首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 140 毫秒
1.
拖拉机自动转向系统容错自适应滑模控制方法   总被引:1,自引:1,他引:0  
为提高拖拉机自动转向系统的可靠性,该文提出了一种具有前轮转角容错检测能力的径向基函数(radial basis function,RBF)网络自适应滑模控制方法。综合考虑拖拉机姿态信息和控制输出,基于卡尔曼滤波算法推导得出拖拉机前轮转角的两个估计值,并结合角度编码器实际测量值设计了前轮转角容错检测输出算法;以容错输出算法的输出值作为状态量,提出一种利用RBF网络进行干扰补偿的前轮角度自适应滑模控制方法,并通过仿真试验验证了算法的有效性。开展了拖拉机前轮转角容错检测和自动控制试验,结果显示:基于侧向加速度的转角预估值最大误差为2.94?,均方根误差为0.81?;基于横摆角速度的转角预估值的最大误差为1.73?,均方根误差为0.12?;当人为施加故障干扰时,算法可以提供容错的转角输出;拖拉机转向控制系统可以快速跟踪期望前轮角度且超调量较小,最大控制误差为0.21?,均方根误差为0.07?。试验结果表明,容错自适应滑模控制方法提高了自动转向控制系统的可靠性和准确性,有助于解决拖拉机前轮转角测量装置故障率高的问题。  相似文献   

2.
为研究农用柔性底盘偏置转向轴驱动轮的运动与动力特性,设计了基于偏置转向结构的实验台。该实验台是一种水平转盘式的电动驱动轮性能测试试验台,且转盘的回转轴与偏置转向轴同轴,通过对电动轮及其车叉的试验分析来获取驱动轮的动力与运动参数。利用MATLAB/SIMULINK建立试验台模型并模拟了试验过程;试制了试验台并应用Visual Basic开发了试验台记录软件。在额定转速下进行了不同加载量的性能试验并与模拟结果进行了比较。试验结果表明:加载不同载荷时,电动轮达到稳定转速平均时间稳定为0.667 s;承载载荷500 N时的转向力为77.24 N,且偏置轴转向力与载荷呈线性关系,验证了实验台的可行性及模型的有效性。该研究可为偏置转向轴驱动轮的转向及参数优化提供参考。  相似文献   

3.
针对目前汽车主动前轮转向系统缺少对理想传动比规律研究的问题,建立线性二自由度车辆模型、主动前轮转向系统模型,以及轮胎模型;设计固定横摆角速度增益下的主动前轮转向系统理想传动比规律,提出基于该规律的主动前轮转向附加转角闭环控制策略,并对提出的控制策略进行仿真分析和试验验证。结果表明:基于理想传动比的前轮主动转向附加转角控制策略可有效保证车辆在低速时横摆角速度响应幅值变大,车辆具有较好的操纵性;高速时横摆角速度和质心侧偏角响应的幅值均变小,车辆具有较好的稳定性,有利于车辆获得较为理想的转向品质。研究结果可为主动前轮转向系统的设计与开发提供理论基础。  相似文献   

4.
基于PWM信号的农用柔性底盘驱动与转向协同控制特性试验   总被引:2,自引:2,他引:0  
针对四轮独立驱动独立转向的农用柔性底盘驱动转向时需要同时打开和锁紧电磁摩擦锁的矛盾,该文提出一种基于脉冲宽度调制信号(pulse width modulation,PWM)的电磁摩擦锁控制方法来实现偏置转向轴机构的分时步进驱动和转向,并利用自制偏置转向轴试验台,采用双因素试验测试了PWM波频率和占空比对偏置转向轴电磁摩擦锁脉冲锁紧力矩的影响,采用三元二次正交旋转组合试验测试了分时步进驱动和转向时频率、占空比和轮毂电机转速对转向特性的影响。双因素试验结果表明:频率、占空比及其交互作用对脉冲锁紧力矩均有极显著影响(P0.01);在频率4~24 Hz、占空比20%~80%时,锁紧力矩变化范围为6.822~40.046 N·m;旋转组合试验结果表明:频率、占空比、两者交互作用及轮毂电机初始转速对分时步进转向时转向平均角速度均有显著影响(P0.05),转向平均角速度随占空比和轮毂电机初始转速增大而减小,随频率增大而缓慢增大,在频率4~24 Hz、占空比20%~80%、初始转速30~120 r/min时,转向平均角速度变化范围为0~0.514 rad/s。该结论可为农用柔性底盘驱动与转向协同控制提供参考。  相似文献   

5.
车辆转向统一动力学模型及模型跟踪控制   总被引:5,自引:2,他引:3  
为将两轴车辆控制算法应用于多轴车辆,该文在多轴转向车辆二自由度动力学模型的基础上,建立了多轴转向车辆和两轴车辆的统一动力学模型;在此统一动力学模型的基础上可通过对任两轴车轮的控制就能实现对多轴转向车辆的控制。同时根据零侧偏角控制策略构建了多轴车辆的动力学理想模型;对前轮机械转向和前轮电控转向的多轴转向车辆,分别设计了基于模型跟踪的控制系统并进行了分析。分析结果表明,采用统一动力学模型、零侧偏角控制策略和模型跟踪控制方法,控制系统调整方便且较易实现,也能达到理想的控制效果。  相似文献   

6.
拖拉机线控液压转向系统的双通道 PID控制仿真与试验   总被引:4,自引:4,他引:0  
拖拉机线控液压转向系统采用的单杆液压缸具有非对称性,为了提高转向系统的控制精度,提出了双通道PID(proportional integral derivative)控制方法,对液压缸活塞杆伸出和缩回的运动进行分通道控制。基于Sim Hydraulics模块建立线控液压转向系统的物理模型,对转向轮的跟随响应、阶跃响应进行仿真试验;同时搭建了线控液压转向系统试验台,进行台架试验,从而分析双通道PID控制对转向系统的影响。仿真试验得出双通道PID控制的跟随误差为0.473°、响应时间为0.273 s,且左、右转向跟随误差基本一致,均优于单通道PID控制,台架试验结果与仿真试验的效果一致。结果表明,线控液压转向系统在双通道PID控制下响应快,跟随误差更小,具有良好的跟随性和较高的控制精度。  相似文献   

7.
电动方向盘插秧机转向控制系统设计   总被引:6,自引:5,他引:1  
电动方向盘作为农机导航系统的转向执行机构在中小型旱地拖拉机上已有应用,但在水田农业机械等转向阻力大的农机上的适应性尚有待研究。该文以井关PZ-60型水稻插秧机为平台,采用电动方向盘作为转向执行机构,对插秧机自动转向控制进行了研究。构建了插秧机转向机构的系统模型,采用系统辨识试验获得了系统模型参数。设计了基于PID的嵌套转向控制算法,采用Simulink仿真模型验证了算法的可行性。分别进行了幅值10°的正弦波、水田小角度转向(直线行驶跟踪)和水田大角度转向(调头)控制性能试验,试验结果表明:插秧机正弦波转向跟踪平均绝对误差为0.301 5°,平均延时0.3 s;在泥底层平坦和不平坦的水田中直线行驶时的转向角跟踪平均绝对误差分别为0.354°和0.663°,平均延迟时间均为0.6 s,角度跟踪偏差最大分别为1.4°和3.6°,深泥脚转向阻力大时有1.4 s的控制滞后;插秧机以28°转向角调头时调节时间为2.5 s,稳态误差为0.6%。研究表明,电动方向盘转向系统具有较好的动态响应和控制稳定性,适用于插秧机作业的自动转向控制,满足插秧机自动导航作业要求。  相似文献   

8.
针对四轮独立电驱动高地隙喷雾机因轮毂电机控制器遇到较大扰动无法及时响应而导致的转向不稳定问题,该研究提出了一种液压辅助转向方法。通过对四轮独立电驱动高地隙喷雾机的自转向底盘结构原理的分析,设计了液压辅助转向系统,在此基础上建立了简化二自由度车辆转向模型,用于对辅助转向系统转角控制进行分析,并通过仿真分析和试验验证自转向和辅助转向协调控制性能。四轮电驱动喷雾机分别在自转向系统单独作业以及自转向系统和辅助转向系统协同作业的工况下,以1 m/s的速度分别进行了坡度为15°的下坡转向对比试验和水田转向对比试验。试验结果表明:在下坡试验中,单独自转向系统作业的最大跟踪偏差为6.1°,自转向和辅助转向协同作业的最大跟踪偏差为0.9°;水田试验中,单独自转向系统作业的最大跟踪偏差为10.3°,自转向和辅助转向协同作业的最大跟踪偏差为1.5°。研究结果表明该文所设计的液压辅助转向系统具有可行性和较好的稳定性,能够满足实际作业需求。  相似文献   

9.
基于CAN通讯的汽车底盘系统集成控制   总被引:3,自引:3,他引:0  
为了提高汽车整车综合动力学性能,针对汽车在转向制动工况下转向与制动系统动力学耦合关系,在对汽车底盘系统动力学耦合分析基础上,设计了ABS及EPS两子系统控制器和决策层集成控制器,对底盘系统进行分层集成控制。同时有针对性地设计了基于CAN的底盘集成控制系统的通讯系统。基于Matlab/simulink仿真和实车试验结果表明,汽车的俯仰角、侧倾角、横摆角速度反应时间和纵向减速度均有不同程度的改善,分别降低了30.53%、15.03%、25.64%、34.61%,表明设计的CAN通讯的集成系统工作稳定,抗干扰能力强,提出的集成控制策略正确可行,在保证转向轻便性的前提下,提高了系统制动稳定性。  相似文献   

10.
为提高轮式拖拉机自动导航过程中转向控制的精度与稳定性,该研究以雷沃欧豹M704-2H拖拉机作为试验平台,采用电动方向盘作为转向执行机构,分析转向机械间隙对控制精度的影响,针对转向间隙特性设计转向控制算法。首先,为了获得准确的转向角,利用GNSS(global navigation satellite system)与二轮车模型快速标定虚拟轮转角,标定结果表明:虚拟轮转角的最大误差为1.3°,平均误差为0.11°。然后,对转向系统的机械间隙进行分析,设计一种带有间隙补偿的模糊PD(proportional derivative)转向控制算法,并在Simulink中验证算法的可行性。实车试验结果表明,该算法跟踪方波转角信号的响应时间为1.1 s,最大稳态误差为0.65°,平均稳态绝对误差为0.132°。跟踪正弦波转角信号的平均延时为0.5 s,最大误差为1.91°,平均绝对误差为1.09°。与无间隙补偿算法相比,有间隙补偿算法跟踪方波信号最大稳态误差减小了0.022°,平均稳态绝对误差减少了0.112°,角度误差在±0.2°内的时间提升了71%;跟踪正弦波信号最大误差减小了0.68°,平均绝对误差减小0.23°。田间直线导航转向控制试验结果表明,转角跟踪的绝对平均误差为0.61°,最大跟踪误差为2.82°,转向控制跟踪精度较高,稳定性好,满足导航作业需求。  相似文献   

11.
农用轮式机器人四轮独立转向驱动控制系统设计与试验   总被引:1,自引:8,他引:1  
针对一般农用轮式机器人转向方式单一、难以适应田间复杂作业环境以及推广应用成本较高等问题,该文设计了一种农用轮式机器人四轮独立转向驱动控制系统,采用模块化设计方法构建了该控制系统的底层硬件部分,结合控制器局域网络(controller area network,CAN)总线、串口通讯和传感器技术实现了该机器人移动轮转角、转速等数据的采集功能且应用了有效的硬件电路隔离保护方案;基于低速阿克曼四轮转向模型与比例积分微分(proportion,integration,differentiation,PID)控制算法分析并验证了该机器人四轮独立转向驱动控制策略的有效性。试验结果表明:该机器人能够通过上位机或遥控器实现其四轮独立转向与转速控制功能,移动轮在0~360°转向过程中,控制效果鲁棒性强、稳定且转角控制的最大平均绝对误差为0.10°,通过上位机设定转速后经0.5~1 s左右,移动轮转速达到稳态,并具有较高转速控制精度。该研究为农用轮式机器人的四轮独立转向驱动控制方法提供了参考。  相似文献   

12.
基于GPS/INS和线控转向的农业机械自动驾驶系统   总被引:9,自引:9,他引:0  
研究旨在设计出一套农用车辆自动导航控制系统,让机器人代替农民进行田间作业,实现农用车辆自动驾驶,从而可以有效提高农业机械的作业精度、生产效率和使用安全性,并且为精细农业研究提供技术支持,改善农业生产的方法。该文通过GPS/INS(global positioning system/inertial navigation system)组合导航技术实时获得载体的导航信息(位置、速度、航向、姿态),根据导航信息与预设轨迹参数计算出载体的目标前轮转向角,并以该目标前轮转向角与当前前轮转角的差值作为控制输入,实现对转向执行电机的精确控制,从而实现载体的路径跟踪控制。同时对整个系统的软硬件进行设计,并对系统控制策略进行仿真和试验验证。最终结果表明,本文所设计的组合导航系统定位精度高,其定位精度可达到0.1~0.5 m;路径跟踪系统误差小,当车速分别为0.5 m/s和1 m/s时,路径跟踪的最大横向误差分别为0.16 m和0.27 m;整个系统响应速度快,可达到0.1s。通过将GPS/INS组合导航技术与线控转向技术相结合,能够实现农用车辆的自动驾驶。  相似文献   

13.
基于虚拟现实的拖拉机双目视觉导航试验   总被引:2,自引:2,他引:0  
针对农机导航系统的传统田间试验方式受作物生长状态的约束性较强,错过适当的作物生长时期将直接导致开发周期延长、成本增加等问题,该文提出了一种基于虚拟现实技术的拖拉机双目视觉导航试验方法。该方法以拖拉机为作业机械,苗期棉花为目标作物,在虚拟现实环境下建立田间作物行场景的三维几何模型,用于模拟田间试验场景;建立虚拟现实环境下的拖拉机物理引擎,根据实车参数及试验场景信息快速、准确地解算拖拉机的动力学参数,并且根据解算所得的状态参数在虚拟试验场景中实时渲染拖拉机的位姿状态;设计路径跟踪控制器,以经过双目视觉方法识别的田间路径为目标路径,根据拖拉机当前行驶路径与目标路径的相对位置关系解算并控制拖拉机前轮转向角度。以某型拖拉机参数为实车参数,采用大小行距方式布置5行曲线形态的苗期棉花作物行场景开展虚拟导航试验。拖拉机以不大于2 m/s的车速跟踪作物行时,平均位置偏差的绝对值不大于0.072 m、位置偏差的标准差不大于0.141 m;平均航向偏差的绝对值不大于2.622°、航向偏差的标准差不大于4.462°。结果表明:该文设计的拖拉机虚拟试验系统能够在虚拟现实环境下,模拟田间作物行环境开展基于双目视觉的导航试验,可为导航控制系统的测试及改进提供理论依据和试验数据。  相似文献   

14.
四橡胶履带轮式车辆转向力学性能分析与试验   总被引:5,自引:4,他引:1  
橡胶履带轮是一种能够与轮胎整体快速互换,降低接地比压、提升越野机动能力的特殊行走装置。该文以某型四橡胶履带轮式车辆转向系统为研究对象,首先通过建立断开式转向梯形机构数学模型,得到内轮、外轮转角与油缸位移关系,以及转角特性曲线;通过转向油压测试,得到两轮和四轮转向时转向油缸输出最大转向驱动力及其随左前轮转向角变化曲线。然后对履带轮在混凝土地面上转向受力分析,建立最大平均转向阻力矩数学模型,得到单轮最大平均转向阻力矩。最后提出了基于转向杆件应力应变测试分析转向阻力矩的方法,得到履带轮在混凝土地面2轮和4轮原地转向时转向阻力矩随转角变化的规律,对比分析最大总转向驱动力矩与总转向阻力矩,验证了数学模型和该分析方法的正确性。该文的研究也可对四履带轮式车辆转向系统的结构参数设计和履带轮的接地尺寸、接地比压、轮系布置研究提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号