗粉和细粉样品的玻璃化温度Tg′分别为-33.23和-39.90℃;高水分样品有两个连续的玻璃化温度Tg′峰,分别为-41.42和-42.97℃,低水分样品的玻璃化温度Tg′为-33.23℃;在升温过程中,细粉样品普冰143的玻璃化温度Tg′为2.40℃,细粉样品郑农973出现3个玻璃化温度Tg′峰,分别为-7.97、-6.41和10.31℃;粗粉样品的玻璃化温度Tg′为3.62℃,细粉样品有3个玻璃化温度Tg′峰,分别为-7.97、-6.41和10.31℃;高水分和低水分样品的玻璃化温度Tg′分别为-10.14和3.62℃.小麦粉冷冻面制品的冷冻加工温度应为其玻璃化温度,以保证冷冻面制品的质量,而不是现在普遍采用的-18℃.  相似文献   

8.
小麦灌浆过程籽粒水分变化的核磁共振检测   总被引:6,自引:5,他引:1  
花期至成熟期是小麦产量形成的关键时期,在这一时期麦穗的水分状态随着干物质的积累而呈现出独特的变化特征。为了揭示活体冬小麦灌浆过程的水分变化规律,利用核磁共振技术的无损检测特性,结合核磁共振质子密度加权成像和核磁共振T2弛豫谱分析,对小麦麦穗进行了连续活体检测。核磁共振质子密度加权成像结果表明,灌浆前期籽粒的水分不断增加,至花后15 d籽粒的水分含量达到最大值,此后小麦籽粒的水分逐渐减少。在此过程中,灌浆物质在籽粒中积累的顺序是由外向内、自上而下的。经核磁共振T2弛豫谱分析,麦穗中的水分可分为结合水、半结合水和自由水三种相态。从籽粒形成至完熟期麦穗不同相态的水分都表现为先增大后减小的特点,但涨落步调不尽相同,其中结合水含量的增长期最长,至蜡熟期结束时(花后33 d)才达到最大值。籽粒形成后麦穗总水分含量维持在较高水平,即使在籽粒干质量快增期(花后15 d至花后27 d),籽粒中干物质的迅速积累也并未导致水分含量的明显减小,单穗的总水分含量与最大水分含量相比仅仅减少了十分之一。花后30 d之后,随着颖片及穗轴逐渐变黄衰老和籽粒的脱水成熟,麦穗水分含量才急剧减小。小麦灌浆中期麦穗维持较高水分含量,说明水分在同化物积累过程中的重要作用。除了灌浆中期较高的水分含量,蜡熟期的快速脱水亦有利于营养物质的贮存并减少呼吸消耗,对于小麦产量的形成和稳定亦具有重要意义。  相似文献   

9.
为研究水稻浸种过程中种子的水分相态及其分布特征,利用低场核磁共振快速、无损、准确的检测技术,通过硬脉冲回波序列CPMG(carr-purcell-meiboom-gill sequence)测量水稻种子横向弛豫时间T2,根据横向弛豫时间T2的差异区分种子内部的水分相态及其变化规律。试验结果表明:通过T2反演谱横向弛豫时间T2长短的差异,发现水稻浸种过程中种子内部水分存在结合水、自由水2种水分状态,同时可区分出内层水、中层水、外层水3种水分分层;二者均能通过回归方程合理的估测水稻在浸种过程中种子的吸水率情况;通过T2反演谱信号幅值大小的差异,发现水稻浸种过程中的种子总水含量不断上升,但由于判定依据及划分方式的不同,二者在水分的流动方式上略显差异。低场核磁共振技术对水稻浸种过程中种子内部的水分变化进行了直观的揭示,提供了一种高效的种子水分检测方法。  相似文献   

10.
明确真空和面对低水分面条面团中谷蛋白大聚合体(glutenin macropolymer,GMP)特性的影响,有助于探讨真空和面改善面条质地的化学结构基础,该研究以3个小麦品种(郑麦366、宁春4号、济麦22)磨制的面粉为材料,在不同真空度(0、0.06、0.08 MPa)下和面,和面时间为8 min,测定面团中GMP含量及粒度分布,并采用Ellman试剂比色法分析蛋白质和GMP中游离巯基含量的变化。结果表明,与非真空和面相比,0.06 MPa制作的面团中GMP含量较高,而过高的真空度(0.08 MPa)会导致GMP含量降低。真空和面对面团中GMP粒度分布有显著影响,济麦22和宁春4号面团在0.06 MPa时大粒径GMP所占体积、表面积和数目百分比显著高于0和0.08 MPa(P0.05),而郑麦366在0.08 MPa时大粒径GMP所占体积百分比显著较高。真空度为0.06 MPa时,济麦22和宁春4号面团中的游离巯基含量显著低于0和0.08 MPa(P0.05);而对于郑麦366,0.08 MPa制作的面团中游离巯基含量显著低于非真空和面。对于2种中筋小麦粉(济麦22和宁春4号),适宜真空度和面会使GMP中更多的游离巯基参与二硫键交联。结论认为,适宜真空度和面可以提高面团中蛋白质聚合度;与蛋白质和湿面筋含量高、面团强度大的郑麦366相比,2种中筋小麦粉面团中GMP特性受真空度变化的影响更明显。研究结果为揭示真空和面的作用机制、深入认识面筋蛋白在面条加工中的作用提供参考。  相似文献   

11.
A high throughput centrifugal mixer capable of using smaller amounts of flour (50 g) was evaluated for the production of oriental alkaline noodles. The unit requires a small footprint on a laboratory bench and offers variable speed mixing (300–3,500 rpm) for 5–60 sec. Three different mixing bowls, plain, pin, and paddle, were evaluated for the small‐scale production of alkaline noodles using straight‐grade flour derived from Canada Western Red Spring (CWRS) and Canada Prairie White Spring (CPSW) wheat. Under optimized mixing conditions (3,000 rpm for 30 sec), the pin and paddle bowls produced noodle dough with crumb size distribution and adhesion characteristics consistent with commercial requirements. The plain bowl produced dough with larger undesirable dough chunks and showed excessive heat buildup. Noodle sheets produced from this dough were not comparable in color characteristics to conventionally produced noodle sheets. Noodles prepared using the paddle mixer also displayed some significantly different color and texture characteristics than conventionally prepared noodles. However, raw noodle sheets or cooked noodles of either wheat class, prepared using the pin bowl mixer, displayed color values (L*, a*, and b*) at 2 and 24 hr and cooked noodle texture characteristics (bite, chewiness, resistance to compression, and recovery) comparable to a conventional laboratory‐scale Hobart type mixer. In addition to the very short mixing time and small equipment footprint for the centrifuge mixer, rapid throughput is enhanced by the ability to rapidly clean or interchange bowls and to potentially vary sample size to as little as 5 g. These attributes should be particularly useful in earlier generation breeder programs where large numbers of samples require rapid screening.  相似文献   

12.
Sensory evaluation showed panelists could detect small differences in gloss and translucency in boiled white salted noodles (WSN) but sensory evaluation requires significant resources. Methods for the measurement of noodle gloss and translucency in boiled WSN were developed and the effects of hardness, protein, water addition, and vacuum mixing on these visual sensory characteristics and color (as measured by CIE L*, a*, and b*) were investigated. Noodles derived from hard wheats at low flour protein contents were more translucent than noodles from soft wheat flour at low protein. This trend changed at the highest flour protein contents observed. Translucency of the soft wheat noodles increased to levels equal to or exceeding the translucency of high protein hard wheat noodles. Translucency of all noodle varieties increased as flour protein increased. CIE L* decreased, a* increased, and b* increased when water addition to dough increased from 30 to 35%, but there was no further effect on color when water addition was increased to >35% for raw soft and hard WSN. Boiled noodle translucency was significantly increased when water addition to the dough was increased from 35 to 38% and when noodles made from soft wheat flour were mixed under vacuum. Vacuum mixing significantly increased gloss of boiled noodles made from soft wheat flours.  相似文献   

13.
This study evaluated the blending of flours made from an Ontario hard red winter wheat (HWF) and an Ontario soft red winter wheat (SWF) and compared it with a commercial standard noodle flour (control) made from Canadian Western Hard Red Spring wheat to assess the impact on white salted noodle‐making performance and texture of cooked noodles. Flour characteristics, gluten aggregation, and starch pasting properties were assessed with a farinograph, GlutoPeak tester, and Rapid Visco Analyzer, respectively. The machinability of dough was evaluated with an SMS/Kieffer rig attached to a TA.XT Plus texture analyzer. Tensile and bite tests of cooked noodles were also conducted. Blending HWF with standard noodle flour decreased gluten strength and dough extensibility linearly proportional to the blend ratio, whereas a curvilinear response from blending SWF with standard noodle flour was observed. HWF demonstrated more favorable pasting properties except for lower peak viscosity for noodle making than standard noodle flour. Below a 20% blend ratio with HWF, no significant changes were seen on dough extensibility, cooking loss, tensile properties, and bite testing parameters of cooked noodles. It can be concluded that blending HWF up to a 20% level caused no significant change in the processing properties of dough and cooked noodle quality. The results also showed that the GlutoPeak tester is a sensitive tool for evaluating gluten strength in wheat flour.  相似文献   

14.
Physicochemical properties of 34 wheat flours with various classes and different protein contents were related to optimum water absorption of noodle dough. Club and soft wheat flours generally exhibited higher water absorption (34–37%) of noodle dough than hard wheat flours (31–35%). Optimum water absorption of noodle dough in three hard wheat flours with five different protein contents was 33–37%. Optimum water absorption was negatively correlated with flour protein content and SDS sedimentation volume. Physical properties of flour, damaged starch content, NIRS hardness and water retention capacity, influenced optimum water absorption of noodle dough from club, soft and hard wheat flours. A prediction equation developed using protein content, water retention capacity and SDS sedimentation volume of flour provides a reliable estimation of the optimum absorption of noodle dough for making noodles.  相似文献   

15.
We investigated the relationship between the protein content and quality of wheat flours and characteristics of noodle dough and instant noodles using 14 hard and soft wheat flours with various protein contents and three commercial flours for making noodles. Protein content of wheat flours exhibited negative relationships with the optimum water absorption of noodle dough and lightness (L*) of the instant noodle dough sheet. Protein quality, as determined by SDS sedimentation volume and proportion of alcohol‐ and salt‐soluble protein of flour, also influenced optimum water absorption and yellow‐blueness (b*) of the noodle dough sheet. Wheat flours with high protein content (>13.6%) produced instant noodles with lower fat absorption, higher L*, lower b*, and firmer and more elastic texture than wheat flours with low protein content (<12.2%). L* and free lipid content of instant noodles were >76.8 and <20.8% in hard wheat flours of high SDS sedimentation volume (>36 mL) and low proportion of salt‐soluble protein (<12.5%), and <75.7 and >21.5% in soft wheat flours with low SDS sedimentation volume (<35 mL) and a high proportion of salt‐soluble protein (>15.0%). L* of instant noodles positively correlated with SDS sedimentation volume and negatively correlated with proportion of alcohol‐ and salt‐soluble protein of flour. These protein quality parameters also exhibited a significant relationship with b* of instant noodles. SDS sedimentation volume and proportion of salt‐soluble protein of flours also exhibited a significant relationship with free lipid content of instant noodles (P < 0.01 and P < 0.001, respectively). Protein quality parameters of wheat flour, as well as protein content, showed significant relationship with texture properties of cooked instant noodles.  相似文献   

16.
Protein characteristics of wheat flours from various wheat classes, and of commercial flours for making noodles, were evaluated to determine the effects of protein content and quality on processing and textural properties of white salted noodles, as well as to identify protein quality required for making white salted noodles. SDS sedimentation volume based on constant protein weight, mixograph mixing time, and proportions of salt‐ and alcohol‐soluble protein of three commercial flours for making noodles were more similar to those of hard wheat than to soft wheat flours. SDS sedimentation volume of commercial flours for making noodles based on constant protein weight ranged from 38.5 to 40.0 mL and was higher than those of most soft wheat flours. Mixograph mixing time and proportion of salt‐soluble protein of hard and commercial flours for making noodles were >145 sec and mostly <13.8%, respectively, while those of club and soft wheat flours were < 95 sec and >15.0%. Both protein content and protein quality, as determined by SDS sedimentation volume based on constant protein weight, mixograph mixing time, proportion of salt‐soluble protein, and score of HMW‐GS compositions correlated with optimum water absorption of noodle dough and hardness of cooked white salted noodles.  相似文献   

17.
Physicochemical properties and protein composition of 39 selected wheat flour samples were evaluated and correlated with the textural properties of Chinese hard‐bite white salted noodles. Flour samples were analyzed for their protein and wet gluten contents, sedimentation volume, starch pasting properties, and dough mixing properties by farinograph and extensigraph. Molecular weight distribution of wheat flour proteins was determined with size‐exclusion (SE) HPLC, SDS‐PAGE, and acid‐PAGE. Textural properties of Chinese hard‐bite white salted noodles were determined through texture profile analysis (TPA). Hardness, springiness, gumminess, and chewiness of cooked noodles were found to be related to the dough mixing properties. Both protein content and protein composition were found to be related to TPA parameters of noodles. The amount of total flour protein was positively correlated to hardness, gumminess, and chewiness of noodles. The absolute amounts of different peak proteins obtained from SE‐HPLC data showed positive correlations with the hardness, gumminess, chewiness, and springiness of noodles. The proportions of these peak proteins were, however, not significantly related to texture parameters. The proportions of low‐molecular‐weight glutenins/gliadins and albumins/globulins, as observed from SDS‐PAGE, were correlated positively and negatively, respectively, to the hardness, gumminess, and chewiness of cooked noodles. Among the alcohol‐soluble proteins (from acid‐PAGE data), β‐gliadins showed strong correlations with the texture properties of cooked noodles. For the selected flour samples, the total protein content of flour had a stronger relationship with the noodle texture properties than did the relative proportion of different protein subgroups. Prediction equations were developed for TPA parameters of cooked noodles with SE‐HPLC and rapid visco analysis data of the 30 flour samples, and it was found that about 75% of the variability in noodle hardness, gumminess, and chewiness values could be explained by protein composition and flour pasting properties combined together. About 50% of the variations in cohesiveness and springiness were accounted for by these prediction equations.  相似文献   

18.
The effects of varying the proportion of three noodle dough components (water, gum, and starch) on the texture (maximum load and strain at break), amount of fat absorbed, and percent rehydration of instant fried noodles were studied. The Instron Universal testing machine was used to measure noodle texture, whereas quality attributes were determined using fat absorption and rehydration parameters. The results showed that changes in maximum load, strain at break point, fat absorption, and rehydration% of instant noodles depended on interactions between the ingredients. Increasing the gum content, starch content (for amounts >4% kg/kg of flour) and moisture content (35–40% kg/kg of flour) enhanced the elasticity and extensibility of cooked instant fried noodles. Addition of starch decreased fat absorption but showed mixed effect on rehydration%. The effect of gum addition at 0.1, 0.2, and 0.3% on fat absorption was significant but reduced considerably or showed a reverse effect at higher starch addition levels. Increasing moisture, and gum contents increased rehydration% of cooked instant noodles. Appropriate combinations of gum, starch and moisture contents could be used to optimize textural and quality characteristics of fried instant noodles.  相似文献   

19.
In this study, the effects of mixing process parameters (degree of vacuum, water addition, and mixing time under vacuum) on the cooking and sensory quality properties of Chinese white noodles were investigated by using one commercial‐scale noodle production line and one typical commercial wheat flour. Noodle appearance, firmness, elasticity, smoothness, and total quality scores were significantly improved as the degree of vacuum increased from 0 to 0.06 MPa, although lower sensory scores and larger cooking losses occurred when noodles were mixed at 0.08 MPa. Noodles with a water addition of 35% had the highest total score and the highest scores for each sensory factor. As mixing time increased, the sensory score of cooked noodles increased initially and then decreased. With a mixing time of 7 min, the sensory score was the highest and cooking loss was the lowest. The results of response surface methodology indicated that fresh noodle quality was most affected by the water addition, followed by vacuum degree. Added water was a more important source of variation for appearance, firmness, stickiness, smoothness, total score, and cooking loss than degree of vacuum and mixing time, whereas degree of vacuum was the predominant source of variation for color and elasticity. The interactions between the factors had little effect on sensory and cooking properties. The optimal mixing conditions were determined to be as follows: degree of vacuum, 0.06 MPa; added water, 35.6%; and mixing time, 7.25 min. Furthermore, vacuum mixing produced a more even, coherent, and closed microstructure for the sheeted dough than nonvacuum mixing.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号