首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
为了研究CDPK基因的结构和功能,应用RT-PCR和RACE方法从盐藻Dunaliella salina中克隆得到CDPK基因(GenBank登录号为JQ964113),并对其进行生物信息学分析.结果表明:盐藻CDPK基因的cDNA全长3 052bp.5’-UTR长70bp;开放阅读框长1650bp,编码549个氨基酸;3’-UTR长1 332bp.蛋白表现为弱酸性,且稳定、亲水,二级结构中以无规则卷曲和α-螺旋为主,三级结构同源建模成功.亚细胞定位于叶绿体和细胞核中,无跨膜结构域,无信号肽.蛋白序列中存在4个丝氨酸磷酸化位点、4个苏氨酸磷酸化位点和3个酪氨酸磷酸化位点,蛋白激酶结构域在53 ~ 331位氨基酸处,蛋白激酶ATP结合域在59 ~82位氨基酸处,丝氨酸/苏氨酸蛋白激酶活性域在173 ~ 185位氨基酸处,4个EF-hand钙结合域分别在357 ~ 385、393 ~ 421、429 ~ 457、465 ~ 493位氨基酸处.进化分析结果表明,克隆的CDPK基因与团藻、衣藻、盐藻Dunaliella tertiolecta的CDPK亲缘关系最近.为进一步研究CDPK基因的功能及探究盐藻耐盐机制的信号转导途径奠定了分子基础.  相似文献   

2.
为了解大蒜GST基因及其编码的蛋白质的结构特征,分析GST基因在不同组织及盐胁迫条件下的表达特性,采用RT-PCR方法克隆得到大蒜苍山四六瓣GST基因,采用BLAST、DNAMAN、ProtParam、MEGA5、Swiss-Model等生物信息工具分析其序列特征,利用实时荧光定量PCR方法,分析AsGST基因在大蒜根、鳞茎和叶片中的表达差异及其对盐胁迫的响应情况。结果表明,大蒜AsGST基因全长663 bp,编码220个氨基酸,推测蛋白质分子质量为25.58 kDa,理论等电点为6.55,属于tau类GST家族。植物GST的序列相似性较低,但在结构上相对保守。在蛋白的N端含有谷胱甘肽特异结合位点(G位点),C端含有可变性较大的疏水底物结合位点(H位点),在进化关系上AsGST与茄科作物较近。空间结构分析表明,大蒜GST的三级结构由3个β-折叠和11个α-螺旋构成。实时荧光定量PCR显示,苍山四六瓣中GST基因在根中的表达量最高,其次是叶,在鳞茎中的表达量较低,具有明显的组织特异性。盐胁迫处理4 h后,各组织内AsGST基因的表达量均升至最高,说明该基因可响应盐胁迫逆境信号。本研究结果为进一步研究大蒜GST基因的功能奠定了一定的理论基础。  相似文献   

3.
玉米黄质(3,3'-二羟基-β-胡萝卜素)是自然界中常见的一种β-胡萝卜素衍生物,是黄斑和视网膜中最关键的部分.玉米黄质是通过一系列酶作用合成,其中β-胡萝卜素羟化酶(chyb)是关键限速酶,为了研究盐生杜氏藻(Dunaliella salina)中不同胁迫下β-胡萝卜素羟化酶基因的表达及玉米黄质含量的变化.本研究采用RACE方法首次从盐生杜氏藻中扩增出β-胡萝卜素羟化酶基因(Dschyb),并分析强光、葡萄糖等因素对DSchyb表达及玉米黄质含量的影响.结果表明,该基因全长1 433 bp(GenBank登录号:JN118489),包含一个969bp的开放阅读框,编码322个氨基酸,氨基酸的分子量为35.51kD,等电点(PI)为9.01.DsCHYB包含有4个保守的组氨酸基序,与团藻及莱茵衣藻的同源性分别是64%和58%.DsCHYB具有4个跨膜结构及叶绿体导肽,进一步证明该酶定位于叶绿体类囊膜上.系统进化树分析标明,DsCHYB与其他绿藻如团藻(Volvox carteri f.Nagariensis)、莱茵衣藻(Chlamydomonas reinhardtii)的CHYB共处一个进化支,亲缘关系很近.Dschyb基因的表达调控研究显示,在经强光刺激24 h后,Dschyb 基因表达显著上调(P<0.01),在48 h表达最高(P<0.01).在经乙酸钠、硫酸亚铁和强光共同处理6h时,Dschyb表达急剧上升(P<0.01),处理12h后下降;在葡萄糖处理1.5h后,其表达达到最高,6h后表达与对照组无显著性差异;添加放线菌素D后,Dschyb的表达相对对照降低,表明放线菌素D可能对葡萄糖诱导Dschyb表达具有抑制作用.高效液相色谱测定其玉米黄质含量,钠铁、强光及葡萄糖处理均能提高盐生杜氏藻的玉米黄质的含量,其玉米黄质含量比对照组分别增长16%(P<0.05),28%(P<0.05)和53%(P<0.01).本研究结果为玉米黄质合成调控及其在藻类中功能研究提供理论指导.  相似文献   

4.
马进  郑钢  裴翠明  张振亚 《核农学报》2016,(9):1706-1715
为了从基因和蛋白质水平上揭示南方型紫花苜蓿适应盐胁迫环境的分子机制,以南方型紫花苜蓿Millennium为材料,对正常培养和盐胁迫条件下的2个样品叶片进行转录组和蛋白质组关联分析。结果表明,定量蛋白和基因关联系数为0.2485;变化趋势相反差异蛋白和基因表达的关联系数为-0.2440;变化趋势相同差异蛋白质和基因表达的关联系数为0.8122。鉴定出109个与差异基因表达趋势相同的差异蛋白,其中77个上调,32个下调,这些差异蛋白功能涉及光合作用、抗氧化物、信号传递、翻译后修饰、翻译和分子伴侣、胁迫防御、能量产生与转运、代谢和其它未知功能蛋白等。下调表达的蛋白主要与光合作用相关,而上调表达的蛋白主要参与了抗氧化物、信号传递和胁迫防御等。此外,关联发现了与紫花苜蓿盐胁迫响应相关的III类过氧化物酶、铁蛋白、谷胱甘肽S-转移酶、磷脂酰肌醇特异性磷脂酶C、LRR类受体激酶、ABA反应蛋白、钙联接蛋白2、液泡H+-ATP酶C亚基和NADP-苹果酸酶等差异蛋白。本研究通过高通量多组学数据的关联分析,发现一些可能作为紫花苜蓿耐盐潜在靶标蛋白(基因),这为深入认识紫花苜蓿盐胁迫的应答分子调控机制奠定了坚实的基础。  相似文献   

5.
扩展蛋白在植物生长发育和应对环境变化等过程中发挥重要作用。为了解大蒜扩展蛋白基因的序列特征及其在渗透胁迫下的功能,利用逆转录PCR(RT-PCR)方法从大蒜中克隆得到AsEXPA8基因,采用NCBI、ExPASy、SignalP 5.0和STRING等网站以及DNAMAN和MEGA 5.1软件对其序列进行分析,并采用实时荧光定量PCR技术对AsEXPA8基因在盐胁迫和模拟干旱胁迫下的表达特征进行研究。序列分析结果表明,AsEXPA8含有1个774 bp的开放阅读框,编码257个氨基酸。AsEXPA8蛋白有1个组氨酸-苯丙氨酸-天冬氨酸(His-Phe-Asp,HFD)基序,N端和C端分别含有8个保守的半胱氨酸残基和4个保守的色氨酸残基,具有信号肽和跨膜结构域,参与了生长素和赤霉素等激素调控细胞壁重构的过程。AsEXPA8在大蒜不同组织中均能表达,在叶片中表达相对较高。干旱胁迫和盐胁迫在不同组织内均诱导了AsEXPA8的表达。结果表明,AsEXPA8基因可能参与了大蒜植株抵御盐胁迫和干旱胁迫的过程。本研究结果为揭示AsEXPA8基因在大蒜应对渗透胁迫过程中的功能提供了理论依据。  相似文献   

6.
为了进一步研究磷脂酶C的生理功能,利用RT-PCR技术扩增了Ds PLC的开放阅读框序列,并与质粒p GS21a连接,构建了原核表达载体p GS21a-Ds PLC。将该重组质粒导入大肠杆菌BL21(DE3)感受态细胞,经IPTG(异丙基-β-D-硫代半乳糖苷)诱导表达出融合蛋白。经SDS-PAGE检测,融合蛋白在包涵体和上清中均存在。可溶性蛋白经His柱纯化后进行电泳分析,结果表明,在96k Da左右有单一的蛋白条带,说明融合蛋白得到有效纯化。蛋白印迹结果显示在96kDa左右有明显的杂交条带,初步证明纯化的蛋白是带有His标签的磷脂酶C。盐藻磷脂酶C的成功表达与纯化,为深入探讨磷脂酶C的性质及功能奠定了基础。  相似文献   

7.
过氧化还原蛋白(Prxs)是广泛存在于植物体内重要的抗氧化酶。为深入研究Prx基因在苦瓜非生物胁迫中的作用,从苦瓜叶片均一化文库中获得McPrx基因的cDNA全长序列,并命名为McPrx(KJ722768.1),该cDNA序列全长1 068 bp,开放阅读框972 bp,编码324个氨基酸,属于ClassⅢ基因家族成员。采用基因组步移法分离获得McPrx基因5'上游1 237 bp的启动子调控序列,运用Plant CARE对其进行顺式作用元件分析,结果显示该序列除含有CAAT-box、TATA-box等核心启动子元件,还具有激素、抗病与抗逆应答元件,表明McPrx基因的表达可能受多种外界环境条件的调控。qRT-PCR分析表明,McPrx在根、茎、雌花等器官中的表达量存在极显著差异。其中在茎中表达量最大,在雌花中表达量最低,说明该基因的表达具有器官表达特异性;低温胁迫1 h时,McPrx表达量显著上调,胁迫3 h时McPrx表达量达到最大,随后下降,说明McPrx响应了低温胁迫的应答。本研究结果为进一步研究McPrx的生物学功能及其应用奠定了基础。  相似文献   

8.
盐角草Cu/Zn-SOD基因的克隆及耐盐性分析   总被引:2,自引:0,他引:2  
盐角草(Salicornia europaea)是一种典型的耐盐植物,为了研究盐角草Cu/Zn-SOD基因在的盐胁迫耐受中的机制,本研究利用已知植物Cu/Zn-SOD基因的保守序列设计简并引物,采用RACE技术的方法从盐角草中扩增获得Cu/Zn-SOD基因。使用生物学软件分析其氨基酸序列,并进行同源性比对。构建原核表达载体,转化大肠杆菌(Escherichiacoli),使目的蛋白在重组菌中表达,并分析了不同盐浓度并含有抗生素的液体LB培养基中菌的生长情况,IPTG诱导表达,通过测定OD600值来分析Cu/Zn-SOD基因的耐盐功能。结果通过简并引物PCR扩增和RACE技术,克隆出盐角草Cu/Zn-SOD基因。盐角草Cu/Zn-SOD基因(GenBank登录号:JQ074238.2)全长为660bp,开放阅读框长为459bp,推测编码152个氨基酸,蛋白分子量约为15.1kD,其氨基酸序列与碱蓬(Suaedasalsa)的序列相似性为96%,与黄灯笼辣椒(Capsicum chinense)的序列相似性为88%。生物学软件分析表明Cu/Zn-SOD蛋白可能存在于细胞质。构建原核表达载体pET-Cu/Zn-SOD和对照pETDuet-1,转化大肠杆菌BL21中。蛋白经IPTG诱导表达。经SDS-PAGE蛋白电泳检测发现表达蛋白条带大小与预期一致,说明目的蛋白成功表达。耐盐性分析表明重组菌BL21(pET-Cu/Zn-SOD)在高盐度培养基中的生长明显优于对照菌BL21(pETDuet-1),说明盐角草Cu/Zn-SOD基因可能在盐胁迫逆境中起到耐受性作用。  相似文献   

9.
盐胁迫下AM菌侵染的棉花幼苗根系蛋白质组分析   总被引:1,自引:0,他引:1  
孙锋  王云生 《核农学报》2012,26(1):170-175
研究了盐胁迫对棉花幼苗生长的抑制作用和AM真菌侵染根系对盐胁迫的缓解作用。分别以水(对照),0.5% NaCl(盐胁迫组)和AM组(盐胁迫组中加入AM接种剂,浓度为12g/L)培养棉花幼苗30d,取根部进行外观比较,并提取各组根系中的蛋白质,利用双向电泳技术分析棉花幼苗根系蛋白质组的变化。结果表明,盐胁迫组的幼苗根系主根稍细,侧根很少,而对照和AM组主根饱满且侧根丰富,说明AM真菌能抑制盐对幼苗根部的胁迫作用。通过扫描分析3组胶图,发现有4个蛋白质斑点表现出显著的变化,盐胁迫组中均表现为表达量下降,在AM真菌与盐共处理时,这4个蛋白质点的表达均有不同程度的恢复;经鉴定分析,其中2个蛋白质斑点(S1,S2)分别被鉴定为葡萄糖磷酸变位酶与异黄酮还原酶类;同时在AM组还出现3种对照中没有的蛋白质(S5、S6、S7),可能与AM提高作物耐盐性途径相关。  相似文献   

10.
利用转录组测序技术鉴定紫花苜蓿根系盐胁迫应答基因   总被引:1,自引:0,他引:1  
马进  郑钢 《核农学报》2016,(8):1470-1479
盐害是影响紫花苜蓿生产力的主要非生物因素之一,鉴定控制这一复杂性状的基因将为苜蓿育种计划提供关键信息。为揭示紫花苜蓿在盐胁迫下基因表达谱的变化,以紫花苜蓿Millennium为材料,对正常培养(WT_CK1)和盐胁迫(WT_N1)条件下的2个样品根系进行转录组分析,同时利用实时荧光定量PCR(qRT-PCR)技术对部分关键基因的表达特点进行验证。结果表明,紫花苜蓿根系在250 m M Na Cl胁迫72 h时,共检测到31 907个基因表达量发生了改变,2 758个基因的表达量差异达到2倍以上,包括199个转录因子,其中1 338个表达量上调,1 420个表达量下调,这些差异表达基因功能主要涉及次生代谢、代谢途径、激素代谢及信号转导和植物病原菌互作等。qRT-PCR分析表明,6个随机选择的基因在胁迫前后的表达特点与表达谱测序结果一致。综上,紫花苜蓿根系对盐胁迫响应是一个多基因参与、多个生物代谢过程反应协同调控的过程,基因表达量的变化可能是调控的主要方式。此外,本研究候选了一系列胆汁酸:Na+共转运蛋白、晚期胚胎发生富集蛋白、谷胱甘肽-s-转移酶基因和转录因子等与紫花苜蓿盐胁迫相关的应答关键基因,为揭示紫花苜蓿耐盐分子机制奠定了基础。  相似文献   

11.
本研究利用RACE技术从真盐生植物海蓬子中获得了高亲和钾离子转运体SbHKT1基因1647bp完整的ORF框。序列分析结果表明,该基因编码548个氨基酸,分子量为62.10kD,理论等电点为9.33;氨基酸序列中第1个~第35个属信号肽序列,第197个~第537个属离子转运体(TrkH)家族特征序列;该基因编码的蛋白具有10个跨膜结构,N端跨膜区及中部膜上呈现明显的疏水性,C端及中部多个跨膜区呈现强疏水性,符合载体类运输蛋白的特点,因此推测SbHKT1蛋白为跨膜运输蛋白。Blast分析显示该蛋白与碱蓬SsHKT1氨基酸同源性高达77%,与冰叶日中花、赤桉和小麦HKT类蛋白的同源性分别为63%、52%和46%。SbHkt1基因表达存在组织特异性:正常生长条件在根、茎中表达较低,在叶片中几乎看不到表达;在高盐低钾的环境下,各组织表达明显升高,高盐低钾胁迫处理8h,其根部表达处于高峰期;经100μmol/L脱落酸处理4h,根部表达达到最高;干旱胁迫(20%PEG6000)处理2h,根部表达量明显上升。由此推断,该基因参与了植物在高盐低钾、渗透、干旱等非生物胁迫下的生理调控。由于目前已克隆的HKT类蛋白基因多来自非盐生植物,对盐生植物内源HKT基因的研究相对较少,因此,海蓬子内源HKT1基因的全长的获得有助于我们进一步研究该基因在高盐钾饥饿环境下运输钾离子,调节植物体内Na+/K+平衡的功能,对于揭示真盐生植物的耐盐机制,将其运用于非盐生植物,培育新的耐盐品种具有一定的意义。  相似文献   

12.
Na+/H+逆向转运蛋白(SOS1)是植物耐盐的关键因子之一,在植物响应非生物胁迫过程中发挥着重要作用。为解析印度南瓜SOS1基因的序列特征和功能,利用生物信息学和分子生物学方法对其进行研究。结果表明,克隆获得印度南瓜SOS1基因cDNA全长序列,命名为CmaSOS1,GenBank登录号:NW_019272028。序列分析表明,CmaSOS1基因的cDNA全长3 940 bp,包含一个3 429 bp的开放阅读框架,编码1 142个氨基酸。CmaSOS1基因含有23个外显子和22个内含子,全长46 314 bp。CmaSOS1蛋白的分子量为126.7 kDa,理论等电点为5.92,包含12个跨膜结构区域,具有一个Na_H_Exchanger superfamily结构域和一个CAP_ED superfamily结构域;CmaSOS1蛋白属于疏水性稳定蛋白,二级结构元件多为无规卷曲和α-螺旋。CmaSOS1蛋白与葫芦科的中国南瓜、西葫芦、甜瓜、黄瓜和苦瓜Na+/H+逆向转运蛋白的同源性较高,序列一致性分别为98%、98%、90%、89%和89%。实时荧光定量PCR分析表明,CmaSOS1基因在印度南瓜的根和叶中表达量较高,在茎、花、果实中的表达量较低;该基因受NaCl和聚乙二醇(PEG)诱导后均呈上调表达,推测CmaSOS1基因可能在印度南瓜抵御盐分胁迫和干旱胁迫过程中发挥重要作用。本研究为进一步揭示CmSOS1在非生物胁迫下的功能奠定了基础。  相似文献   

13.
甘蔗富含甘氨酸蛋白基因(Sc-GRP)的克隆及其表达分析   总被引:1,自引:1,他引:0  
本研究在对甘蔗(Saccharum officinarum)叶片全长cDNA文库测序的基础上,通过EST (expressedsequence tag)序列测定和生物信息学分析,获得了1个编码富含甘氨酸蛋白(glycine-rich protein,GRP)基因的全长cDNA序列,命名为Sc-GRP.生物信息学分析表明,该基因全长518bp,包含一个273bp的完整开放阅读框(open reading frame,ORF),5'端非编码区(untranslated region,UTR)长58bp,3’端UTR长187bp,且在3’端UTR中有典型的加尾信号AATAAA和polyA结构.该基因编码长度为90个氨基酸的蛋白,其理论分子量为10.12kD,等电点为5.86.Sc-GRP中甘氨酸含量最高,达到13%,且包含明显的GGX和GX重复结构单元.Sc-GRP没有信号肽和RNA结合位点.定量PCR分析结果表明,该基因在成熟叶片中的表达量远高于其在心叶中的表达量.在甘蔗茎中,随着节间成熟度的增加,其表达量逐渐升高,但在成熟根中几乎没有表达.在铝盐胁迫下,该基因在甘蔗初生根中的表达先是升高,然后随胁迫时间的增加而下降.研究结果提示该基因定位于细胞质,参与细胞的渗透调节,本研究结果为该基因的功能解析及其在甘蔗分子育种上的应用积累了基础资料.  相似文献   

14.
为进一步探究杜氏盐藻促有丝分裂原活化蛋白激酶(DsMAPK)的功能,采用免疫共沉淀联合质谱技术筛选盐藻MAPK的互作蛋白。将pGS21a-MAPK质粒转入大肠杆菌BL21中表达MAPK蛋白并制备多克隆抗体;将培养至对数生长期的盐藻细胞进行盐胁迫处理,然后提取盐藻总蛋白,并进行SDS-PAGE和Western blotting检测;以内源性靶蛋白为诱饵,将细胞总蛋白与MAPK抗体进行共孵育,将经蛋白A/G琼脂糖珠纯化的免疫共沉淀复合物进行质谱检测。结果表明,制备的多克隆抗体特异性良好;筛选出165种特有的差异蛋白。通过GO和KEGG分析发现,这些差异蛋白主要参与了新陈代谢、遗传信息的传递以及信号转导等生物学调控过程。蛋白质互作网络分析发现,直接与MAPK相互作用的蛋白有4种。本研究结果为深入研究杜氏盐藻响应盐胁迫的分子机制提供了参考。  相似文献   

15.
王冕  张朝昕  陈娜  陈明娜  禹山林  迟晓元 《核农学报》2019,33(12):2328-2337
为挖掘花生抗逆相关基因,本研究以花生品种花育20号为试验材料,根据cDNA文库中已知的促丝裂原活化蛋白激酶激酶(MKK)基因EST序列设计引物,通过RACE-PCR克隆得到AhMKK4基因。结果表明,AhMKK4基因序列全长1 434 bp,含有3'非编码区151 bp,5'非编码区317 bp,开放阅读框全长966 bp,编码一条含有322个氨基酸的蛋白序列。预测其分子量为36.74 kDa,属于MAPKK基因家族D组成员。亚细胞定位显示AhMKK4基因定位于细胞质和细胞核中。RT-qPCR分析发现,AhMKK4基因在根中表达量高于其他组织,说明该基因具有组织表达特异性;AhMKK4基因受JA和IAA诱导时表达量上调,受SA和ABA诱导时表达量下调,说明该基因可能参与到JA和IAA介导的信号转导途径;AhMKK4在盐胁迫下表达量上调,说明该基因可能参与花生对盐胁迫的适应性调控。本研究结果为花生抗逆育种研究提供了新的基因资源。  相似文献   

16.
为了探究葡萄WRKY54基因的功能,以抗盐葡萄品种Vidal Blanc为材料,采用同源克隆法克隆得到Vv WRKY54基因,并对其进行生物信息学和表达特性分析。结果表明,Vv WRKY54基因c DNA序列为942 bp,编码313个氨基酸。生物信息学分析结果表明,Vv WRKY54蛋白分子量约为35.3091 k Da,等电点为5.45,不稳定系数为55.03,推测其为不稳定蛋白,与已知毛果杨及拟南芥WRKY54蛋白高度同源;亚细胞定位预测结果显示其主要存在于细胞核中。实时荧光定量PCR分析表明,Vv WRKY54在葡萄不同组织中均有表达,其中在梢尖中表达量最高;盐和低温等逆境胁迫因子均能诱导Vv WRKY54上调表达;此外,Vv WRKY54受水杨酸和一氧化氮诱导上调表达,其中水杨酸诱导Vv WRKY54相对表达量在12 h达到最大值,约为对照的50倍。推测Vv WRKY54在植物发育和抵御逆境胁迫中起着重要作用,这为进一步阐明Vv WRKY54的功能及作用机制奠定了分子基础。  相似文献   

17.
为探究NAC转录因子在花生生长发育和抗逆反应中的功能,本试验在花生J11叶片中克隆得到一个NAC基因,并利用实时荧光定量PCR技术(RT-qRCR)对NAC基因表达模式进行了分析。结果表明,NAC基因全长1 752 bp,共编码583个氨基酸,分子量64.924 k Da,等电点4.42,亚细胞定位结果预测该NAC蛋白主要在细胞核中,进化树分析结果表明其与大豆GmNAC53亲缘关系较近,将其命名为AhNAC53。RT-qRCR结果表明,AhNAC53基因在花生不同组织中均有表达,其中在叶中的表达量最高;不同程度的干旱胁迫下其表达量存在显著差异,除在10%PEG6000胁迫下基因表达量相对变化较小,其他胁迫程度(5%、15%和20%PEG6000)下,随着处理时间的延长,AhNAC53基因表达量均呈现较大幅度的上调,且均在处理48 h时达到峰值,进一步表明AhNAC53基因可能参与了花生的生长发育和对干旱胁迫的响应。本试验结果为深入研究花生AhNAC53基因的功能奠定了一定的理论基础。  相似文献   

18.
包颖  李泽卿  魏琳燕  陈超 《核农学报》2020,34(6):1144-1151
MYB转录因子在植物响应盐胁迫过程中起着重要的调控作用。为明确MYB类转录因子RcWER-like生物学功能,本研究以月季月月粉为材料,利用生物信息学分析及实时荧光定量PCR技术研究RcWER-like基因在盐处理、激素处理、盐与激素综合处理下不同组织不同时间点的表达特性。结果表明,依据转录组测序获得的序列信息和月季全基因组信息克隆得到了RcWER-like,该基因全长为882 bp,开放阅读框(ORF)为669 bp,编码223个氨基酸。序列比对发现,RcWER-like在N端具有保守的R2R3-MYB结构域。系统进化树分析结果显示,RcWER-like与桃PpWER-like、梅花PmWER-like、苹果MdWER-like处于同一分支,属于R2R3-MYB类转录因子。实时荧光定量PCR结果表明,RcWER-like基因在盐胁迫处理24 h后表达明显上调,且外施水杨酸和茉莉酸甲酯均可诱导RcWER-like的表达;在盐胁迫下,外施水杨酸和茉莉酸甲酯可诱导RcWER-like的表达,且均高于单独盐或激素处理。此外,月季RcWER-like在盐处理、激素处理、盐与激素综合处理下不同组织不同时间点的表达模式存在显著差异,R2R3-MYB类转录因子RcWER-like参与了月季盐胁迫响应和对水杨酸和茉莉酸甲酯的应答过程,可能在月季高盐胁迫应答中具有重要的作用。本研究结果为月季耐盐分子育种提供了候选基因资源和理论依据。  相似文献   

19.
以南方型紫花苜蓿(Medicago sativa ‘Millennium’)30 d苗龄的实生苗为实验材料,分析正常培养和250 mmol/L NaC1处理72 h后叶片中的蛋白表达变化,以期从蛋白质水平上揭示南方型紫花苜蓿适应盐胁迫的分子机制.采用同位素相对标记与绝对定量技术(isobaric tags for relative and absolute quantitation,iTRAQ)结合双向液相色谱与串联质谱(2-dimensional liquid chromatography-tandem mass spectrometry,2D-LC-MS/MS)定量蛋白质组技术鉴定南方型紫花苜蓿叶片响应盐胁迫的差异表达蛋白,对所获得差异蛋白进行生物信息学分析,筛选出可能的耐盐潜在靶标蛋白.结果表明,共鉴定3 712个定量蛋白,417个表达量有显著差异的蛋白质(变化倍数≥1.2,P≤0.05),其中包含291个表达上调的蛋白,126个表达下调的蛋白.按照基因本体(Gene Ontology,GO)分类体系,对差异蛋白归类分析,揭示其亚细胞定位和分子功能.京都基因与基因组百科全书(Kyoto Encyclopedia of Genes and Genomes,KEGG)通路显著性富集于代谢途径、次生代谢产物生物合成、吞噬体、脂肪酸代谢和光合作用等(P<0.05,错误发现率(false discovery rate,FDR)<0.05).成功鉴定的差异蛋白分别涉及到光合作用(7%)、信号传递(3%)、防御(2%)、碳水化合物代谢(11%)、氨基酸代谢(7%)、脂类代谢(5%)、其它代谢(7%)、蛋白质合成、加工与降解(18%)、细胞结构、分裂和细胞骨架(3%)、抗氧化物(6%)、能量产生与转运(7%)、膜和胞内运输(7%)及未知功能蛋白类(16%).差异表达蛋白中与抗氧化物、能量产生与转运、防御和信号传递及代谢等相关的蛋白表达量总体上调,而与蛋白质合成、加工与降解和光合途径相关蛋白表达量总体下调.研究发现,细胞色素P450、PSⅡ放氧增强蛋白、磷脂酰肌醇特异性磷脂酶C、果糖-1,6-二磷酸醛缩酶、甘露糖-6-磷酸还原酶、海藻糖-6-磷酸合酶、天冬氨酸转氨酶、E3泛素连接酶和H+-ATP酶C亚基蛋白等可能是紫花苜蓿耐盐潜在靶标蛋白.采用iTRAQ结合2D-LC-MS/MS技术,能有效地筛选出南方型紫花苜蓿叶片响应盐胁迫差异表达蛋白,这些差异表达蛋白可能在紫花苜蓿耐盐调控过程中发挥重要作用,该研究为深入认识紫花苜蓿盐胁迫的应答分子调控机制提供理论依据.  相似文献   

20.
本研究采用RT-PCR结合RACE技术,成功地克隆了一个新的巴西橡胶树(Hevea brasiliensis)K+通道蛋白基因并分析了其结构和表达特征.结果表明,该基因cDNA全长1482 bp,拥有1059 bp的开放阅读框(ORE),编码353个氨基酸残基.同源性和聚类分析证实,该基因属于植物KCO家族,命名为HbKCO1(GenBank登录号为EU827609).半定量RT-PCR分析结果显示,HbKCOl在巴西橡胶树不同器官中均有表达,但叶片中表达量最高,茎次之,根、胶乳和树皮中的表达量最低;高钾、盐胁迫(NaC1)和Ca~(2+)可以促进叶片中HbKCOl的表达,钾饥饿和ABA则起到抑制作用;胶乳中HbKCOl的表达几乎不受乙烯利(ET)和茉莉酸(JA)的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号