首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到17条相似文献,搜索用时 125 毫秒
1.
针对野外白天不同光照对野生动物监测图像质量造成的影响,提出一种基于Retinex理论的光照自适应图像增强方法。该方法首先使用基于复合梯度的引导滤波估计图像照度分量,克服光照突变造成的伪光晕现象;然后提出一种基于Otus阈值的对比度自适应拉伸方法实现照度分量的校正,克服传统算法过度增强的问题;最后采用照度分量单通道图像计算反射分量图像,实现色彩的保真。该文采用50张保护区实地拍摄的野生动物监测图像为样本进行试验,结果表明,该文算法相比于MSRCR算法、双边滤波Retinex算法和引导滤波Retinex算法色调保真度平均提高81.00%、5.24%和3.58%,信息熵平均提高6.76%、6.23%和2.61%,峰值信噪比平均提高53.43%、5.36%和-2.85%,运算耗时减少-29.03%、78.51%和28.68%,证明该文算法可以有效克服传统Retinex理论算法的过增强、伪光晕现象和灰化效应,实现不同光照条件下野生动物监测图像的自适应增强。  相似文献   

2.
苹果采摘机器人夜间图像边缘保持的Retinex增强算法   总被引:2,自引:2,他引:0  
为了提高采摘机器人的适用性和工作效率,保证成熟苹果果实的及时采摘,需要机器人具有夜间连续识别、采摘作业的能力。针对夜间苹果图像的特点,该文提出一种基于引导滤波的具有边缘保持特性的Retinex图像增强算法。利用颜色特征分量采用具有边缘保持功能的引导滤波来估计出照度分量;进而利用单尺度Retinex算法对图像进行对数变换获得仅包含物体本身特性的反射分量图像;分别对照度分量和反射分量图像增强后,再合成为新的夜间苹果的增强图像。文中选取30幅荧光灯辅助照明下采集到的夜间苹果图像进行试验的结果显示,该文增强算法处理后的30幅图像的平均灰度值,分别比原始图像、直方图均衡算法、同态滤波算法和双边滤波Retinex算法处理后的图像平均提高230.34%、251.16%、14.56%、7.75%,标准差平均提高36.90%、-23.95%、53.37%、28.00%,信息熵平均提高65.88%、99.68%、66.85%、17.53%,平均梯度提高161.70%、64.71%、139.89%、17.70%。且该文算法较双边滤波Retinex方法的运行时间平均减少74.56%。表明该文算法在夜间图像增强效果和运行时间效率上有明显的提高,为后续夜间图像的分割和目标识别提供了保障。  相似文献   

3.
为了提高受云层阴影影响的遥感图像的信息提取准确度,该文以水稻小区试验过程中为进行氮素水平检测而采集的低空机载高分辨率多光谱遥感图像为对象,对受云层阴影影响的高光谱图像进行光谱校正,从而提高氮素水平检测的精度。试验中采用机载的双摄像机同步采集可见光和近红外的水稻遥感图像,并将两摄像机的图像进行几何校正后合成得到彩红外(color infrared,CIR)光谱图像;同时在图像采集区域布置3块不同反射率的1.2 m×1.2 m标定靶,利用便携式光谱仪测定标定靶的反射光谱曲线,并统计标定靶在图像中各通道的亮度均值。以标定靶在晴天无云和有云图像中的亮度值为节点,对G、R和近红外(near infrared,NIR)通道分别建立分段的线性变换模型进行校正。为验证校正精度,在遥感图像中分别选择大田水稻、小区试验田块和裸地3个不同区域的图像的G、R和NIR通道像素亮度均值及归一化植被指数(normalized differential vegetation index,NDVI)作为评价指标。试验结果表明,和传统的整体线性变换相比,采用分段线性变换校正具有较高精度,G、R和NIR通道校正后的平均误差为8.6%,9.1%和11.7%,NDVI平均误差为11.5%,有效提高了阴影条件下的遥感图像的信息提取精度,提高了受云层影响遥感图像的利用率。研究为低空遥感的图像校正提供了参考。  相似文献   

4.
基于点特征检测的农业航空遥感图像配准算法   总被引:1,自引:1,他引:0  
针对当前无人机遥感图像配准算法普遍存在匹配精度差与配准速度慢等问题,该文以点特征检测方法为基础,结合矩阵降维处理方法,提出一种适用于农业航空遥感图像配准的改进算法—SNS(scale-invariant feature transform and singular value decomposition)算法。SNS算法以高斯函数同步检测尺度空间极值点的坐标和特征尺度,利用海森矩阵消除伪特征点,获取特征点精准定位,在求取特征点的模值与方向基础上,采用奇异值分解方法进行矩阵优化,实现数据降维再重构。试验结果表明,SNS算法与经典算法相比,配准速度平均提高5.01%,配准精度均方根误差平均降低10.48%,说明SNS算法在压缩数据量的同时,提高了整体配准精度,具有配准速度较快和鲁棒性较好的特点。研究结果可为农业航空遥感图像快速配准提供参考。  相似文献   

5.
农田遥感图像在采集过程中会受到噪声影响,为得到准确的农田遥感图像数据,应对获取的农田遥感图像进行去噪预处理。农田遥感图像中的纹理承载了重要信息,在图像降噪的同时保持或增强图像纹理具有重要意义。由于纹理和噪声一样,在频域表现为高频信号,以分解和重构算法为基础的常见滤波(含小波变换)方法在降噪的同时,也会造成纹理清晰度的下降。该文结合农田遥感图像纹理呈现出来的直线特性,将剪切波(Shearlet)和变分理论相结合,提出了一种新的遥感农田图像保纹理降噪方法。该方法首先对较大的遥感图像分块进行shearlet变换,在降噪的同时识别不同图块图像的纹理含量;对细小纹理含量较少的平滑区域,采用保边降噪变分模型去除shearlet变换带来的人工伪影。为避免子图块边界带来的边界效应,该文基于中心仿射变换理论提出了一种新的图像延拓方法,有效提高了图像降噪的效果。试验结果表明,该文算法去噪后的峰值信噪比(peak signal to noise ratio,PSNR)平均值比全变分模型去噪算法大1 d B,该文算法去噪后的PSNR平均比曲线波去噪算法大2 d B。同基于Symmlet小波的Shearlet算法相比,该文算法处理后农田遥感图像中伪影减少,在高斯噪声标准偏差σ为10、20和30 d B时,峰值信噪比PSNR分别提高了13.99%、9.69%和7.75%。  相似文献   

6.
为了提高水体强反光干扰的遥感影像信息提取准确度,该研究以柑橘树冠营养元素水平检测而采集的无人机多光谱影像为对象,对水体强反光造成的相同地物在不同影像上辐射信息不一致现象进行校正,从而提高营养元素水平检测的精度。首先对影像进行暗角校正,然后利用直方图对比度拉伸辅助SIFT(Scale invariant feature transform,SIFT)算法匹配出同名点,根据同名点的DN(Digital number,DN)值,利用RANSAC(Random sample consensus,RANSAC)构建校正模型对影像做相对辐射校正,并进行双边滤波去除噪声,最后经过辐射定标将影像DN值转化为反射率完成辐射一致性校正。为验证校正精度,选择蓝、绿、红、红边和近红外波段反射率以及GNDVI(Green normalized difference vegetation Index,GNDVI)的平均绝对误差(Mean absolute error,MAE)作为评价指标。试验结果表明,和直方图匹配相比,采用本文方法蓝、绿、红、红边和近红外波段校正后反射率的MAE分别为0.2%、0.5%、0.6%、1.7%和1.2%,GNDVI的MAE为0.3%,有效解决了水体反光造成的光谱失真问题,提高了受水体反光影响的遥感图像利用率,可为后续柑橘树冠营养元素估测提供精确的遥感数据保障。  相似文献   

7.
针对在雾霾天气条件下采集到的图像质量退化,影响现代化农业精准作业的问题,该文提出一种基于暗通道先验理论和区间插值小波变换的图像去雾新方法。该文将暗通道先验模型和区间插值小波变换相结合,期望能有效滤除雾霾信息,恢复景物颜色特征,使图像更加清晰。结果表明:经过该方法处理后,图像整体较明亮,图像的对比度和清晰度都得到提高,达到滤除图像中雾霾的效果。主观上符合人眼的观察感受,图像的层次感突出,景物细节纹理也保持较好,彩色图像的色彩饱和度被很好地保持住,图像的失真度较低,逼近景物的真实颜色。去雾效果与暗通道先验算法对比,该文算法标准差数值在R通道平均提高25.44%;G通道平均提高27.90%;B通道平均提高26.24%。因此,采用该方法可以实现图像去雾,为进一步准确获取图像信息奠定基础,适应于现代精准农业的应用。  相似文献   

8.
稻穗表型是表征水稻生长状况和产量品质的关键参数,稻穗表型的准确监测对于大田精准管理和水稻智慧育种具有重要意义。无人机图谱数据已被广泛用于水稻生长监测,然而大部分研究主要集中在水稻的营养生长阶段,针对抽穗期和成熟期稻穗表型监测方面的研究非常有限。因此,该研究利用无人机多源图谱数据进行水稻稻穗表型监测研究,分析了不同氮肥梯度和生长时期对稻穗表型的影响,构建了稻穗覆盖度、生物量以及倒伏等监测模型。结果表明,不同生长时期和氮肥梯度的稻穗表型呈现显著差异,稻穗覆盖度与图像特征高度相关。利用粒子群优化算法(Particle Swarm Optimization,PSO)和支持向量机(Support Vector Machine,SVM)回归模型能够从可见光图像中准确识别稻穗,计算的穗覆盖度与实际标记值高度相关,决定系数(coefficient of determination,R2)为0.87,将此结果与多光谱图像反射率融合,利用随机森林(Random Forest,RF)回归模型可以提高稻穗覆盖度的评估精度,R2为0.93,相对均方根误差(relative Root Mean Square Error,rRMSE)为9.47%。融合可见光图像的颜色和纹理以及多光谱图像的光谱反射率改善了穗生物量的评估精度,R2高达0.84,rRMSE为8.68%,此模型能够在不同种植年间迁移,进一步利用模型更新添加10%新样本能够改善模型迁移能力。基于PSO-SVM分类模型,联合可见光图像的颜色和纹理以及多光谱图像的光谱反射率也准确地识别稻穗倒伏,准确率达99.87%。上述研究结果证明了无人机遥感用于水稻稻穗表型监测的可行性,可为作物精准管理和智慧育种提供决策支持。  相似文献   

9.
基于机器视觉的水稻杂质及破碎籽粒在线识别方法   总被引:8,自引:5,他引:3  
陈进  顾琰  练毅  韩梦娜 《农业工程学报》2018,34(13):187-194
为了解决目前国内联合收获机缺乏针对含杂率、破碎率的在线监测装置的问题,该文提出基于机器视觉的水稻图像采集,杂质与破碎籽粒分类识别方法。采用带色彩恢复的多尺度Retinex算法增强原始图像,对HSV颜色模型的色调、饱和度两个通道分别设定阈值进行图像分割,并结合形状特征得到分类识别结果。采用综合评价指标对试验结果进行量化评价,研究表明,茎秆杂质识别的综合评价指标值达到了86.92%,细小枝梗杂质识别的综合评价指标值为85.07%,破碎籽粒识别的综合评价指标值为84.74%,平均识别一幅图像的时间为3.24 s。结果表明,所提出的算法能够快速有效识别出水稻图像中的杂质以及破碎籽粒,为水稻含杂率、破碎率的在线监测提供技术支撑。  相似文献   

10.
基于优化SIFT算法的无人机遥感作物影像拼接   总被引:2,自引:1,他引:1  
针对作物遥感影像因对比度低所导致的使用尺度不变特征变换算法(scale-invariant feature transform,SIFT)提取特征点数目少,拼接效果不理想的情况,提出了一种基于图像锐化的自适应修改采样步长的非极小值抑制拼接算法,该算法在图像预处理中引入锐化滤波器对平滑后的图像进行卷积,增强图像细节,增加特征点提取数目,同时通过基于尺度的自适应修改采样步长,使图像特征点分布更加均匀,根据低对比度作物遥感影像的成像特性,采用非极小值抑制,提高图像匹配效率。在查找匹配点的过程中,引入最优节点优先算法(best-bin-first,BBF)查找最近邻与次近邻,采用随机抽样一致算法(random sample consensus,RANSAC)优选特征点。通过试验验证,该文改进后的算法相比于标准SIFT算法,在处理低空作物遥感影像时,特征点提取数目平均增加77.5%,特征点匹配对数平均增加15对,对于标准SIFT算法无法匹配的低对比度作物遥感影像,提取到了8对以上的匹配点对,满足了拼接条件。该改进算法相对于标准SIFT算法更适于低对比度遥感影像的拼接。  相似文献   

11.
中国南方农业遥感监测中,遥感影像常常受到薄云雾影响,大气的散射与吸收作用会使传感器接收到的地物反射率与真实值之间存在差距,是导致数据质量下降的主要原因,薄云雾去除和大气校正处理是十分必要的。该研究利用LandSat-7/ETM+影像,结合背景抑制云雾厚度因子(BSHTI)云检测方法和虚拟云点(VCP)云去除方法进行薄云雾去除,并与暗元法去云处理结果对比分析,然后将去云处理后的影像进行FLAASH大气校正,选取校正前后典型地物的光谱特征和NDVI值进行分析评价。结果表明,BSHTI-VCP法可有效消除薄云雾对遥感数据的影响,提高了云雾覆盖范围的影像质量;FLAASH大气校正较好地消除了大气影响,获得了地物真实地表反射率。该研究为南方作物遥感监测中定量反演与信息解译提供了良好理论支持。  相似文献   

12.
无人机遥感影像面向对象分类方法估算市域水稻面积   总被引:7,自引:5,他引:2  
针对如何高效地从无人机遥感影像中提取农作物样方数据,用于农作物面积遥感估算,该文以浙江省平湖市为例,利用面向对象分类方法对无人机影像进行水稻自动化识别,作为样方数据与卫星遥感全覆盖空间分布分类结果结合,采用分层联合比估计进行2014年单季晚稻面积估算。然后,与人工目视解译识别方法获取的水稻样方数据推断的区域水稻面积估算的结果进行精度、效率对比分析。研究结果表明:1)利用面向对象分类方法对无人机影像进行分类,总体分类精度达到93%以上,满足构建样本的要求;2)通过区域作物估算对比分析发现,面向对象分类方法对无人机影像进行水稻识别,构建平湖市单季晚稻的样方数据,能够替代人工目视解译样方准确推断区域作物种植面积,有效地提高了无人机影像在遥感面积估算中的应用效率。  相似文献   

13.
改进CGAN网络的光学遥感图像云去除方法   总被引:1,自引:1,他引:0  
农业生产中使用的光学遥感图像在采集过程中时常受到云层的影响,导致获取到的图像清晰度低,影响地物信息的判读和后续的使用。针对这一问题,提出一种基于改进条件生成对抗网络(ConditionalGenerativeAdversarial Net-work,CGAN)的光学遥感图像去云方法。首先,在原始CGAN的生成器中引入空间池化层,通过增加网络的多尺度特征学习能力以提高生成图像的细节信息;其次,在改进CGAN网络中加入回归损失使生成图像与真实图像更加接近,进一步提高生成效果。在光学遥感图像数据集上的试验结果表明:相比原始CGAN,改进CGAN生成的无云光学遥感图像更接近真实无云光学遥感图像,与原始CGAN相比,改进CGAN在薄云和厚云光学遥感图像上的峰值信噪比(Peak Signal-to-NoiseRatio,PSNR)分别提升了1.64和1.05dB,结构相似性(StructuralSIMilarity,SSIM)分别提升了0.03和0.04。同时,相较于传统的去云方法和深度学习的Pix2Pix方法,该方法在光学遥感图像去云和保真上均取得了更好的效果。研究结果证明了改进的CGAN方法实现光学遥感图像去云的可行性,可为农用光学遥感图像的处理提供方法借鉴。  相似文献   

14.
针对传统的单尺度图像增强算法的不足,提出了一种基于Laplace多尺度分解的图像增强算法。该算法将图像分为由高频到低频若干个子图像,对每个频道的细节图像进行不同的非线性变换,使得图像中最细微的、对诊断有用的信息得到有效的增强,同时图像又不被过增强,再通过分解的逆过程重建图像。试验表明,该方法能有效提高图像中细节的清晰度并抑制噪声。  相似文献   

15.
针对水下图像普遍存在低对比度、低亮度和颜色失真,以及现有的水下图像复原方法恢复结果不自然、亮度不均和主体色调偏红等问题。该文提出了双背景光自适应融合与透射图精准估计水下图像方法。采用基于水下光衰减特性和背景光平坦性的双背景光自适应融合策略以提高估算的融合背景光准确度,通过新型水下暗通道先验、反向饱和图和三通道光谱衰减系数估算出更加精准的水下图像透射图,最后将估算出的融合背景光与精准透射图应用于水下成像模型得到复原后的水下图像。在广东罗非鱼良种场水产养殖数据集和水下图像增强基准数据集的试验结果表明:对比暗通道先验、最大强度先验、基于模糊和光吸收、蓝绿通道去雾、基于背景光统计模型和透射图优化5种水下图像复原方法,在主观恢复效果评价中,该文方法能有效纠正水下图像失真、亮度偏暗和主体色调偏红等问题;在7个客观评价指标中,该文方法在6个指标中取得最好值,其中全参考图像质量评价指标中的峰值信噪比、结构相似性、均方误差和视觉信息保真度等数值比次好水下图像复原方法分别提升了0.52%、2.1%、3.4%和0.86%;无参考图像质量评价指标中的自然图像质量评价指标和水下图像质量评价数值比次好水下图像复原方法分别提升了2.4%和7.4%。该文方法在解决传统水下图像复原方法中存在的亮度不均和颜色偏红等问题具有一定优势,可以为水下图像复原方法提供技术借鉴。  相似文献   

16.
为了从高分辨率无人机影像中获取准确的城市不透水面信息,在可见光波段范围内建立绿-蓝光谱特征空间,综合土壤线及不透水面线,构造了能够将土壤、植被像元与不透水面像元有效分离的绿-蓝不透水面指数。以广州市局部地区的GF-2号影像为验证数据对比及分析垂直不透水层指数、比值居民地指数以及绿-蓝不透水面指数的提取结果,以验证绿-蓝不透水面指数的可行性与提取精度。同时,将眉山市洪雅县部分地区的无人机正射影像作为试验数据进行不透水面提取。结果表明,在3个不透水面提取指数的横向对比中,绿-蓝不透水面指数和垂直不透水层指数的提取结果总体精度相同,验证了绿-蓝不透水面指数的有效性。在对无人机正射影像的不透水面提取中,得益于无人机低空摄影技术能够获取地形特征的特点,解决了建筑物屋顶因植被覆盖导致的错分问题,提取结果总体精度达到了96.95%,Kappa系数为0.936 1。试验证明了绿-蓝不透水面指数能够代替归一化差值不透水面指数、垂直不透水层指数、比值居民地指数等,应用于无人机遥感影像的不透水面信息提取中。  相似文献   

17.
为了满足多旋翼植保无人机悬停、定速飞行2种作业模式下近地遥感的需求,该文设计了一套液晶光谱成像装置。首先,通过硬件、软件开发,实现了装置采集模块、控制模块和通信模块3部分的协同工作。其中,采集模块由16位CCD灰度相机、消色差镜头、液晶可调滤光器以及UV镜组成,控制模块由微电脑处理器和USB连接器组成,通信模块由数传、北斗定位系统和地面工作站组成。由5V3A电源供电。开发相应软件实现各硬件模块之间的协同控制,以及数据处理的功能。数据处理功能既可用于拍摄前装置的参数调节,又可单独用于光谱图像分析。基于本装置的数据采集方法,实现了光谱图像采集与旋翼无人机2种飞行模式的匹配。通过室内模拟飞行试验和田间试验,对装置性能进行测试。结果显示装置可获得清晰的光谱图像,光谱范围400~720 nm,光谱间隔最高可达到2 nm,空间分辨率1392×1040,且光谱连续平滑、特征稳定可靠。本装置基于面阵分光原理,采用密接耦合光路设计、核心器件同步触发技术,结构紧凑、抗震性好、稳定度高,适合植保作业,有望应用于精准农药喷施、作物处方图生成等多个领域。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号