首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
破碎率、含杂率是评价大豆联合收获机的重要作业性能指标,破碎率、含杂率实时数据是实现大豆联合收获机智能化调控的基础。为了实现大豆机械收获过程破碎率、含杂率的在线检测,该研究提出了基于改进U-Net网络的机收大豆破碎率、含杂率在线检测方法。以大豆联合收获机实时收获的大豆图像为对象,使用开源标注软件Labemel对数据集进行标注,构建基础数据集。针对大豆图像粘连、堆叠、语义信息复杂等问题,以U-Net为基础网络结构,结合VGG16网络并在各激活层(Rectified Linear Unit,ReLu)前引入批归一化层(Batch Normalization,BN)防止过拟合;在编码器中提取的特征图后面添加卷积块注意力模块(Convolutional Block Attention Module,CBAM)抑制无关区域的激活,减少冗余部分;采用最近邻插值法的上采样替换解码器中转置卷积,避免转置卷积引起的棋盘效应。试验结果表明:改进U-Net网络能有效地将图像中完整大豆籽粒、破碎籽粒和杂质进行识别分类,完整籽粒识别分类综合评价指标值为95.50%,破碎籽粒识别分类综合评价指标值为91.88%,杂质识别分类综合评价指标值为94.35%,平均交并比为86.83%。应用所设计的大豆籽粒破碎率和含杂率在线检测装置开展台架和田间试验。台架试验结果表明,本文方法的检测结果与人工检测结果的破碎率均值绝对误差为0.13个百分点,含杂率均值绝对误差为0.25个百分点;田间试验表明,本文方法检测结果与人工检测结果的破碎率均值绝对误差为0.18个百分点,含杂率均值绝对误差为0.10个百分点。所提检测方法能够准确在线估算机收大豆的破碎率和含杂率,可为大豆联合收获作业质量在线检测提供技术支持。  相似文献   

2.
基于U-Net模型的含杂水稻籽粒图像分割   总被引:6,自引:5,他引:1  
陈进  韩梦娜  练毅  张帅 《农业工程学报》2020,36(10):174-180
含杂率是水稻联合收获机的重要收获性能指标之一,作业过程中收获籽粒掺杂的杂质包含作物的枝梗和茎秆等,为了探索籽粒含杂率和机器作业参数之间的关联,需要实时获取籽粒含杂率数据。该文基于机器视觉的U-Net模型对联合收获机水稻收获籽粒图像进行分割,针对传统分割算法中存在运算量大、耗时多、图像过分割严重和分割参数依赖人为经验难以应对各种复杂谷物图像等问题,采用深度学习模型多次训练学习各分割类别的像素级图像特征,提出基于U-Net深度学习模型的收获水稻籽粒图像中谷物、枝梗和茎秆的分割方法,采用改进的U-Net网络增加网络深度并加入Batch Normalization层,在小数据集上获得更丰富的语义信息,解决图像训练数据匮乏和训练过拟合问题。选取田间试验采集的50张收获水稻籽粒图像,采用Labelme方式进行标注和增强数据,裁剪1 000张256像素×256像素小样本,其中700张作为训练集,300张作为验证集,建立基于改进U-Net网络的收获水稻籽粒图像分割模型。采用综合评价指标衡量模型的分割准确度,对随机选取的60张8位RGB图像进行验证。试验结果证明,水稻籽粒的分割综合评价指标值为99.42%,枝梗的分割综合评价指标值为88.56%,茎秆的分割综合评价指标值为86.84%。本文提出的基于U-Net模型的收获水稻籽粒图像分割算法能够有效分割水稻籽粒图像中出现的谷物、枝梗和茎秆,时性更强、准确度更高,可为后续收获水稻籽粒图像的进一步识别处理提供技术支撑,为水稻联合收获机含杂率实时监测系统设计提供算法参考。  相似文献   

3.
联合收获机粮箱内稻谷含杂率传感器采样盒设计   总被引:2,自引:2,他引:0  
针对收割过程中通常只在开机时设置一次作业参数,不能经常停机观察籽粒的清洁度进而随时调节作业参数这一问题,需要研制一种能够自动获取联合收获机作业过程中含杂率数据的装置。但是,迄今为止,在收获过程中监测籽粒含杂率的研究还处于探索阶段。针对以上问题,结合联合收获机作业过程中谷物的流变特性,该文设计了一种谷物含杂率传感器,通过电磁铁(弹簧)控制挡板的伸出(复位),以使采样盒可视玻璃窗口前聚集(卸载)谷物,通过采样盒内CMOS相机获取数字图像,应用数字图像处理技术获得含杂率。依据图像直方图优化LED光源的照射及安装方法以获取高质量图像,分析了电磁铁提供的拉力和弹簧提供的推力、采样盒入口尺寸,采用全局阈值迭代算法,使用三个迭代步提取稻谷、茎秆和细柄连通域,计算每个连通域的像素,最终从形态上识别了谷物和杂质,同时测量稻谷千粒质量、茎秆面密度和细柄线密度,建立了计算谷物杂质质量的数学模型。结果表明:在采样盒内两侧各安装2个LED,间接照射视窗时获取的图像质量较好,有效避免了图像强度直方图中出现的峰值;额定拉力为60 N的电磁铁可以提供足够的拉力;采用线径为1 mm的弹簧能提供足够的推力,由于在收割过程中出现的短秸秆和细柄的长度在10 mm到30 mm之间,因此采样盒的设计高度为95.7 mm,宽度为76.5 mm,入口宽度为31.9 mm,视窗长度为57.1 mm,宽度为57.4 mm,如此稻谷、秸秆和细柄可以顺利流入采样盒,并且在视窗中可以看到约200粒谷粒。在不同含杂率下进行了籽粒含杂率传感器监测精度的台架试验,结果表明:该装置监测的籽粒含杂率与人工获得的籽粒含杂率具有一致的变化趋势,能够监测在0~2.88%范围内的籽粒含杂率。为了满足田间作业监测需求,同时设计了采样盒的防水防尘罩,为相机提供一个稳定抓取图像的工作环境。于2017年11月17日,在苏州九里湖进行了不同喂入量下含杂率监测试验,试验使用Yamma4LZ2.5联合收割机,结果表明,田间试验的相对误差在9.44%和19.67%之间。该研究可为田间收获过程中自动获取谷物含杂率提供参考。  相似文献   

4.
针对收割过程中通常只在开机时设置一次作业参数,不能经常停机观察籽粒的清洁度进而随时调节作业参数这一问题,需要研制一种能够自动获取联合收获机作业过程中含杂率数据的装置。但是,迄今为止,在收获过程中监测籽粒含杂率的研究还处于探索阶段。针对以上问题,结合联合收获机作业过程中谷物的流变特性,该文设计了一种谷物含杂率传感器,通过电磁铁(弹簧)控制挡板的伸出(复位),以使采样盒可视玻璃窗口前聚集(卸载)谷物,通过采样盒内CMOS相机获取数字图像,应用数字图像处理技术获得含杂率。依据图像直方图优化LED光源的照射及安装方法以获取高质量图像,分析了电磁铁提供的拉力和弹簧提供的推力、采样盒入口尺寸,采用全局阈值迭代算法,使用三个迭代步提取稻谷、茎秆和细柄连通域,计算每个连通域的像素,最终从形态上识别了谷物和杂质,同时测量稻谷千粒质量、茎秆面密度和细柄线密度,建立了计算谷物杂质质量的数学模型。结果表明:在采样盒内两侧各安装2个LED,间接照射视窗时获取的图像质量较好,有效避免了图像强度直方图中出现的峰值;额定拉力为60 N的电磁铁可以提供足够的拉力;采用线径为1 mm的弹簧能提供足够的推力,由于在收割过程中出现的短秸秆和细柄的长度在10 mm到30 mm之间,因此采样盒的设计高度为95.7 mm,宽度为76.5 mm,入口宽度为31.9 mm,视窗长度为57.1 mm,宽度为57.4 mm,如此稻谷、秸秆和细柄可以顺利流入采样盒,并且在视窗中可以看到约200粒谷粒。在不同含杂率下进行了籽粒含杂率传感器监测精度的台架试验,结果表明:该装置监测的籽粒含杂率与人工获得的籽粒含杂率具有一致的变化趋势,能够监测在0~2.88%范围内的籽粒含杂率。为了满足田间作业监测需求,同时设计了采样盒的防水防尘罩,为相机提供一个稳定抓取图像的工作环境。于2017年11月17日,在苏州九里湖进行了不同喂入量下含杂率监测试验,试验使用Yamma4LZ2.5联合收割机,结果表明,田间试验的相对误差在9.44%和19.67%之间。该研究可为田间收获过程中自动获取谷物含杂率提供参考。  相似文献   

5.
籽棉杂质的分类识别是实现棉花生产线自适应加工的基础与重要依据。该文提出了一种基于局部二值模式和灰度共生矩阵的籽棉杂质分类识别算法,该算法将含杂籽棉图像首先转换为局部二值模式图像,获取图像的微观结构,再用局部二值模式图像生成灰度共生矩阵并计算特征参数,获取图像宏观结构。使用支持向量机作为分类器,用不同尺度的图像结构进行训练,从而达到籽棉杂质的分类识别。试验结果表明,该文设计算法对各种杂质的平均正确识别率达到了94%,超过单独使用局部二值模式和单独使用灰度共生矩阵的正确识别率,为实现棉花自适应加工提供了技术基础。  相似文献   

6.
机械收获方式及籽粒含水率对玉米收获质量的影响   总被引:7,自引:4,他引:3  
该文选用13个玉米品种为研究对象,通过田间试验系统研究了常规玉米栽培模式下延缓收获期间玉米含水率的变化规律,分析了果穗收获和籽粒收获2种收获方式对玉米收获损失率、籽粒破碎率和含杂率的影响,初步研究了不同机械收获方式及籽粒含水率对不同品种玉米收获质量的影响,建立了含水率与籽粒含杂率之间的数学函数。结果表明,延缓收获期间不同品种玉米的含水率均有显著的降低(P0.05),但其变化率存在差异。同期进行的果穗收获和籽粒收获2种收获方式的收获总损失率之间没有显著差异(P0.05),机械收获方式仅显著影响落粒率(P0.05)。延缓收获使落粒率和落穗率都显著下降(P0.05)。采用果穗收获方式时,籽粒含水率与各损失率之间不存在显著相关性;而籽粒收获时,籽粒含水率与落粒率、总损失率、破碎率和含杂率之间存在显著相关性。延缓进行籽粒收获后,籽粒含杂率均值为1.32%,总损失率均值为1.74%,均低于国标要求;而平均籽粒破碎率达13.23%,高于国标要求。含杂率与籽粒含水率之间满足线性关系,根据二者之间关系预测可知,籽粒含水率低于32.40%的收获就可以保证含杂率满足国标要求。该研究可为玉米籽粒收获技术的研究与推广提供数据支撑和科学依据。  相似文献   

7.
京津冀地区密植高产宜机收籽粒春玉米品种筛选   总被引:3,自引:2,他引:1  
机收籽粒可以显著提高玉米生产效率降低生产成本,但是目前京津冀地区适宜机收籽粒的玉米品种较少,品种筛选评价体系缺乏,阻碍了玉米籽粒机收的推广实行。针对这一问题,该研究开展了3 a春玉米品种和种植密度互作试验以及2 a玉米籽粒机收试验。根据宜机收籽粒品种要求、该地区气候和种植条件,设置宜机收性、高产稳产优质性和水分利用效率(Water Use Efficiency, WUE)高稳性3个一级评价指标。宜机收性下二级评价指标为籽粒破碎率、含杂率、总损失率和收获速率。籽粒破碎率和含杂率与籽粒含水率分别呈二次函数关系和指数关系,籽粒破碎率≤5%的籽粒含水率在3.6%~24.8%之间;当籽粒含水率≤26.99%时,含杂率≤3%的,因此将生理成熟后10 d的籽粒含水率≤25%作为籽粒破碎率和含杂率的三级评价指标。总损失率与籽粒含水率二次函数关系,与倒伏倒折率和穗位高标准差呈线性关系,因此将生理成熟后10 d的籽粒含水率(≤25%)、倒伏倒折率(≤5%)和穗位高标准差(≤5.93 cm)作为总损失率的三级评价指标。由于倒伏倒折率是影响收获速率的主要作物指标,因此将倒伏倒折率(≤5%)作为收获速率的三级评价指标。品种―种植密度互作试验的平均产量、WUE和穗粒腐病率分别为10 889.64 kg/hm2、2.28 kg/m3和1.75%,产量和WUE标准差平均值分别为1 776.79 kg/hm2和0.43 kg/m3,产量和WUE高稳系数平均值分别为0.53和0.46。通过相关性分析计算,种植密度增加15 000株/hm2条件下春玉米产量和WUE平均增加6.59%和11.89%,单株产量平均下降8.38%。据此得到高产稳产优质性和WUE高稳性下的二级评价指标及其判别标准。在确定各级评价指标及其判别标准的基础上,通过层次分析法和熵权法得到末级评价指标的组合权重,并将各评价指标的判别标准作为判别品种的指标值,避免单纯依靠排序确定品种优劣。通过综合性状评价筛选出豫丰98、豫单9953和金科玉3306为京津冀地区适宜籽粒机收的春玉米品种。分析发现该地区宜机收籽粒春玉米品种应具有籽粒脱水快、高产、稳产、增密增产、穗粒腐病率低、WUE高的特点。通过构建适宜的品种筛选体系,有利于玉米籽粒机收技术在京津冀地区推广,对其他地区密植高产宜机收籽粒玉米品种的筛选有一定的借鉴意义。  相似文献   

8.
玉米机械粒收籽粒含杂率与穗轴特性关系分析   总被引:1,自引:1,他引:0  
明确玉米机械粒收籽粒含杂率及其与穗轴特性的关系,对于实现高质量粒收,推动玉米机械粒收技术发展具有重要意义。该研究于2018—2020年在四川中江同一地块,采用同一机械、操作人员进行分期收获试验,调查籽粒含杂率、各杂质组分绝对含量、穗轴弯曲强度和含水率,探讨各收获期杂质组分和穗轴特性变化规律,以期明确籽粒含杂率与穗轴特性的关系。结果显示,随收获期推迟,籽粒含杂率、杂质中穗轴绝对含量和穗轴含水率显著降低,穗轴弯曲强度先升高后降低。不同收获期穗轴均是主要的杂质成分,比例达32%~79%,平均为51.45%。籽粒含杂率与穗轴弯曲强度和穗轴含水率关系分析结果显示,籽粒含杂率与穗轴弯曲强度不相关,与穗轴含水率呈指数关系(y=0.045 6e~(0.063 7x),R~2=0.774 7, n=75),玉米穗轴含水率降低至65.72%以下收获机械粒收籽粒含杂率可降至3%以下。进一步分析发现,在相同收获期或穗轴含水率相近时,籽粒含杂率与穗轴弯曲强度关系不大。穗轴作为玉米机械粒收主要的杂质成分,其含水率能很好解释籽粒含杂率的变化。生产上选择和选育玉米穗轴脱水快、含水率低或通过推迟收获期在玉米穗轴含水率较低时进行机械粒收,可显著降低机械粒收含杂率。  相似文献   

9.
为筛选适宜山西机械粒收春玉米品种,明确玉米机械粒收质量影响因素,在山西长治和晋中两个地区不同生产条件下,对33个玉米品种进行连续3年的机械收获,研究了籽粒含水率、产量与机械收获质量的关系。结果表明,机械收获的籽粒破碎率、含杂率和总损失率均值分别为5.50%、2.71%和4.75%,其中,总损失率分为穗损失率与籽粒损失率两部分,前者占比65.89%。籽粒破碎率高是影响山西省春玉米机械收获的主要因素。籽粒含水率与籽粒破碎率、含杂率呈极显著正相关,与穗损失率呈极显著负相关,与落粒损失率呈显著正相关,而与总损失率的相关性不显著。籽粒破碎率与籽粒损失率随籽粒含水率降低而快速降低,后期有所升高。杂质率随籽粒含水率降低而降低,后期趋于稳定。穗损失率随籽粒含水率降低而升高。籽粒含水率与破碎率之间关系符合模型y=0.018x2-0.788x+13.18(R2=0.615**),当籽粒含水率为21.89%时,破碎率最低。另外,春玉米在籽粒含水率为16.92%~24.85%间进行机械收获,其籽粒破碎率可达到≤5%的国家标准,且通过多环境重复测试并结合产量性状试验证实,长单511、迪卡159、长单716更适合机械粒收。本研究对于推动玉米收获机械化及提升玉米产业核心竞争力具有重要意义。  相似文献   

10.
柔性杆齿滚筒脱粒机理   总被引:10,自引:7,他引:3  
传统的水稻脱粒是采用刚性脱粒齿,由于打击力大,造成水稻籽粒破碎或内部破损,从而影响水稻种子的发芽率或大米加工的成米率。为进一步探索降低水稻脱粒破碎或破损率的方法,设计了一种脱粒原理类似刚性杆齿脱粒的柔性杆齿脱粒滚筒,对其脱粒力进行了研究。分析表明在滚筒转速一定的情况下,采用柔性杆齿脱粒增加了与稻穗的接触时间,减少了冲击力,柔性杆齿打击力小于刚性杆齿。脱粒对比试验结果表明,直径小于刚性杆齿的柔性杆齿脱粒滚筒能适应水稻脱粒要求,脱粒指标中破碎率显著低于刚性杆齿滚筒,未脱净率、含杂率、脱粒率和断穗率均与刚性杆齿脱粒滚筒相近。  相似文献   

11.
Parboiling, a hydrothermal treatment of paddy or brown rice, improves the texture and nutritional characteristics of cooked rice. We investigated milling breakage susceptibility of brown rice parboiled under different soaking and steaming conditions, resulting in samples with different degrees of starch gelatinization and levels of fissured grains and white bellies, that is, parboiled grains with translucent outer layers and an undesirable opaque center. The milling breakage susceptibility was 2.1% for raw rice and ranged from less than 1% up to 11.3% for parboiled rice. Parboiled samples with increased milling breakage susceptibility contained higher levels of white bellies and fissured grains. In white bellies, starch gelatinization is incomplete. Scanning electron microscopy revealed inhomogeneities in individual white bellies and fissured rice grains, indicating moisture gradients inside the grains during parboiling. Starch needs to be completely gelatinized to ensure the absence of white bellies and minimal fissured grain levels in the parboiled end product and, as a consequence, a decreased milling breakage.  相似文献   

12.
基于GA-SVM模型的机采籽棉杂质识别   总被引:2,自引:2,他引:0  
针对中国机采棉加工过程中混级混轧、缺乏棉花参数检测的现状,提出使用遗传算法优化支持向量机参数的机采籽棉图像分割、杂质识别方法。在图像分割阶段,采用像素点邻域的色调、饱和度、亮度颜色特征与平均亮度、平均对比度、平滑度、三阶矩、一致性、熵等纹理特征构建特征向量,使用最优保留策略的遗传算法优化惩罚参数及核函数参数,建立图像分割SVM分类器;对杂质识别过程,在计算标记区域的颜色特征、纹理特征基础上,增加面积、周长、离心率、矩形度、形状因子等形状特征,使用遗传算法建立杂质识别SVM分类器。测试结果表明,该方法适用于边缘对比度低、纹理信息丰富的机采籽棉含杂图像分割,对杂质的有效识别率为92.6%。该研究为棉花加工设备的参数优化和国产采棉机的研制及优化提供重要参考依据。  相似文献   

13.
水稻脱粒破碎率与脱粒元件速度关系研究   总被引:4,自引:9,他引:4  
脱粒元件的冲击是水稻脱粒谷粒损伤的主要原因。该文基于碰撞理论和能量平衡原理对单个、多个谷粒和脱粒元件的碰撞过程进行了理论分析。建立了圆形截面脱粒元件线速度和脱粒破碎率之间的数学模型。在自制的脱粒分离性能试验台上对水稻进行了脱粒性能试验,通过试验确定了数学模型中的待定系数,验证了数学模型的正确性。为脱粒装置的设计、优化提供了理论依据。  相似文献   

14.
机采籽棉收购环节含杂率快速检测系统研制   总被引:1,自引:1,他引:0       下载免费PDF全文
籽棉收购过程中含杂率检测工序繁杂、劳动强度大、效率低,不利于籽棉的快速检测分级,严重影响籽棉收购效率。该研究开发了一种适于收购环节的机采籽棉含杂率快速检测系统。系统由驱动传输单元、压棉单元、传感单元、机器视觉系统、PLC控制系统组成。首先利用大杂清理机清除籽棉中的棉杆和铃壳等大密度杂质(大杂),对去大杂后的籽棉进行称量后送至机器视觉系统,采用RGB双面成像方法获取籽棉样本图像,分析计算图像中的杂质面积,预测去除大杂的籽棉含杂率和小杂质量,最后结合计算的大杂质量预测籽棉样本总含杂率。其中,RGB图像处理中使用同态滤波、主成分分析(Principal Component Analysis,PCA)变换和局部自适应阈值方法提升图像的可分割性;比较了线性回归(Linear Regression,LR)和支持向量机回归(Support Vector Regression,SVR)2种回归模型的准确率,确定较优的回归模型为LR,总含杂率决定系数R~2为0.95,均方根误差RMSE为0.58%,最后利用100个籽棉样品对系统性能进行验证,实测值与预测值之间平均绝对误差为0.36个百分点,单个样本含杂率检测程序处理时间为48.38 s。结果表明该系统具有较高的预测准确率和效率。  相似文献   

15.
基于Micro-CT图像处理的稻谷内部损伤定量表征与三维重构   总被引:1,自引:1,他引:0  
在水稻脱粒、储运、加工过程中,外界机械作用力是造成稻谷损伤破损的主要方式,造成的内部裂纹肉眼无法观察但影响稻谷的存储、加工以及种子的发芽率等.该文利用质构仪对稻谷进行挤压力学特性试验,分析稻谷损伤破碎过程;对受不同载荷的稻谷进行CT扫描试验,结合数字图像处理方法对稻谷进行损伤表征分析与三维重构,旨在提出一种新的稻谷内部损伤定量评价方法.结果表明:伪彩色图像处理可以提高CT图像的视觉分辨率;灰度值以及灰度直方图分析可以识别稻谷的胚、胚乳以及裂纹大小,并定量分析;对分割后的二值图像进行像素点统计分析得到80,100,120,140,160N载荷下的损伤度分别为0,0.26%,0.39%,0.93%,1.79%;重构的三维模型可以看出裂纹一般沿着短轴方向扩展,随着载荷增大,原有裂纹逐渐变宽,并产生新的沿着长短轴的混合裂纹,直到糙米断裂.该研究可为谷物内部损伤定量表征分析提供新思路.  相似文献   

16.
基于机器视觉和BP神经网络的超级杂交稻穴播量检测   总被引:7,自引:6,他引:1  
为了保证秧盘上每穴超级稻种子数量一致,实现精密播种作业,需对播种性能进行准确检测,但超级杂交稻播种到秧盘中,多粒种子存在粘连、重叠、交叉等情况,传统的面积、分割算法对上述情况播种量检测精度低,因此需提高上述情况种子播种量检测精度。考虑到种子连通区域的形状特征反映种子数量,该文提出一种基于机器视觉和BP神经网络超级杂交稻穴播量检测技术。针对超级稻颜色特征,采用RGB图像中红色R和蓝色B分量组成的2×R-B分量图和固定阈值法获取二值图像;投影法定位秧盘目标检测区域和秧穴;提取连通区域10个形状特征参数,包括面积、周长、形状因子、7个不变矩,建立BP神经网络超级稻数量检测模型,检测连通区域为碎米/杂质、1、2、3、4和5粒以上6种情况;试验结果表明,6种情况的检测正确率分别为96.6%、99.8%、97.2%、92.5%、86.0%、94.3%,平均正确率为94.4%,每幅图像平均处理时间0.823s,满足精密育秧播种流水线在线检测要求;研究结果为实现精密恒量播种作业提供参考。  相似文献   

17.
基于无人机遥感影像的水稻种植信息提取   总被引:9,自引:5,他引:4  
水稻是中国南方最主要的粮食作物,种植面积波动对国家粮食稳定有很大影响。通过无人机遥感试验获取多幅有重叠区域的图像,使用Agisoft photoscan软件拼接重构试验区的完整图像,利用多尺度分割方法将试验区域分割成若干对象,并基于统计方法提取对象的光谱特征、几何特征和纹理特征;然后,建立识别水稻地块的二分类Logistic回归模型,特征指标为形状指数、红色均值、红色标准偏差、最大化差异度量、灰度共生矩阵同质性和灰度共生矩阵非相似性。结果表明:模型辨识训练样本集的正确率为100%,辨识检验样本的正确率为97%,模型应用于辨识验证区域水稻田块,总体正确率为98%。最后基于累计像素方法测算水稻田块的面积,并与目视解译测算的结果对比,面积误差小于3.5%,研究方法识别水稻田块效果好,面积测算准确率高。因此,该研究对利用无人机遥感影像普查水稻种植信息具有一定的适用性。  相似文献   

18.
为研究湛江稻米生产环境及其稻米中Cd的安全性,抽样测定了湛江4个水稻主产区的大田土壤、灌溉水、植株器官和稻米中重金属镉(Cd)的含量。结果表明:早稻与晚稻均表现为,Cd在根中的积累量显著地高于茎、叶和稻米。同时,Cd在稻米中的积累量显著地低于茎、叶,Cd在茎、叶中的含量水平相当,水稻植株器官对Cd的富集水平基本为根〉叶〉茎〉稻米,根系是吸收和积累Cd的主要植株器官;湛江市4个水稻主产区生产的稻米中Cd的含量范围为0.034-0.047mg·kg^-1,符合国家粮食卫生控制标准值(GB2715-2005),尚不存在Cd暴露的风险。水稻种植区的土壤中Cd含量为0.155-0.180mg·kg^-1,达到国家土壤环境质量一级标准(GB15618-1995),仍属于自然背景值范围;灌溉水的重金属cd含量的范围为0.0019-0.0049mg·L^-1,均达到国家农田灌溉水标准(GB5084-2005)的要求。因此,湛江市水稻生产的土壤和灌溉水环境是安全的,生产的稻米Cd的安全性高,不会危害消费人群的身体健康。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号