首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 140 毫秒
1.
四川省夏玉米机械粒收适宜品种筛选与影响因素分析   总被引:6,自引:1,他引:5  
为筛选适宜四川机械粒收夏玉米品种,明确玉米机械粒收质量影响因素,2017—2019年在四川省中江县开展了夏玉米机械粒收品种筛选试验研究,对参试28个玉米品种、98个品次机械粒收质量、籽粒含水率和产量数据进行分析。结果表明,玉米籽粒破碎率和落穗损失率高是四川夏玉米机械粒收存在的主要问题。夏玉米机械粒收籽粒破碎率平均为5.63%,杂质率平均为2.39%,落穗损失率平均为4.12%,籽粒总损失率平均为4.76%,其中落穗损失占籽粒总损失的86.55%。籽粒含水率与籽粒破碎率、杂质率、落粒损失率呈显著正相关,而与落穗损失率、籽粒总损失率相关不显著。收获时较高的籽粒含水率是导致籽粒破碎率高的主要原因,适当推迟收获时间可有效降低籽粒含水率,进而降低机械粒收籽粒破碎率。种植行距与收获机械行距不匹配导致错行收获是落穗损失率高的主要原因,保证收获机对行收获可显著降低落穗损失率,进而降低籽粒总损失率。本研究以玉米产量和机收时籽粒含水率为指标,筛选出产量高、籽粒含水率低的‘仲玉3号’‘渝单30’‘正红6号’‘延科288’ 4个玉米品种,可作为四川省夏玉米适宜机械粒收的品种。  相似文献   

2.
收获时期对四川春玉米机械粒收质量的影响   总被引:5,自引:2,他引:3  
开展收获时期对玉米机械粒收质量影响的研究,对确定玉米适宜机械粒收时期和粒收技术的推广应用具有重要意义。本文以四川4个主栽玉米品种为材料,研究不同收获时期(7月31日、8月7日、8月13日、8月19日、8月25日、8月31日)对四川春玉米机械粒收质量的影响,并分析籽粒含水率与机械粒收质量之间的关系。结果表明:随收获日期推迟,玉米籽粒含水率逐渐降低,破碎率先快速降低后略有升高,杂质率快速降低并趋于稳定,而落穗损失率显著增加,落粒损失率变化规律不明显。机械粒收损失主要为落穗损失,占总损失率的比例平均为76.34%。随收获日期推迟籽粒破碎率和杂质率在品种间的差异逐渐减小,而落穗损失和总损失率在品种间的差异逐渐增大。籽粒含水率是影响机械粒收质量的关键因素,破碎率与籽粒含水率拟合方程为y=0.032 9x2-1.332 8x+15.529(R2=0.55**),含水率为10.76%~29.76%,破碎率低于5%;杂质率与籽粒含水率拟合方程为y=0.031 8e0.118 5x (R2=0.71**),含水率低于38.37%,杂质率低于3%;落穗损失率与籽粒含水率拟合方程为y=2 083.3/x2.135(R2=0.68**);籽粒总损失率与籽粒含水率拟合方程为y=911.02/x1.769(R2=0.68**),含水率高于18.96%,籽粒总损失率低于5%。推迟收获有利于降低籽粒破碎率和杂质率,但增加落穗风险和籽粒总损失率。本试验播期条件下,玉米适宜机械粒收的籽粒含水率范围为18.96%~29.76%,适宜机械粒收时间在8月7—19日,较传统收获日期推迟10~15 d。  相似文献   

3.
黄淮海夏玉米机械化粒收质量及其主要影响因素   总被引:3,自引:0,他引:3  
针对黄淮海夏玉米区机械粒收质量差及其主要影响因素不明确,该研究选择黄淮海夏玉米区2013-2019年机械粒收技术联合试验示范的1 250组测试样本进行籽粒含水率、破碎率、杂质率和损失率等粒收质量统计分析,结果表明,夏玉米机械粒收时籽粒含水率平均为27.38%,破碎率平均为9.29%,杂质率平均为1.68%,损失率平均为3.28%,籽粒含水率和破碎率明显高于全国平均值。从不同年份收获质量看,2018、2019年收获籽粒平均含水率下降至25.45%和25.05%,平均破碎率下降至9.07%和7.88%,虽仍然高出国家玉米机械收获规定的破碎率标准(≤5%)的要求,但收获质量已发生明显改善。破碎率与收获期籽粒含水率之间呈二次曲线关系,破碎率最低时籽粒含水率为21.08%。因此,破碎率高仍然是黄淮海夏玉米机械粒收存在的主要质量问题,而收获期籽粒含水率高是导致破碎率高、制约机械粒收的主要原因。针对黄淮海夏播区热量资源梯度分布差异较大,玉米收获季节窗口期短的特点,选择早熟、脱水快的品种,进行品种脱水与区域气候资源配置,进一步降低收获期籽粒含水率,规范宜机械粒收栽培技术以及收获机操作规程是破解黄淮海夏玉米粒收质量差的关键。  相似文献   

4.
玉米机械粒收籽粒含杂率与穗轴特性关系分析   总被引:1,自引:1,他引:0  
明确玉米机械粒收籽粒含杂率及其与穗轴特性的关系,对于实现高质量粒收,推动玉米机械粒收技术发展具有重要意义。该研究于2018—2020年在四川中江同一地块,采用同一机械、操作人员进行分期收获试验,调查籽粒含杂率、各杂质组分绝对含量、穗轴弯曲强度和含水率,探讨各收获期杂质组分和穗轴特性变化规律,以期明确籽粒含杂率与穗轴特性的关系。结果显示,随收获期推迟,籽粒含杂率、杂质中穗轴绝对含量和穗轴含水率显著降低,穗轴弯曲强度先升高后降低。不同收获期穗轴均是主要的杂质成分,比例达32%~79%,平均为51.45%。籽粒含杂率与穗轴弯曲强度和穗轴含水率关系分析结果显示,籽粒含杂率与穗轴弯曲强度不相关,与穗轴含水率呈指数关系(y=0.045 6e~(0.063 7x),R~2=0.774 7, n=75),玉米穗轴含水率降低至65.72%以下收获机械粒收籽粒含杂率可降至3%以下。进一步分析发现,在相同收获期或穗轴含水率相近时,籽粒含杂率与穗轴弯曲强度关系不大。穗轴作为玉米机械粒收主要的杂质成分,其含水率能很好解释籽粒含杂率的变化。生产上选择和选育玉米穗轴脱水快、含水率低或通过推迟收获期在玉米穗轴含水率较低时进行机械粒收,可显著降低机械粒收含杂率。  相似文献   

5.
开展玉米机械粒收质量及其影响因素研究,对推动山西省玉米机械粒收发展,提升玉米产业核心竞争力有重要意义。本文以5个前期试验筛选的适宜机械粒收品种为材料,设置6个收获时期,在同一地块采用同一台机械与同一位农机手操作收获,研究不同收获期对机械粒收质量与产量的影响。研究表明,籽粒含水率随着收获时期的延迟降低;籽粒破碎率与机收落粒率随着收获时期延迟前期快速降低后期趋于稳定略有升高;杂质率随着收获时期的延迟逐步降低最后趋于稳定;落穗损失率随着收获时期的延迟升高。10月15日收获比9月24日收获平均增产11.9%。高的籽粒破碎率是限制山西省春玉米机械粒收的主要因素。籽粒含水率与破碎率模型为y=0.03x~2-1.224x+16.78 (R~2=0.802**)。当籽粒含水率为20.4%时,籽粒破碎率最低。籽粒含水率在15.6%~25.2%区间收获,破碎率能够达到≤5%的国家标准。在山西省春玉米区选择适宜机械粒收品种,收获时间推迟到10月15日,可达到理想粒收质量并增产。‘长单511’‘迪卡159’和‘长单716’在粒收质量与产量方面均表现优秀,可作为山西省春玉米区机械粒收品种推广应用。  相似文献   

6.
机械收获方式及籽粒含水率对玉米收获质量的影响   总被引:7,自引:4,他引:3  
该文选用13个玉米品种为研究对象,通过田间试验系统研究了常规玉米栽培模式下延缓收获期间玉米含水率的变化规律,分析了果穗收获和籽粒收获2种收获方式对玉米收获损失率、籽粒破碎率和含杂率的影响,初步研究了不同机械收获方式及籽粒含水率对不同品种玉米收获质量的影响,建立了含水率与籽粒含杂率之间的数学函数。结果表明,延缓收获期间不同品种玉米的含水率均有显著的降低(P0.05),但其变化率存在差异。同期进行的果穗收获和籽粒收获2种收获方式的收获总损失率之间没有显著差异(P0.05),机械收获方式仅显著影响落粒率(P0.05)。延缓收获使落粒率和落穗率都显著下降(P0.05)。采用果穗收获方式时,籽粒含水率与各损失率之间不存在显著相关性;而籽粒收获时,籽粒含水率与落粒率、总损失率、破碎率和含杂率之间存在显著相关性。延缓进行籽粒收获后,籽粒含杂率均值为1.32%,总损失率均值为1.74%,均低于国标要求;而平均籽粒破碎率达13.23%,高于国标要求。含杂率与籽粒含水率之间满足线性关系,根据二者之间关系预测可知,籽粒含水率低于32.40%的收获就可以保证含杂率满足国标要求。该研究可为玉米籽粒收获技术的研究与推广提供数据支撑和科学依据。  相似文献   

7.
针对我国玉米生产中机械粒收存在产量损失率、破碎率高的问题,本试验以农户浅旋的土壤肥力为对照,设置深耕、免耕和秸秆原位还田措施等创造的不同土壤肥力水平,以‘先玉696’和‘西蒙6号’为试验材料,在高低两种种植密度下测定玉米机收质量、穗位整齐度、倒伏率、籽粒脱水速率和籽粒含水率,以及产量和产量构成等指标,揭示土壤肥力提升后对玉米机械粒收增产减损的影响机制。研究结果表明:1)提升土壤肥力可降低玉米机械粒收的产量损失率,在高密度下作用更加明显,每提升1个肥力单位,产量损失率下降12.55~15.70个百分点。2)提升土壤肥力可以使穗位整齐度提高5.35~9.69、玉米倒伏率降低5.44~9.75个百分点、籽粒平均脱水速率提高0.048~0.090%·d~(–1),有效缓解增密带来的负面影响,是产量损失率降低的主要原因。3)提高土壤肥力可明显增加玉米的有效穗数、穗粒数和千粒重,从而使玉米籽粒产量提高1878.5~2544.4kg·hm~(–2);增密后高肥力水平土壤具有增产效果。因此,内蒙古地区通过耕作措施与秸秆还田提升土壤肥力可实现玉米机械粒收增产减损。  相似文献   

8.
京津冀地区密植高产宜机收籽粒春玉米品种筛选   总被引:3,自引:2,他引:1  
机收籽粒可以显著提高玉米生产效率降低生产成本,但是目前京津冀地区适宜机收籽粒的玉米品种较少,品种筛选评价体系缺乏,阻碍了玉米籽粒机收的推广实行。针对这一问题,该研究开展了3 a春玉米品种和种植密度互作试验以及2 a玉米籽粒机收试验。根据宜机收籽粒品种要求、该地区气候和种植条件,设置宜机收性、高产稳产优质性和水分利用效率(Water Use Efficiency, WUE)高稳性3个一级评价指标。宜机收性下二级评价指标为籽粒破碎率、含杂率、总损失率和收获速率。籽粒破碎率和含杂率与籽粒含水率分别呈二次函数关系和指数关系,籽粒破碎率≤5%的籽粒含水率在3.6%~24.8%之间;当籽粒含水率≤26.99%时,含杂率≤3%的,因此将生理成熟后10 d的籽粒含水率≤25%作为籽粒破碎率和含杂率的三级评价指标。总损失率与籽粒含水率二次函数关系,与倒伏倒折率和穗位高标准差呈线性关系,因此将生理成熟后10 d的籽粒含水率(≤25%)、倒伏倒折率(≤5%)和穗位高标准差(≤5.93 cm)作为总损失率的三级评价指标。由于倒伏倒折率是影响收获速率的主要作物指标,因此将倒伏倒折率(≤5%)作为收获速率的三级评价指标。品种―种植密度互作试验的平均产量、WUE和穗粒腐病率分别为10 889.64 kg/hm2、2.28 kg/m3和1.75%,产量和WUE标准差平均值分别为1 776.79 kg/hm2和0.43 kg/m3,产量和WUE高稳系数平均值分别为0.53和0.46。通过相关性分析计算,种植密度增加15 000株/hm2条件下春玉米产量和WUE平均增加6.59%和11.89%,单株产量平均下降8.38%。据此得到高产稳产优质性和WUE高稳性下的二级评价指标及其判别标准。在确定各级评价指标及其判别标准的基础上,通过层次分析法和熵权法得到末级评价指标的组合权重,并将各评价指标的判别标准作为判别品种的指标值,避免单纯依靠排序确定品种优劣。通过综合性状评价筛选出豫丰98、豫单9953和金科玉3306为京津冀地区适宜籽粒机收的春玉米品种。分析发现该地区宜机收籽粒春玉米品种应具有籽粒脱水快、高产、稳产、增密增产、穗粒腐病率低、WUE高的特点。通过构建适宜的品种筛选体系,有利于玉米籽粒机收技术在京津冀地区推广,对其他地区密植高产宜机收籽粒玉米品种的筛选有一定的借鉴意义。  相似文献   

9.
河北地区由于受光热资源限制,夏玉米收获时籽粒含水率普遍偏高,成为阻碍机械粒收技术推广应用的重要因素。虽然通过延迟收获可降低籽粒水分,但茎秆倒伏问题将进一步增加粒收难度。基于此,本试验于2019年选择迪卡517(DK517)、京农科728(JNK728)和豫单9953(YD9953)3个适宜机械粒收的品种为材料,以郑单958(ZD958)为对照,2020年新增张单258(ZD258)、张粒178(ZL178)和郑原玉432(ZYY432)3个品种,并设置3个种植密度,分别为6×104(D1)、7.5×104(D2)和9×104株·hm-2(D3),研究品种间及种植密度对生理成熟期倒伏率、茎秆形态特征、解剖特征、力学特征及产量的影响。结果表明,试验所选品种除了对照ZD958,其他品种均于吐丝后67 d籽粒含水率降至25%以下,达到了GB/T 21962-2008 标准中机械粒收对籽粒含水率的要求,其中YD9953和ZL178在吐丝后67 d的籽粒含水率比吐丝后25 d平均降低了35.1和42.0个百分点。在生理成熟期,相同密度下YD9953、ZL178、ZYY432的总倒伏率显著低于其他品种,其中在D1和D2密度下的总倒伏率均低于5%,符合机械粒收对倒伏率的要求。分析倒伏相关性状发现,株高和穗位高对密度的响应因品种而异;各品种茎秆基部第3节间单位体积干重和抗折力均随密度的增加而降低。D3密度下,ZL178的节间单位体积干重与D1相比,降幅最小(7.9%)。D2密度下,YD9953、ZL178和ZYY432的抗折力比均值分别提高28.7%、21.5%和28.4%;相同密度下ZL178、JNK728、YD9953的维管束数目和木质化程度高于其他品种。相关性分析发现,倒伏率和纤维素含量与抗折力呈显著正相关(R2=0.70、0.51),可作为评定玉米茎秆抗倒伏能力的关键指标。D2密度下ZL178和YD9953的产量与对照ZD958差异不显著但高于其他处理。综合考虑品种脱水特性、产量和站秆期间抗倒伏能力,ZL178和YD9953在密度7.5×104株·hm-2下能够兼顾高产和抗倒。本研究结果可为河北夏玉米光热资源限制区推广机械粒收提供理论参考。  相似文献   

10.
玉米强弱势粒间机械脱粒破碎率的差异   总被引:1,自引:0,他引:1  
为明确机械脱粒时玉米强弱势粒间破碎率的差异及其影响因素,选用2个玉米品种,将玉米分强弱势粒分别机械脱粒,比较分析3次机械脱粒日期(8月9日、8月16日、8月23日)强弱势粒的含水率、百粒重、力学强度、淀粉粒形态和破碎率。结果表明,参试品种‘仲玉3号’在8月9日、8月16日和8月23日脱粒弱势粒的破碎率均高于强势粒,‘先玉1171’在8月16日和8月23日脱粒弱势粒的破碎率也均高于强势粒;不同机械脱粒日期强势粒的含水率和百粒重显著高于弱势粒,同时较弱势粒具有明显的力学强度优势。籽粒顶面压碎强度和胚部压碎强度与破碎率呈极显著和显著负相关(r=-0.46**,r=-0.34*),可更好地反映籽粒耐破碎能力;强势粒的角质胚乳淀粉粒大于弱势粒,强势粒的粉质胚乳淀粉粒主要呈多面体,弱势粒主要呈球体。强弱势粒含水率差异难以反映其耐破碎能力,粒重和力学强度差异是造成强弱势粒破碎率差异的重要原因。  相似文献   

11.
机械化收获是提高农业生产效率的重要措施,但机械化收获受倒伏、籽粒脱水特性和收获籽粒含水率等的影响。为探讨春玉米形态结构与抗倒伏性之间的关系、籽粒脱水进程和收获籽粒含水率对品种、施氮量和种植密度的响应,该研究以先玉335和陕单609为试验材料,设置0、180和225 kg/hm2 三个氮肥水平、6.5×104和8.5×104 株/hm2 两个种植密度,通过2 a大田试验研究品种、种植密度和氮肥对株高、茎粗、穗位系数、抗折强度、弯曲力矩、倒伏系数、灌浆末期籽粒脱水速率、收获籽粒含水率、产量和生物量等的影响。结果表明:不施氮条件下,株高和茎粗对倒伏系数影响较大;施氮条件下,倒伏系数主要受弯曲力矩、抗折强度和株高影响。施氮显著降低陕单609的倒伏系数(P<0.05),施氮处理下陕单609的株高和茎粗较不施氮处理分别增加8%~21%和26%~45%,抗折强度和弯曲力矩分别增加157%~277%和72%~114%,倒伏系数降低30%~47%。施氮可降低籽粒脱水速率,推迟脱水进程,显著增加收获籽粒含水率(P<0.05)。施氮处理籽粒含水率较不施氮处理提高7%~9%。高密度处理收获籽粒含水率比低密度处理低3%(P<0.05)。先玉335的籽粒脱水速率快,收获籽粒含水率比陕单609低7%(P<0.05)。与不施氮处理相比,施氮处理产量和生物量分别显著提高92%和63%(P<0.05)。与低密度处理相比,高密度处理产量显著增加12%(P<0.05)。综上所述,春玉米的倒伏性、灌浆后期籽粒脱水速率及收获籽粒含水率受品种特性影响,也受施肥、栽培措施和气候条件的显著影响。选育籽粒脱水快的品种、适当增加种植密度并合理统筹氮肥施用量可以提高春玉米机械化收获适宜性。  相似文献   

12.
针对黄淮海地区玉米穗贮藏存在因含水率比较大不易保存、容易霉变等问题,根据目前合作社免烘干玉米鲜穗储藏的实际需求,为了实现科学储粮,减损增收,研制了机械通风玉米穗储粮仓,并进行了装粮试验。利用常温大风量降水原理和专门设计的仓内正负压通风风道与自然通风风道,风机作为鼓风机、引风机交替运行,完成粮仓的呼吸作业,采用温度、湿度传感器实时采集仓内温度和湿度,配合PLC(Programmable Logic Controller)控制系统,粮仓内呼吸作业与缓苏作业交替运行,实现大宗鲜玉米穗的干燥保质贮藏。通过测定玉米穗储藏期间玉米粒、玉米芯的水分及玉米粒的脂肪酸值、容重等指标,研究分析玉米穗储藏期间霉变、品质变化等情况,开展玉米穗储藏特性及储粮损失研究,并通过建立数学模型与试验结果进行对比分析。试验结果表明,该型储粮仓通过机械通风控温技术,可实现玉米穗就仓干燥储粮,经过80 d的储藏,玉米的水分已经低于标准安全水分值,玉米脂肪酸值为39.9 mg/100 g,为宜存,容重为740 g/L,霉变粒0.6%,不完善粒0.4%,杂质0.07%,色泽气味正常,有效减少玉米在仓储过程中出现霉变等现象,降水、防霉、防鼠效果明显,可有效降低粮食产后损失,节约能源,保证粮食品质,每斤粮食能比刚收获时多卖0.20~0.25元,实现农民"待价而沽"和藏粮于民的需求。  相似文献   

13.
DCPTA和ETH复配剂对玉米茎秆力学特性及籽粒产量的影响   总被引:3,自引:0,他引:3  
为探究植物生长调节剂对玉米茎秆力学特性的影响以及与产量的关系,以东农253为试材,在玉米9叶期喷施2种外源物质:玉黄金、自配的DCPTA和ETH复配剂(代号KP),以喷施清水为对照(CK)。喷施处理后,分别在玉米抽雄前10 d、抽雄期、灌浆初期、乳熟期和完熟期取其茎秆研究力学特性,并在收获期测产。结果表明,与CK相比,喷施KP和玉黄金后,株高分别下降8.87%和6.65%,穗位高分别下降17.79%和4.04%,扁率最高下降45.86%和15.86%;茎秆横折强度、穿刺强度、单位节间长度干物重、节间横截面积及皮厚最高分别提高150.17%、103.56%、215.79%、85.03%、110.48%和115.46%、56.44%、53.33%、76.19%、27.41%。收获期玉黄金处理下籽粒水分含量较CK显著下降4.97%。KP和玉黄金处理下的产量较CK增加9.23%和5.78%。相关性分析表明,植物生长复配剂处理后茎秆的皮厚、穿刺强度、横折强度、横截面积、单位节间长度干物重和田间致倒伏推力与产量呈正相关;株高、穗位高和扁率与产量呈负相关。由此可见,植物生长复配剂可以提高玉米茎秆强度以及籽粒产量。本研究结果为黑龙江玉米化控高效栽培提供了理论依据。  相似文献   

14.
春季解冻期土壤季节性冻融发生最为强烈,极易发生土壤侵蚀,也是磷素流失的关键时期。采用人工模拟降雨的方法,探究春季解冻期不同磷素背景值坡面产流产沙及磷素流失动态过程。结果表明:产流后14 min内径流量和泥沙量均呈现较好的线性分布,径流相关系数为0.969,泥沙相关系数为0.936;14~18 min内径流量缓慢增加,从18 min开始一直到产流结束径流量基本保持在3 100 ml/min,而泥沙则总体呈现先增大再减小的趋势;土壤背景值(APb)越高,径流、泥沙中磷浓度越高;径流中磷素流失比率均值APb20坡面最大,且随着背景值的增大呈减小趋势;而泥沙中磷素流失比率均值变化则与径流不同,APb40的坡面其流失比率最小,其他坡面差异较小;径流中磷素流失量与泥沙中磷素流失量呈线性关系,y=6.751x-0.628(R2=0.958)。  相似文献   

15.
不同收获方式含水率对油菜收获物流损失的影响   总被引:11,自引:8,他引:3  
收获物流损失是影响油菜生产成本的重要因素,以DMH145油菜品种为对象,在丹麦FOULUM 农业研究中心试验研究了油菜籽粒含水率对油菜分段收获和联合收获中3种主要损失的影响,建立了含水率与3种主要损失及总损失之间的数学函数,另外秸秆含水率对秸秆收获物流损失的影响也进行了研究。结果表明:随着含水率的降低,脱粒损失和清选损失降低,但是过低的含水量会使割台损失增大。总损失与含水率之间存在CUBIC函数关系且关系显著;不同含水率情况下,分段收获和联合收获籽粒平均损失率分别为16.358%和18.771%,分段收获平均高出联合收获2.4%;在三大损失中割台损失最低值0.976%,平均低于脱粒损失和清选损失;秸秆含水率对秸秆收获物流损失影响不显著。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号