首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 181 毫秒
1.
群养猪行为是评估猪群对环境适应性的重要指标。猪场环境中,猪只行为识别易受不同光线和猪只粘连等因素影响,为提高群养猪只行为识别精度与效率,该研究提出一种基于改进帧间差分-深度学习的群养猪只饮食、躺卧、站立和打斗等典型行为识别方法。该研究以18只50~115日龄长白猪为研究对象,采集视频帧1 117张,经图像增强共得到4 468张图像作为数据集。首先,选取Faster R-CNN、SSD、Retinanet、Detection Transformer和YOLOv5五种典型深度学习模型进行姿态检测研究,通过对比分析,确定了最优姿态检测模型;然后,对传统帧间差分法进行了改进,改进后帧间差分法能有效提取猪只完整的活动像素特征,使检测结果接近实际运动猪只目标;最后,引入打斗活动比例(Proportion of Fighting Activities, PFA)和打斗行为比例(Proportion of Fighting Behavior, PFB)2个指标优化猪只打斗行为识别模型,并对模型进行评价,确定最优行为模型。经测试,YOLOv5对群养猪只典型姿态检测平均精度均值达93.80%,模型大小为14.40 MB,检测速度为32.00帧/s,检测速度满足姿态实时检测需求,与Faster R-CNN、SSD、Retinanet和Detection Transformer模型相比,YOLOv5平均精度均值分别提高了1.10、3.23、4.15和21.20个百分点,模型大小分别减小了87.31%、85.09%、90.15%和97.10%。同时,当两个优化指标PFA和PFB分别设置为10%和40%时,猪只典型行为识别结果最佳,识别准确率均值为94.45%。结果表明,该方法具有准确率高、模型小和识别速度快等优点。该研究为群养猪只典型行为精准高效识别提供方法参考。  相似文献   

2.
基于边界脊线识别的群养猪黏连图像分割方法   总被引:3,自引:3,他引:0  
猪体图像的前景分割和黏连猪体的分离是实现群养猪数量自动盘点和猪只个体行为智能识别的关键。为实现群养猪黏连图像的自动分割,该文采用决策树分割算法提取视频图像帧的猪体前景区域,计算各连通区域的复杂度,根据复杂度确定黏连猪体区域,利用标记符控制的分水岭分割算法处理黏连猪体图像,检测待选的边界脊线,通过检验待选边界脊线的分割效果和形状特征(包括线性度和Harris拐点数目),识别出猪体黏连分割线,实现黏连猪体的分离。结果表明,决策树分割算法(decision-tree-based segmentation model,DTSM)能够有效地去除复杂背景,前景分割效果良好。黏连猪体分离结果显示,基于边界脊线识别的黏连猪体分离准确率达到了89.4%,并较好地保留了猪体轮廓。通过计算分割后猪体连通区域的中心点,并对中心点进行德洛内剖分,初步实现了猪只的定位和栏内分布的可视化。6 min的监控视频处理结果显示,该文方法各帧图像的盘点平均误差为0.58,盘点准确率为98.33%,能够正确统计出栏内猪只数量。该研究可为实现基于监控视频的群养猪自动盘点和个体行为识别提供新的技术手段。  相似文献   

3.
基于姿态与时序特征的猪只行为识别方法   总被引:3,自引:1,他引:2       下载免费PDF全文
生猪行为监测是生猪养殖管理过程中的一个重要环节。该研究提出了基于姿态与时序特征的猪只行为识别方法。首先采集和标注猪栏内猪只图像,分别构建了猪只目标检测数据集、猪只关键点数据集和猪只行为识别数据集;利用构建的数据集,分别训练了基于YOLOv5s的猪只检测模型、基于轻量化OpenPose算法的猪只姿态估计模型和基于ST-GCN算法的猪只行为识别模型,并搭建了猪只行为识别系统。经测试,文中训练的YOLOv5s猪只检测模型mAP(mean Average Precision)最高达到0.995,姿态估计模型平均精度和平均召回率达到93%以上,基于ST-GCN的猪只行为识别模型的平均准确率为86.67%。文中构建的猪只行为识别系统中基于LibTorch推理猪只检测模型和猪只姿态估计模型的单帧推理耗时分别约为14和65 ms,单只猪行为识别推理耗时约为8 ms,每提取200帧连续姿态进行一次行为识别推理,平均17 s更新一次行为识别结果。证明提出的基于姿态与时序特征的猪只行为识别方法具有一定可行性,为群养猪场景下的猪只行为识别提供了思路。  相似文献   

4.
基于Isomap和支持向量机算法的俯视群养猪个体识别   总被引:2,自引:2,他引:0  
针对俯视群养猪视频序列,提出了一种利用机器视觉技术对猪个体进行识别的方法。首先对采集的俯视群养猪视频序列进行前景检测与目标提取,获得各单只猪个体,其后建立训练样本,提取猪个体颜色、纹理及形状特征,组合构建表征猪个体的特征向量,接着对组合特征利用Isomap算法做特征融合,在最大程度保留有效识别信息的基础上降低特征维数,最后利用优化核函数的支持向量机分类器进行训练与识别。试验选取了900帧图像,试验结果表明该文所提方法切实有效,猪个体最高识别率为92.88%。该文从机器视觉角度探索了俯视群养猪的个体识别,有别于传统的RFID猪个体识别,该研究为无应激的猪个体识别提供了新思路,也为进一步探索群养猪个体行为分析等奠定了基础。  相似文献   

5.
马岗鹅的行为与其生长状况和福利状况密切相关,马岗鹅关键行为监测对评估其生长性能具有重要的现实意义。为了实现对群养栏马岗鹅关键行为高效率精准监测,该研究探索一种基于YoloX的群养马岗鹅关键行为监测算法(Magang geese behavior monitoring of based on Double Head-YoloX,MGBM-DH-YoloX),该算法通过减少YoloX的头部数量提升检测效率、使用损失函数减少前景背景干扰、使用迁移训练方式提高网络训练效率等技术对马岗鹅采食、饮水、休息和应激等关键行为及其规律进行分析。MGBM-DH-YoloX首先用Mosaic和Mixup对马岗鹅图像进行数据增强,然后使用增强后的数据集训练模型,并且利用模型检测马岗鹅的关键行为,最后累计得出马岗鹅关键行为的发生时长和行为节律;试验训练集为1 400幅、验证集200幅和测试集为400幅,连续活动视频10 d。结果表明,MGBM-DH-YoloX算法的平均精度为98.98%、检测速度达到81帧/s、内存消耗为2 520.04 MB。对马岗鹅的10 d养殖数据分析发现,MGBM-DH-YoloX能有...  相似文献   

6.
基于Wi-Fi无线感知技术的猪呼吸频率监测   总被引:1,自引:1,他引:0  
监测和及时发现猪呼吸异常是养猪产业管理中的重要课题。为了克服人工监测方式效率低下、穿戴式设备监测方法成本较高且容易引起猪应激反应的缺点,该文提出了一种基于Wi-Fi网络信道状态信息的非接触式猪呼吸率监测方案。首先,利用Wi-Fi网络设备及其开源驱动程序捕获CSI序列信号并提出异常载波过滤算法用于滤除通信过程中的异常载波;其次,设计载波周期性水平量化指标并以此评估载波周期性水平;第三,通过SmoothingSplines方法平滑载波曲线并基于载波序列自相关函数估计载波周期和频率,筛选出载波周期性水平大于22且频率位于闭区间[0.127 Hz,1.25 Hz]的反映猪只呼吸行为的载波;第四,对符合条件的载波频率进行加权平均求得猪只呼吸率。以人工统计猪只每分钟的呼吸次数作为真实情况,通过对9头仔猪,5头育肥种猪,3头怀孕母猪以及3头因患病引起腹式呼吸的病猪进行对比试验,该文提出的方法能够准确计算出猪的呼吸率,平均相对误差为1.398%。研究结果为应用Wi-Fi无线感知技术监控动物呼吸率提供参考。  相似文献   

7.
基于Lucas-Kanade稀疏光流算法的奶牛呼吸行为检测   总被引:2,自引:2,他引:0  
奶牛呼吸行为的智能检测对于奶牛疾病的自动诊断及奶牛精准养殖具有重要意义。该研究基于Lucas-Kanade稀疏光流算法,提出了一种适合于非结构化养殖环境的无接触式单目标奶牛呼吸行为检测方法。通过在HSV颜色空间完成奶牛目标的提取,然后通过Canny算子和掩模操作完成奶牛所有花斑边界的检测,再利用Lucas-Kanade稀疏光流算法计算提取奶牛花斑边界光流,最后根据视频序列帧中花斑边界平均光流的方向变化规律实现奶牛呼吸行为的检测。为了验证本研究算法的有效性,利用不同环境下获取的105段共计25 200帧数据进行了测试,并与基于整体Lucas-Kanade光流法、整体Horn-Schunck光流法和基于花斑边界的Horn-Schunck光流法进行了对比验证。试验结果表明,该研究算法的帧处理耗时在0.10~0.13 s之间,在试验视频上的平均运行时间为14.14 s。奶牛呼吸行为检测的准确率为83.33%~100%之间,平均准确率为98.58%。平均运行时间较基于整体Lucas-Kanade光流法的呼吸行为检测方法慢1.60 s,较Horn-Schunck整体光流的呼吸行为检测方法快7.30 s,较基于花斑边界的Horn-Schunck光流法快9.16 s。呼吸行为检测的平均准确率分别高于3种方法 1.91、2.36、1.26个百分点。研究结果表明,通过Lucas-Kanade光流法检测奶牛花斑边界平均光流方向变化实现奶牛呼吸行为检测是可行的,该研究可为奶牛热应激行为的自动监测及其他与呼吸相关疾病的远程诊断提供参考。  相似文献   

8.
基于光流法与特征统计的鱼群异常行为检测   总被引:4,自引:3,他引:1  
鱼类群体行为的异常检测能够为鱼类健康监控与预警提供重要的方法和手段,对研究鱼类行为的机理,提升水产养殖过程中的信息化水平具有非常重要的意义。该文通过计算机视觉和图像处理技术,基于鱼群运动特征统计方法,对鱼群异常行为检测进行研究。利用Lucas-Kanade光流法得到目标鱼群的运动矢量,并对目标运动的行为特征进行统计,得到速度与转角这2个行为特征的联合直方图与联合概率分布。最后,在联合概率分布的基础上,基于标准互信息(normalized mutual information-NMI)和局部距离异常因子(local distance-based outlier factor-LDOF)2种方法对鱼群行为进行异常检测。试验结果表明,2种异常检测方法均达到99.5%以上的准确率。  相似文献   

9.
基于视频分析的多目标奶牛反刍行为监测   总被引:6,自引:6,他引:0  
奶牛反刍行为与其生产、繁殖和应激行为等存在较强的相关性,现有方法多采用人工观察或可穿戴式装置进行奶牛反刍行为的监测,存在误差大、容易引起奶牛应激反应、成本高等问题。为了实现多目标奶牛反刍行为的实时监测,该研究基于视频分析与目标跟踪技术,在获取奶牛嘴部区域的基础上,分析对比了压缩跟踪算法(compressive tracking,CT)和核相关滤波算法(kernelized correlation filters,KCF)在多目标奶牛反刍监测中的性能。为了验证不同算法对奶牛反刍行为监测的效果,分别用9段视频进行了试验,针对误检问题提出了有效的咀嚼次数判定模型,最后与实际的奶牛反刍数据进行了对比。试验结果表明:对多目标监测,KCF算法平均帧处理速度为7.37帧/s,是CT算法平均帧处理速度0.51帧/s的14.45倍;KCF算法平均误差为13.27像素,是CT算法平均误差38.28像素的34.67%。对双目标监测,KCF算法的平均误检率为7.72%,比CT算法的平均误检率18.56%低10.84个百分点;2种算法的帧处理速度分别为10.11帧/s和0.87帧/s;平均跟踪误差分别为22.19像素和28.51像素,KCF算法的平均跟踪误差仅为CT算法的77.83%。试验结果表明,KCF算法具有较低的误检率及较高的帧处理速度,更适合奶牛反刍行为的监测。在此基础上,验证了2种算法在不同光照、不同姿态和不同程度遮挡等影响因素下的监测效果,结果表明,CT算法会出现不同程度的偏离,甚至丢失目标,而KCF算法仍然具有良好的效果和较好的适应性,表明将KCF算法应用于全天候多目标奶牛反刍行为的分析是可行的、有效的。  相似文献   

10.
为解决酿酒葡萄生长状态自动监测问题,该文提出基于机器视觉和视频处理技术的自动监测系统,开发了多角度可变形部件模型的葡萄叶片检测算法和基于颜色特征的判别模型跟踪算法。在叶片检测方面,该算法对颜色特征图像采用可变形部件模型训练出多角度叶片检测器,通过多模型匹配后产生叶片检测候选集合,选择集合中得分最高的检测结果作为最后的定位信息;在跟踪方面,结合图像中目标的颜色直方图,建立具有区分背景和目标的组合判别模型,并将位置函数的最大值作为相邻帧的目标位置,从而实现对叶片目标的实时跟踪。试验结果表明,该文检测算法对自然条件下的葡萄叶片平均检测率为88.31%,误检率为8.73%;叶片跟踪的准确性也相对较高,其重叠率高达0.83,平均中心误差为17.33像素,其证明了该算法的有效性,研究结果为葡萄生长状态的自动分析提供参考。  相似文献   

11.
基于头尾定位的群养猪运动轨迹追踪   总被引:7,自引:6,他引:1  
猪的头/尾位置直观反映了猪的进食、饮水、争斗、追逐等日常活动。从群养猪俯视视频中有效分割粘连的猪个体,找出猪的头/尾部,并以头/尾坐标实现较精准的运动轨迹追踪有着较大的难度。该研究采用改进分水岭分割算法分割视频图像帧中的粘连猪个体;对分割后的猪体提取头/尾轮廓,分别用类Hough聚类和圆度识别算法识别每头猪的头/尾,用运动趋势算法修正头/尾识别的误差,生成以头/尾部为定位坐标的运动轨迹。运算结果和人工标记对比证明类Hough聚类和圆度识别算法的头尾识别正确率分别为71.79%和79.67%;经过运动趋势修正后,以头部为定位坐标生成的运动轨迹与人工标记生成运动轨迹吻合良好;对比头/尾轨迹和质心轨迹可以发现,头/尾轨迹能够更多获取猪个体和群体活动、运动信息。该研究对于实现自动记录和分析猪个体和群体的活动行为提供新的思路和方法。  相似文献   

12.
基于改进Graph Cut算法的生猪图像分割方法   总被引:5,自引:4,他引:1  
生猪图像分割为生猪行为特征提取、参数测量、图像分析、模式识别等提供易于理解和分析的图像表示,准确有效的生猪图像分割是生猪行为理解和分析的基础.针对传统Graph Cut算法分割精度差、分割效率低及不能准确分割特定目标的问题,该文结合交互分水岭算法,提出基于改进Graph Cut算法的生猪图像分割方法.采用交互分水岭算法对图像进行区域划分,划分的各个区域块看作超像素,用超像素替代传统加权图中的像素点,构造新的网络图替代传统加权图,重新构造能量函数以完成前景背景的有效分割.试验结果表明:该方法峰值信噪比平均范围为[30,40],结构相似度平均范围为[0.9,1],两种评价准则的结果与主观评价一致,图像分割质量、精度得到明显提升;平均耗时缩短到传统GraphCut算法的33.7%,提高了分割效率;在复杂背景、噪声干扰、光照强度弱等条件下可以快速分割出特定目标生猪,具有较高鲁棒性.  相似文献   

13.
基于机器视觉的猪体体尺测点提取算法与应用   总被引:18,自引:13,他引:5  
无应激获取猪体的体尺、体质量,是猪福利养殖中的一个重要任务,为解决机器视觉提取自然站立姿态下猪体的体尺测点识别率低的问题,该文通过在线摄像机获取120d龄长白猪的彩色图像,以猪体体尺传统的测量位置为研究基础,结合猪舍现场实际情况,提出了复杂背景下猪体个体信息提取的算法、基于包络分析的猪体头部和尾部的去除算法以及具有一定弯曲姿态的复杂猪体体尺测点坐标提取的算法,并利用Matlab2010软件实现了其算法。验证试验结果表明:通过背景减法和去除噪声算法可去除背景干扰,有效识别猪体信息;测点提取算法可准确提取自然姿态下猪的个体轮廓,识别其体尺测点,实现了猪体的体长、体宽等体尺量算的9个体尺测点的坐标提取,经验证,对猪体体长的实测值平均相对误差最小,其平均相对误差仅为0.92%;其次为腹部体宽,其平均相对误差为1.39%;而对猪体肩宽和臀宽的检测误差较大,平均相对误差分别为2.75%和3.03%。本研究可应用于猪体无应激量算体尺、估算猪体体质量,为开展福利养殖提供了一种新方法。  相似文献   

14.
采用改进CenterNet模型检测群养生猪目标   总被引:5,自引:4,他引:1  
为实现对群养环境下生猪个体目标快速精准的检测,该研究提出了一种针对群养生猪的改进型目标检测网络MF-CenterNet(MobileNet-FPN-CenterNet)模型,为确保目标检测的精确度,该模型首先以无锚式的CenterNet为基础结构,通过引入轻量级的MobileNet网络作为模型特征提取网络,以降低模型大小和提高检测速度,同时加入特征金字塔结构FPN(Feature Pyramid Networks)以提高模型特征提取能力,在保证模型轻量化、实时性的同时,提高遮挡目标和小目标的检测精度。该研究以某商业猪场群养生猪录制视频作为数据源,采集视频帧1 683张,经图像增强后共得到6 732张图像。试验结果表明,MF-CenterNet模型大小仅为21 MB,满足边缘计算端的部署,同时对生猪目标检测平均精确度达到94.30%,检测速度达到69 帧/s,相较于Faster-RCNN、SSD、YOLOv3、YOLOv4目标检测网络模型,检测精度分别提高了6.39%、4.46%、6.01%、2.74%,检测速度分别提高了54、47、45、43 帧/s,相关结果表明了该研究所提出的改进型的轻量级MF-CenterNet模型,能够在满足目标检测实时性的同时提高了对群养生猪的检测精度,为生产现场端的群养生猪行为实时检测与分析提供了有效方法。  相似文献   

15.
基于改进实例分割算法的智能猪只盘点系统设计   总被引:1,自引:1,他引:0  
基于图像处理的动物资产计数方法,不仅可以减少人工投入,还可以缩短生物资产的计数周期,但该方法受光照条件影响严重,并且当动物间相互挤压、遮挡时,计数精度较差。针对这些问题,该研究提出了一种基于图像实例分割算法的生猪计数网络。针对光照和目标边缘模糊问题,利用拉普拉斯算子进行图像预处理。对Mask R-CNN网络的特征提取网络进行改进,在原始特征金字塔网络(Feature pyramid network, FPN)后面增加一条自底向上的增强路径,直接将低层边缘位置特征与高层特征相融合,提高对目标边缘轮廓的识别能力,对非极大值抑制过程和损失函数进行优化和改进,以提高分割精度。在河北丰宁、吉林金源和内蒙古正大3个试验猪场进行测试,验证本文网络的计数精度。采集设备在3个试验猪场共采集2 400张图像,经图像预处理去除模糊和光线差的图像,从剩余的图像中随机选取共1 250张图像作为原始数据集,其中丰宁猪场500张、金源猪场500张,正大猪场250张。将各猪场的原始数据集分别按2:2:1的比例分为3部分,包括训练集905张,验证集95张,测试集250张,对原始训练集和验证集进行数据增强,最终得到训练集图像1 500张,验证集图像150张,测试集图想250张。河北和吉林的试验猪场,每栏猪只数目为12~22头,各测试100张图像,完全准确清点的图像比例分别为98%和99%,满足实际应用要求。内蒙古试验猪场的单栏猪只密度大,每栏猪只数目平均80头,测试50张图像,完全准确清点的图像比例为86%。本文所提出的猪只盘点系统,通过修改网络增强图像中目标特征信息提取和优化边界框回归过程,减少由于光线差和遮挡导致的目标漏检情况,解决了基于图像分割算法的猪只盘点中光照、模糊以及遮挡等问题,能够满足单栏饲养密度为1.03~1.32头/m2的养殖场的猪只盘点需求。  相似文献   

16.
为解决复杂跨域场景下猪个体的目标检测与计数准确率低下的问题,该研究提出了面向复杂跨域场景的基于改进YOLOv5(You Only Look Once version 5)的猪个体检测与计数模型。该研究在骨干网络中分别集成了CBAM(Convolutional Block Attention Module)即融合通道和空间注意力的模块和Transformer自注意力模块,并将CIoU(Complete Intersection over Union)Loss替换为EIoU(Efficient Intersection over Union)Loss,以及引入了SAM (Sharpness-Aware Minimization)优化器并引入了多尺度训练、伪标签半监督学习和测试集增强的训练策略。试验结果表明,这些改进使模型能够更好地关注图像中的重要区域,突破传统卷积只能提取卷积核内相邻信息的能力,增强了模型的特征提取能力,并提升了模型的定位准确性以及模型对不同目标大小和不同猪舍环境的适应性,因此提升了模型在跨域场景下的表现。经过改进后的模型的mAP@0.5值从87.67%提升到98.76%,mAP@0.5:0.95值从58.35%提升到68.70%,均方误差从13.26降低到1.44。以上研究结果说明该文的改进方法可以大幅度改善现有模型在复杂跨域场景下的目标检测效果,提高了目标检测和计数的准确率,从而为大规模生猪养殖业生产效率的提高和生产成本的降低提供技术支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号