首页 | 本学科首页   官方微博 | 高级检索  
     检索      

基于Wi-Fi无线感知技术的猪呼吸频率监测
引用本文:逯玉兰,李广,郝玉胜,林强.基于Wi-Fi无线感知技术的猪呼吸频率监测[J].农业工程学报,2019,35(24):183-190.
作者姓名:逯玉兰  李广  郝玉胜  林强
作者单位:1.甘肃农业大学信息科学技术学院,兰州 730070;,2.甘肃农业大学林学院,兰州 730070;,3.西北民族大学数学与计算机科学学院,兰州 730030,3.西北民族大学数学与计算机科学学院,兰州 730030
基金项目:甘肃农业大学学科建设基金(GSU-XKJS-2018-254,GSU -XKJS-2018-255,GSU-XKJS-2018-253),甘肃省重点研发计划(18YF1NA070)国家自然基金(31660348,31660347),甘肃省自然基金(18JR3RA169),甘肃省高等学校协同创新团队项目(2018C-16);甘肃省财政专项(GSCZZ-20160909),甘肃农业大学盛彤笙基金(GSAU-STS-1718)和甘肃农业大学信息科学技术学院发展基金资助。
摘    要:监测和及时发现猪呼吸异常是养猪产业管理中的重要课题。为了克服人工监测方式效率低下、穿戴式设备监测方法成本较高且容易引起猪应激反应的缺点,该文提出了一种基于Wi-Fi网络信道状态信息的非接触式猪呼吸率监测方案。首先,利用Wi-Fi网络设备及其开源驱动程序捕获CSI序列信号并提出异常载波过滤算法用于滤除通信过程中的异常载波;其次,设计载波周期性水平量化指标并以此评估载波周期性水平;第三,通过SmoothingSplines方法平滑载波曲线并基于载波序列自相关函数估计载波周期和频率,筛选出载波周期性水平大于22且频率位于闭区间0.127 Hz,1.25 Hz]的反映猪只呼吸行为的载波;第四,对符合条件的载波频率进行加权平均求得猪只呼吸率。以人工统计猪只每分钟的呼吸次数作为真实情况,通过对9头仔猪,5头育肥种猪,3头怀孕母猪以及3头因患病引起腹式呼吸的病猪进行对比试验,该文提出的方法能够准确计算出猪的呼吸率,平均相对误差为1.398%。研究结果为应用Wi-Fi无线感知技术监控动物呼吸率提供参考。

关 键 词:无损检测  畜牧业  动物呼吸监测  信道状态信息  Wi-Fi感知
收稿时间:2019/8/24 0:00:00
修稿时间:2019/11/3 0:00:00

Monitoring pig respiration frequency using Wi-Fi wireless sensing technology
Lu Yulan,Li Guang,Hao Yusheng and Lin Qiang.Monitoring pig respiration frequency using Wi-Fi wireless sensing technology[J].Transactions of the Chinese Society of Agricultural Engineering,2019,35(24):183-190.
Authors:Lu Yulan  Li Guang  Hao Yusheng and Lin Qiang
Institution:1.College of Information Science and Technology, Gansu Agricultural University, Lanzhou 730070, China;,2.College of Forestry, Gansu Agricultural University, Lanzhou 730070, China;,3. School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, China and 3. School of Mathematics and Computer Science, Northwest Minzu University, Lanzhou 730030, China
Abstract:Abstract: Monitoring pig respiration timely in swine farms is critical to safeguard swine production. Traditional manual method by tagging pigs with sensors is inefficient and makes pigs stressful. Figuring out non-contact and non-destructive ways is hence necessary. Wi-Fi technology is non-intrusive and robust, and it has received increasing attention over the past few years as a potential method to track animal respiration. Its fundamental principle is that the exhaling - inhaling cycle in pig respiration results in a small change in the Wi-Fi signals when they propagate from transmitter to receiver. In the 802.11 a/g/n standard, the signal response in the channel can be partially extracted from the off-the-shelf OFDM receivers in the format of Channel State Information, which revealed that a set of channel measurements can indeed pick up such change, making it feasible to monitor animal respiration. We proposed a novel method based on the Wi-Fi signal in this paper to estimate the respiration rate of pigs reared in a single shed. We obtained the motion-state data in the CSI data files first using the off-the-shelf Wi-Fi devices commonly used in daily life. The CSI data is matrix of 1×3×30, where 1 is the number of transmit antennas, 3 is the number of receive antennas and 30 is the number of subcarriers in one beam. Preprocessing these data and evaluating the carrier periodicity level enabled us to identify the CSI signal sequences that contain the abdomen undulation of pigs. This is followed by smoothing the subcarrier curve with the algorithm of smoothing spline and evaluating the period and frequency of the subcarrier with the self-correlation function of CSI sequences. Finally, we statistically estimated the weighting average of the multiple subcarrier frequencies to calculate the respiration rate of pig. Taking the number of breaths manually accounted per minute from the pigs as ground truth, the proposed method was tested against the respiration data measured from 9 piglets, 5 fattening pigs, 3 pregnant sows and 3 sick pigs with abdominal breathing caused by illness. The results show that the maximum relative error is 3.18%, the minimum relative error is -3.45%, and the average relative error is 1.4%. The study has wide implications in using Wi-Fi technology to monitor respiration of animal.
Keywords:nondestructive detection  livestock production  animal respiration monitoring  channel state information  Wi-Fi sensing
本文献已被 CNKI 等数据库收录!
点击此处可从《农业工程学报》浏览原始摘要信息
点击此处可从《农业工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号