首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
2.
Abstract

To determine the relationships between microbial biomass nitrogen (N), nitrate–nitrogen leaching (NO3-N leaching) and N uptake by plants, a field experiment and a soil column experiment were conducted. In the field experiment, microbial biomass N, 0.5 mol L?1 K2SO4 extractable N (extractable N), NO3-N leaching and N uptake by corn were monitored in sawdust compost (SDC: 20 Mg ha?1 containing 158 kg N ha?1 of total N [approximately 50% is easily decomposable organic N]), chemical fertilizer (CF) and no fertilizer (NF) treatments from May 2000 to September 2002. In the soil column experiment, microbial biomass N, extractable N and NO3-N leaching were monitored in soil treated with SDC (20 Mg ha?1) + rice straw (RS) at five different application rates (0, 2.5, 5, 7.5 and 10 Mg ha?1 containing 0, 15, 29, 44 and 59 kg N ha?1) and in soil treated with CF in 2001. Nitrogen was applied as (NH4)2SO4 at rates of 220 kg N ha?1 for SDC and SDC + RS treatments and at a rate of 300 kg N ha?1 for the CF treatment in both experiments. In the field experiment, microbial biomass N in the SDC treatment increased to 147 kg N ha?1 at 7 days after treatment (DAT) and was maintained at 60–70 kg N ha?1 after 30 days. Conversely, microbial biomass N in the CF treatment did not increase significantly. Extractable N in the surface soil increased immediately after treatment, but was found at lower levels in the SDC treatment compared to the CF treatment until 7 DAT. A small amount of NO3-N leaching was observed until 21 DAT and increased markedly from 27 to 42 DAT in the SDC and CF treatments. Cumulative NO3-N leaching in the CF treatment was 146 kg N ha?1, which was equal to half of the applied N, but only 53 kg N ha?1 in the SDC treatment. In contrast, there was no significant difference between N uptake by corn in the SDC and CF treatments. In the soil column experiment, microbial biomass N in the SDC + RS treatment at 7 DAT increased with increased RS application. Conversely, extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT decreased with increased RS application. In both experiments, microbial biomass N was negatively correlated with extractable N at 7 DAT and cumulative NO3-N leaching until 42 DAT, and extractable N was positively correlated with cumulative NO3-N leaching. We concluded that microbial biomass N formation in the surface soil decreased extractable N and, consequently, contributed to decreasing NO3-N leaching without impacting negatively on N uptake by plants.  相似文献   

3.
Abstract

Pearl millet is a potential dryland crop for Nebraska. Experiments were conducted in eastern Nebraska in 2000, 2001, and 2002, and in western Nebraska in 2000 and 2001. The objectives were to determine optimum nitrogen (N) rate, N uptake, and N use efficiency (NUE) for pearl millet. The hybrids “68×086R” and “293A×086R” and N rates of 0, 45, 90, and 135 kg N ha?1 were used. Hybrids had similar yield, N uptake and NUE responses. In western Nebraska in 2000, pearl millet yield response to N rate was linear, but the yield increase was only 354 kg ha?1 to application of 135 kg N ha?1. In eastern Nebraska, pearl millet response to N rate was quadratic with maximum grain yields of 4040 in 2001 and 4890 kg ha?1 in 2002 attained with 90 kg N ha?1. The optimum N rate for pearl millet was 90 kg N ha?1 for eastern Nebraska. For western Nebraska, drought may often limit pearl millet's response to N fertilizer.  相似文献   

4.
采用15N同位素示踪技术,开展了贝加尔针茅草原氮素去向的研究。结果表明:贝加尔针茅草原植物对标记氮素的回收率为28.36%~37.03%,施氮肥显著影响植物对15N的回收,随着施氮量的增加,植物地上和地下器官对15N的回收量均显著提高。凋落物的15N回收率为2.06%~3.28%。标记氮素的土壤存留率为35.86%~44.32%,大致分布在地表0~40 cm的土层范围内;各土层存留的15N量均随着施氮量的增加而显著升高。标记氮素的当季损失率为19.68%~32.99%。风险/收益比分析表明,在该试验条件下,添加10 gN·m-2的处理风险最低、收益最高,可为草原生态系统的氮素管理提供参考。  相似文献   

5.
从4个草鱼池塘中分离和定性筛选获得29株能够产生氨氮和亚硝酸盐氮的菌株。通过对编号为C95的菌株进行菌落形态学观察和16S rDNA序列分析,表明该菌株为革兰氏阴性杆状菌,与寡养单胞菌属(Stenotrophomonas sp.)的同源性达98%。采用单因素多水平试验对菌株的产氨氮和产亚硝酸盐氮特性进行研究发现:(1)氮源、碳源、温度和摇床转速都能显著影响菌株的生长及产生氨氮和亚硝酸盐氮的含量,但pH(5~9)对其无显著影响(P〉0.05);(2)该菌株生长及产生氨氮和亚硝酸盐氮最适宜的培养基以及培养条件为:LB、pH 5~9、25℃、150 r.min-1。由C95作为指示菌株筛选得到SC01、SC07两株(2/33)去除氨氮和亚硝酸盐氮效果较好的菌株。因此,C95可作为筛选具有降氨氮和亚硝酸盐氮功能的有益菌的指示菌株。  相似文献   

6.
Synthetic fertilizer, livestock manure, and green manure are the typical nitrogen (N) sources in agriculture. This study was conducted to investigate the effects of different N sources on soil chemical environment and N dynamics. Changes in pH, redox potential (Eh), and concentration and δ15N of dissolved N [ammonium (NH4+), nitrate (NO3?), organic N, and total N] of soils treated with urea (U), pig manure compost (PMC), and hairy vetch (HV) were investigated in an incubation experiment under waterlogged conditions. The patterns of pH, Eh, and N concentration reflected both a greater mineralization potential of N derived from U than that from HV and PMC and easier decomposability of HV than PMC. The δ15N further suggested that nitrification was more active for U than for HV- and PMC-treated soils and that N loss via NH3 volatilization and denitrification would be greater for HV than U and PMC treatments.  相似文献   

7.
Abstract. Monoculture winter barley was grown for 5 years with 80 or 160 kg/ha of fertilizer nitrogen (N) and established by either shallow cultivation (straw removed) or ploughing (straw incorporated) in a replicated 2 ± 2 split plot experiment. The lower N rate reduced average grain yield from 6.85 t/ha to 5.61 t/ha. The cultivation/straw disposal system had no effect on yield. Halving the N rate reduced the amount of N removed in the crop by an average of 40 kg/ha and reduced the amount of nitrogen leached by 11 kg/ha per year. Using a shallow cultivation system for crop establishment, following the removal of straw, initially reduced N leaching compared to ploughing in the straw, but in the later years of the experiment losses were similar. Over the five years the full N rate with ploughing system resulted in a small positive nitrogen balance of 66 kg/ha, but all other treatment combinations resulted in a negative balance.  相似文献   

8.
Abstract

Dairy farming regions are important contributors of nitrogen (N) to surface waters. We evaluated the N budget and relationships to riverine N exports within the Shibetsu River catchment (SRC) of a dairy farming area in eastern Hokkaido, Japan. Five drainage basins with variable land-cover proportions within the SRC were also evaluated individually. We quantified the net N input (NNI) to the catchment from the difference between the input (atmospheric deposition, chemical fertilizers, N fixation by crops and imported food and feed) and the output (exported food and feed, ΔS liv and ΔS hu, which are the differences between input and output in livestock and human biomass, respectively) using statistical and measured data. Volatilized ammonia (NH3) was assumed to be recycled within the catchment. The riverine export of N was quantified. Agricultural N was a dominant source of N to the SRC. Imported feed was the largest input (38.1?kg?N?ha?1?year?1), accounting for 44% of the total inputs, followed by chemical fertilizers (32.4?kg?N?ha?1?year?1) and N fixation by crops (13.4?kg?N?ha?1?year?1). The exported food and feed was 24.7?kg?N?ha?1?year?1 and the ΔS liv and ΔS hu values were 7.6 and 0.0?kg?N?ha?1?year?1, respectively. As a result, the NNI amounted to 54.6?kg?N?ha?1?year?1. The riverine export of total N from the five drainage basins correlated well with the NNI, accounting for 27% of the NNI. The fate of the missing NNI that was not measured as riverine export could possibly have been denitrified and/or retained within the SRC. A change in the estimate of the deposition rate of volatilized NH3 from 100 to 0% redeposited would have decreased the NNI by 37%, although we believe that most NH3 was likely to have been redeposited. The present study demonstrated that our focus should be on controlling agricultural N to reduce the impact of environmental pollution as well as on evaluating denitrification, N stocks in soil and the fate of NH3 volatilization in the SRC.  相似文献   

9.
Abstract

Significant correlations have been found between the nitrate concentration in young corn (Zea mays L.) stalks and available soi 1 N and relative grain yield when N availability is a yield limiting factor. To successfully use nitrate tissue testing as an indicator of the N status of plants, the effects of factors other than soil or fertilizer N on the nitrate concentration in the tested tissue must be understood. Diurnal effects on stalk nitrate content were studied in a greenhouse experiment, in which stalk samples were collected every two hours for 24 hours, and in a field study, where plants in an N‐fertilizer response experiment were sampled at sunrise and at mid‐day. A significant diurnal cycle was observed for stalk nitrate content in the greenhouse, with a peak at 0800 h and a low at 1400 h, but no diurnal effect was found in the field study, possibly due to plant stress from other environmental factors. In a second greenhouse study, stalk samples from seedlings in direct and 66% shaded natural light were collected for two consecutive days and measured for nitrate content to ascertain the consequences of sampling on overcast days. Significant accumulations of nitrate occurred in stalks of plants sampled after two consecutive days of shading. Stalk samples from three standard hybrid corn trials in central Pennsylvania were measured for nitrate content to determine if hybrid differences existed. Hybrid differences in stalk nitrate were significant in only one of the three sites studied, and the variation in that one may have been due to differences in drought tolerance as well as nitrate metabolism. The results suggest that sampling strategies should be designed to minimize the effects of irradiance level on nitrate accumulation, but that differences in nitrate accumulation among corn varieties may not be a major concern in using nitrate tissue tests to predict N availability.  相似文献   

10.
为解决吉林省半干旱区滴灌施肥条件下氮肥合理施用问题,通过2年(2015—2016年)田间试验,研究了覆膜滴灌条件下施氮量(0,70,140,210,280,350kg/hm~2)对春玉米产量、氮素吸收利用、土壤剖面无机氮含量变化及氮素平衡的影响。结果表明:施氮量在70~210kg/hm~2范围内玉米产量随施氮量的增加显著增加,当施氮量超过210kg/hm~2后,处理间产量无显著差异;将玉米产量(y)与施氮量(x)拟合,得出最佳施氮量分别为195.1,201.0kg/hm~2。施氮显著提高了玉米各生育时期氮积累量,其中灌浆期和成熟期氮积累量以施氮量210kg/hm~2处理最高。氮素当季回收率、农学利用率和偏生产力均随施氮量的增加而下降。玉米成熟期0-200cm剖面土壤硝态氮和铵态氮含量随土层深度增加呈逐渐下降的趋势;施氮提高了0-200cm土壤硝态氮和铵态氮含量,其中施氮量280,350kg/hm~2处理40-200cm土层硝态氮含量显著高于其他施氮处理。玉米吸氮量、土壤无机氮残留量和氮表观损失量与施氮量呈极显著的正相关;玉米吸氮量、土壤无机氮残留量和氮表观损失量分别占增加纯氮的21.6%~23.3%,33.0%~37.4%,41.0%~43.7%。综上所述,在本试验条件下,综合产量、氮素吸收利用、土壤剖面无机氮含量变化及氮素平衡等因素,在吉林省半干旱区滴灌施肥适宜施氮量应控制在195~210kg/hm~2。  相似文献   

11.
ABSTRACT

Controlled-release fertilizers (CRF) are used to reduce leaching of nutrients, especially nitrate-nitrogen (NO3 ?-N) to groundwater, caused mainly by application of soluble N fertilizers to sandy soils in Florida. A leaching column study was conducted to evaluate N release and transformation from a CRF (CitriBlen) over a 16-week period when it was applied on the soil surface or incorporated into the soil. When one pore volume of water was applied to column weekly or biweekly, the CRF released urea-N slowly over time with three peaks of release on 3–4, 8, and 12 week after application. Both ammonium-nitrogen (NH4 +-N) and NO3 ?-N were leached in large amounts on week 2, likely from soluble forms of N. Cumulatively, the most leached N at the end of study was in the NH4 + form, followed by the NO3 ? form. The sum of all N forms leached and volatilized accounted for 53–69% of total N applied. Total N recovery was 70% and 93% of total N applied for surface and sub-surface application of the fertilizer, respectively. It was indicated that the better recovery rate found with sub-surface application may have been due to minimized N loss by volatilization. Sub-surface application of fertilizer resulted in more than three times NH4 +-N remained in soil, compared with surface application. On average for both application treatments throughout 16-week period, 5.8 h was required for ammonification and 4.7 d for nitrification to occur after N release from the fertilizer. Characterization of CRFs for specific soil type, leaching volume and cycle, and application manner as well as knowledge of N requirement of the crop will allow for the Best Management Practices of these fertilizers, thus obtaining optimum yields and minimizing nutrient losses from CRFs.  相似文献   

12.
Effects of application of rice straw (RS), farmyard manure (FYM), municipal biowaste compost (MBCom), and municipal biowaste charcoal (MBCha) on soil microbial biomass N, mineral N, and nitrogen-fixing activity (NFA) of a model paddy microcosm were examined in comparison with urea fertilizer. When microcosms were added with urea, NFA decreased with increasing rates of fertilization, and it was negligible (less than 4% of the control, no urea fertilization) in the soils treated with more than 60 mg kg−1 urea–N. The addition of RS, with the highest C/N ratio among the organic wastes used, stimulated N2 fixation most effectively (40% increase compared to the control). MBCom, with the lowest C/N ratio and a comparable mineral N content to 60 mg kg−1 urea–N, decreased N2 fixation (50% decrease), but it was not markedly suppressed unlike urea. In spite of the fact that FYM contained a relatively large N, expressed as low C/N ratio, its effect on N2 fixation was small (14% decrease). FYM and MBCom did not stimulate NFA as RS did. This may be explained by the fact that N concentrations of microbial biomass N and available N were higher in the soils than in soil treated with RS. The effect of MBCha addition on N2 fixation was small (14% decrease). The present study demonstrated that organic wastes might affect N2 fixation depending upon the amount of available N in the waste-treated soils, but that organic-waste-treated soils generally support higher N2 fixation than chemical-fertilizer-treated soils.  相似文献   

13.
Abstract Forecasting crop nitrogen (N) demand is important for maximizing productivity and minimizing losses to the environment, and includes taking into account residual effects. The residual N effect was estimated in a dairy crop rotation (spring barley undersown with grass-clover, first and second year ley, spring barleylpeas undersown with ryegrass, oats undersown with ryegrass and fodder beet) with different management (grazed or cut) and manure type (slurry or deep litter) by anaerobic incubation and plant N-uptake in a pot experiment and in the field. For comparison a 10-year-old grass-clover ley was included. Type of animal manure did not affect the residual N effect. Crop rotations with grazed grassland had a residual N effect that on average was 13% higher than the same rotation without grazing. Ploughing of grassland clearly increased residual N effects for several years, but age of grassland at ploughing was of little importance. Thus, the residual N effect of 10-year-old grass-clover ley only marginally exceeded that of undersown grass-clover, despite considerable difference in estimated N-surplus. The results indicate that organic N is easier to mineralize the more recently it has been formed. Good correlations existed between soil inorganic N in the spring, N released during anaerobic incubation, and plant-available N. However, chemical analyses may be difficult to implement in practical farming due to difficulty of achieving representative samples in systems characterized by huge spatial variability.  相似文献   

14.
ABSTRACT

Nitrogen (N) is one of the most growth restricting nutrients in cereal grain and represents one of the highest input costs in agricultural systems; therefore, environmental and economic considerations require the effective use of N fertilizer in plant production. This study was conducted for three years to better understand wheat plant response to optimize N fertilizer and how to reduce the risk of ground water pollution.

Two of the most important durum wheat cultivars in Southern Italy and four N fertilization levels (0, 60, 120, and 180 kg N ha? 1, indicated as N0, N60, N120, and N180, respectively) were compared in this experiment. During plant growth, fresh and dry matter, plant nutritional state (SPAD readings and stem nitrate content), and N uptake were determined. At harvest, plant N content, N uptake, grain yield, yield components and quality were determined, allowing the calculation of the pre- and postanthesis N uptake and the N utilization efficiency indices. Furthermore, at the beginning and at the end of each year, soil mineral N was measured to calculate mineral N deficit in the soil.

The results indicated that the treatment with 120 kg N ha? 1 of fertilizer ensures a good balance between yield and N utilization. In fact, N180 and N120 showed similar yield (3.01 and 3.07 t ha? 1, respectively) and protein content (13.7 and 13.5 %). Meanwhile, throughout the three-year experiment, N180 presented the highest final mineral N content in the soil at the end of the cropping cycles, increasing the amount of N available for leaching. The N120 treatment showed the same values of N utilization indices as compared to N180, indicating that further doses of N fertilizer did not increase wheat N utilization. Plant N status shows that it is possible to modify the N fertilization to reach its optimum level during plant growth, in accordance with variable weather conditions, and consequently the plants requirements. The mean treatments of the preanthesis N uptake were about 67.5% of the total N uptake, and it was significantly and positively correlated with wheat yield. On the contrary, the postanthesis N uptake showed positive correlation with grain protein content, confirming the importance of late N supply in grains quality. The variation of weather conditions affected winter wheat yield, quality, N utilization and plant N status, but any difference throughout years was found between N180 and N120, confirming that higher N rate did not influence wheat growth, yield, and N uptake.  相似文献   

15.
The objective of this research was to study the effects of nitrogen (N) forms (NO3, 2.6 mM; NH4+, 2.6 mM; NO3, 1 mM + NH4+, 1.6 mM) on the growth and mineral composition of kiwifruit plants exposed to three boron (B) levels (0.025, 0.1, 0.3 mM). The kiwifruit plants were grown in a 1:1 sand : perlite mixture and irrigated daily with nutrient solutions. Shoot height, mean shoot dry weight, the number of leaves, mean leaf dry weight, and N concentration of NH4‐treated plants were significantly higher compared to the NO3 treatment at all B levels. The concentration of 0.3 mM B significantly reduced shoot height for all N treatments. Boron toxicity symptoms appeared 14 days after starting the experiment, when plants were treated with 0.1 and/or 0.3 mM B. The nitrate supply reduced the B concentration of roots, but B levels of different leaf parts were hardly affected by the N form. Furthermore, the NH4‐N form significantly reduced the Mg concentration of the leaves.  相似文献   

16.
We compared total C, N and P, available forms of N and P and dehydrogenase, urease and acid phosphatase activities in soils from primary forests, 26‐year‐old pastures and 26‐year‐old secondary forests in the tropical dry forest region of Chamela, Jalisco, Mexico. We hypothesized that, because of their natural regeneration and greater plant diversity, secondary forest soils would have higher fertility and enzyme activities than pasture soils and would be more similar to primary forest soils. We predicted also that enzymes would be better indicators of land‐use effects on soil fertility than nutrients. Only one nutrient, available phosphorus, and one enzyme, acid phosphatase, were significantly and consistently affected by land use. As expected, these parameters were greater in primary and secondary forests than in pastures. Principal components analysis using all variables placed secondary forests intermediate between primary forests and pastures, as predicted, and total C, N and P, available P, ammonium, phosphatase, urease and the C:P ratio were the variables associated with this spatial arrangement of land uses. We conclude that secondary forest soils showed improved fertility and were overall closer to primary forests than to pastures in most variables measured.  相似文献   

17.
日本北海道农村生态系统中N循环研究   总被引:2,自引:0,他引:2  
L. LIANG  T. NAGUMO  R. HATANO 《土壤圈》2006,16(2):264-272
This study of Mikasa City in 2001, which analyzed N flow between N production and N load in seven agricultural and settlement subsystems, i.e., paddy, onion, wheat, vegetable, dairy, chicken, and citizen subsystems, aimed to compare N flow in each subsystem, to determine the main sources of the N load, and to evaluate the influence of agricultural production and food consumption on N cycling in a rural area. The results showed that in Mikasa city, 38.5% of the N load came from point sources and the remainder from non-point sources with intensive vegetable farming imparting a serious N load. Because of the internal N cycling in the dairy subsystem, chemical fertilizer application was reduced by 70.2%, and 23.72 Mg manure N was recycled to the field; therefore, the N utilization efficiency was raised from 18.1% to 35.1%. If all the manure N in the chicken subsystem was recycled, chemical fertilizer application would be reduced by 8.1% from the present level, and the point sources of N pollution would be reduced by 20.8%.  相似文献   

18.
Ammonium (NH4+) is an important nitrogen (N) source for plant growth. Nevertheless, NH4+–N can be oxidized to nitrate (NO3?) by nitrification and then nitrate and nitrite can be leached into groundwater. The aims of this study were to investigate the effect of the water bicarbonate concentration, pH, and the presence, or not, of a nitrification inhibitor, on the nitrification process. Six treatments were established, changing the pH and the bicarbonate concentration, with or without the nitrification inhibitor. The results showed that an active nitrification process occurred in treatments with high pHs (8 and 7) and with no nitrification inhibitors. This causes an increase in the nitrate and nitrite concentration in the substrate. The use of N–NH4+ fertilizers joint to a nitrification inhibitor, especially in nutritive solutions with a high concentration of bicarbonate and a pH of 8 and 7, decreases nitrate and nitrite accumulation in substrate which can prevent nitrate and nitrite leaching.  相似文献   

19.
Silicon (Si) is not considered as an essential element for plant growth and development but application of Si improved plant growth. In this study, the effect of various concentrations of Si as sodium metasilicate (0, 50, 100, 200, 400, and 800 µg g–1) on nodule growth and mineral nutrition of Rhizobium sp. U 15–inoculated cowpea (Vigna unguiculata (L.) Walp.) plants grown in pots was studied. Lower additions of Si (50–100 µg g–1) significantly increased nodule growth (nodule number, nodule fresh weight and dry weight), relative yield of root and shoot, nitrogen, phosphorus, and calcium concentrations. Plant Si concentrations increased with an increase in soil‐applied Si. Nodule growth negatively correlated with higher applied concentrations of Si (200–800 µg g–1). The results indicate that Si at low concentrations is beneficial for nodule growth.  相似文献   

20.
In 2006–2007 small radish was cultivated in a pot experiment. Foliar applications were applied twice with solutions of the following compounds: 1) control (water); 2) urea; 3) urea+molybdenum (Mo), 4) urea+Mo+benzyladenine (BA); 5) urea+Mo+BA+sucrose; 6) urea+Mo+BA+sucrose+salicylic acid (SA), 7) BA; 8) SA; and 9) sucrose. The above solutions contained following concentrations of compounds: urea 20 g dm?3, sucrose 10 g dm?3, Mo 1 mg dm?3, BA 5 mg dm?3 and SA 10 mg dm?3. In comparison with the control, spraying plants with the solution of urea+Mo+BA+sucrose and SA only caused an increase in leaf mass of one plant. Foliar applications did not have any effect on the yield of edible roots. When compared with the control, the use of sucrose resulted in a decreased content of nitrate (V) in leaves, while the application of urea+Mo+BA+sucrose led to elevated content of nitrate (V) in roots. In case of spraying plants with solutions containing urea (combinations no. 2–6) there was a tendency to increase ammonium (NH4 +) and nitrogen (N)-total content in leaves and roots, and increase in N uptake by leaves and by the whole plant but not by the radish roots. In combinations 7–9 we noted a decline in the level of ascorbic acid, and in combinations 2–6 there was a decrease in the content of soluble sugars in roots. In comparison with the control, an increase was observed in combinations 2 and 3, while in combinations 7–9 a decrease in the content of free amino acids in roots was observed. None of the combinations with foliar application caused any significant changes in the content of assimilative pigments in radish leaves and concentration of nitrate (III), dry matter in leaves and roots, the content of phenolic compounds, content of potassium (K), magnesium (Mg), calcium (Ca) extracted with 2% acetic acid in roots as well as free radical activity of radish roots.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号