首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Yield, dry matter production, nitrogen (N) uptake and nitrogen use efficiency (NUE) of Bangladesh Rice Research Institute (BRRI) dhan29 were investigated during two consecutive dry (Boro) seasons of 2009–10 and 2010–11. The experiments were set up in a randomized complete block design with three replication having six nitrogen (N) levels of 0, 40, 80 120, 160 and 200 kg ha?1. Nitrogen fertilization increased yield characters, dry matter production and N uptake. The economic optimum rate of N was 166 and 155 kg ha–1 in first and second year, respectively, with corresponding yield of 7.1 and 6.5 t ha?1. NUEs were higher in the first year, decreased with increasing N rates in most cases. Gross return over fertilizer reached the highest Tk 692 in 2009–10 and Tk 489 in 2010–11 with 160 kg N ha–1. The results suggest that BRRI dhan29 should receive an average of 160 kg N ha?1 for economic optimum yield.  相似文献   

2.
Appropriate nitrogen (N) management practices are of critical importance in improving N use efficiency (NUE), maize (Zea mays) yield and environmental quality. A six-year (2005–2010) on-farm trial was conducted in Ottawa, Canada to assess the effects of N rates and application methods on grain yield and NUE. In four out of the six-year study, grain yield increased by 60–77 kg ha?1 by sidedress, compared to 49–66 kg ha?1 for each kg N ha?1 applied at preplant. Grain yield response to N between the two strategies was similar in the other growing seasons. Sidedress strategy required 15 kg N ha?1 less of the maximum economic rate of N (MERN) than preplant application. Our results indicate that sidedress application of 90–120 kg N ha?1 with a starter of 30 kg N ha?1 resulted in greater yield, grain quality and NUE than preplant N application in this cool, humid and short growing-season region.  相似文献   

3.
ABSTRACT

The study was aimed to determine the appropriate nitrogen (N) rate to combine with liming for enhanced maize yield and nitrogen use efficiency (NUE). Two maize varieties [Ikom White (IKW) and Obatanpa-98 (Oba-98)], two lime rates (0 kg ha?1 and 500 kg ha?1) and three N rates (0, 90 and 180 kg ha?1) were used. The treatments were laid as a split-split plot in a randomized complete block design with three replications. The growth attributes, photosynthetically active radiation (PAR), harvest index, dry matter, and grain yield increased (P ≤ 0.05) with increases in N rates, especially in plots amended with lime. Oba-98 was better yielding (2.12 versus (vs) 1.88 t ha?1) and absorbed more (P ≤ 0.05) radiation (442.06 vs 409.54 μmol m?2s?1) than IKW. The efficiency indices and partial factor productivity were best optimized at the 90 kg ha?1 N rate with Oba-98 having higher values than IKW. Therefore, liming (500 kg ha?1) plus N at 180 kg ha?1produced the best yield of the hybrid maize, Oba-98.  相似文献   

4.
For understanding the effects of soil salinity and nitrogen (N) fertilizer on the emergence rate, yield, and nitrogen-use efficiency (NUE) of sunflowers, complete block design studies were conducted in Hetao Irrigation District, China. Four levels of soil salinity (electrical conductivity [ECe] = 2.44–29.23 dS m?1) and three levels of N fertilization (90–180 kg ha?1) were applied to thirty-six microplots. Soil salinity significantly affected sunflower growth (P < 0.05). High salinity (ECe = 9.03–18.06 dS m?1) reduced emergence rate by 24.5 percent, seed yield by 31.0 percent, hundred-kernel weight by 15.2 percent, and biological yield by 27.4 percent, but it increased the harvest index by 0.9 percent relative to low salinity (ECe = 2.44–4.44 dS m?1). Application of N fertilizer alleviated some of the adverse effects of salinity, especially in highly saline soils. We suggest that moderate (135 kg ha?1) and high (180 kg ha?1) levels of N fertilization could provide the maximum benefit in low- to moderate-salinity and high- or severe-salinity fields, respectively, in Hetao Irrigation District and similar sunflower-growing areas.  相似文献   

5.
Abstract

Limited information is available regarding the utilization and loss of fertilizer nitrogen (N) applied to intensively managed upland rice. Effects of N fertilization on upland rice were conducted as N0 (no N applied), N225 (225 kg N · ha?1), N300 (300 kg N · ha?1), and N375 (375 kg N · ha?1) in pot experiments. 15N‐labeled techniques were used in basal and topdressing N fertilizations. Results showed with the increase of N quantity applied, tiller, panicle numbers per pot, and spikelet number per panicle increased significantly (P<0.05). Chlorophyll b content of N225 and N300 were significantly higher than N0 (P<0.05), and net photosynthetic rate (Pn) of N300 increased significantly compared with N0 and N225. Under basal fertilization, N use efficiency (NUE) of root, stem, leaf, and grain in N300 was the highest. The NUE and loss rate ranged from 23.3% to 30.3% and 62.4% to 73.8%, respectively, under basal fertilization. They varied from 16.5% to 27.5% and 70.7% to 80.4%, respectively, under topdressing fertilization. The highest NUE was observed in N300 under basal fertilization. As increased quantities of N were applied, Pn and biological characteristics improved, thus crop yield of upland rice increased. Grain yield of N300 and N375 were significantly higher than that of N0 and N225 (P<0.01); however, there was no significant difference between them. Therefore, N fertilization with medium applied quantity under basal fertilization will facilitate growing, photosynthesis, and grain yield increase of upland rice.  相似文献   

6.
Dry bean (Phaseolus vulgaris L.) is an important legume worldwide and nitrogen (N) is most yield limiting nutrients. A field experiment was conducted for two consecutive years to evaluate response of 15 dry bean genotypes to nitrogen and rhizobial inoculation. The N and rhizobia treatments were (i) control (0 kg N ha?1), (ii) seed inoculation with rhizobia strains, (iii) seed inoculation with rhizobia strains + 50 kg N ha?1, and (iv) 120 kg N ha?1. Straw yield, grain yield, and yield components were significantly influenced by N and rhizobial treatments. Grain yield, straw yield, number of pods m?2, and grain harvest index were significantly influenced by year, nitrogen + rhizobium, and genotype treatments. Year × Nitrogen + rhizobium × genotype interactions were also significant for these traits. Hence, these traits varied among genotypes with the variation in year and nitrogen + rhizobium treatments. Inoculation with rhizobium alone did not produce maximum yield and fertilizer N is required in combination with inoculation. Based on grain yield efficiency index, genotypes were classified as efficient, moderately efficient, and inefficient in nitrogen use efficiency (NUE). NUE defined as grain produced per unit N applied decreased with increasing N rate. Overall, NUE was 23.17 kg grain yield kg?1 N applied at 50 kg N ha?1 and 13.33 kg grain per kg N applied at 120 kg N ha?1.  相似文献   

7.
Excessive nitrogen (N) fertilizer application is common in the central Zhejiang Province area, China. A three-year (2009–11) experiment was conducted to determine the optimum N application rate for this area by studying the effects of various N rates on rice (Oryza sativa L.) yield, N-use efficiency (NUE), and quality of paddy field water. Results showed that no significant yield differences were observed under N rates from 180 to 315 kg ha?1. The NUE could be improved by reducing N application rates without significantly decreasing yield. Due to high ammonia (NH4+-N) and nitrate (NO3N) concentrations, 5–7 days after N application was a critical stage for reducing N pollution. The N rate for the greatest yield was 176 kg ha?1, accounting for 65 percent of the conventional N rate (270 kg ha?1). The N-rate reduction in this area may be necessary for maintaining high yield, improving NUE, and reducing environmental pollution.  相似文献   

8.
Efficient use of nitrogen (N) by wheat crop and hence prevention of possible contamination of ground and surface waters by nitrates has aroused environmental concerns. The present study was conducted in drainage lysimeters for three years (1998–2000) to identify whether spring wheat genotypes (Triticum aestivum L.) that differ in N-related traits differ in N leaching and to relate parameters of N use efficiency (NUE) with parameters of N leaching. For this reason two spring wheat cultivars (‘Albis’ and ‘Toronit’) and an experimental line (‘L94491’) were grown under low (20 kg N ha?1) and ample N supply (270 kg N ha?1). The genotypes varied in parameters of NUE but not in N leaching. Grain yield of the high-protein line (‘L94491’) was, on average, 11% lower than that of ‘Toronit’ but among genotypes had significantly higher N in the grain (%), grain N yield, and N harvest index. Nitrogen lost through leaching was considerably low (0.42–0.52 g m?2) mainly due to low volume of percolating water or the ability of the genotypes to efficiently exploit soil mineral N. There were no clear relationships between N-related genotype traits and N leaching, but across all treatments significantly negative correlations between volume of leachate and the amount of N in the total biomass and grain N yield existed.  相似文献   

9.
Lentils (Lens culinaris L.) are an important component of the dryland farming systems in the western USA. Optimum nitrogen (N) management can enhance yield and quality of lentils. We conducted a field (at two locations, one with previous history of lentil and the other one without lentil history) and a greenhouse study to evaluate response of lentil to the application of rhizobium inoculant and starter N (control, 22 kg N ha?1 in the form of urea [U], 22 kg N ha?1 in the form of slow-release or environmentally safe nitrogen [ESN], and 22 kg N ha?1 U + 22 kg N ha?1 ESN). In both, the field and the laboratory studies, lentil yield did not respond positively to the experimental treatments. Lentil average yield was 1216 and 1420 kg ha?1 at the field condition. In this rain-fed system, lentil yield was mainly limited by moisture availability, and the application of an external N did not contribute to the yield enhancement. Both of these treatments, however, increased protein content. Compared to the control, the application of rhizobium plus U and ESN enhanced protein content by about 34% (from 23.1 to 30.9%). The application of U+ESN also considerably increased postharvest residual nitrate (NO3)-N in the soil, which can be easily leached and creates environmental pollution. Briefly, the application of U+ESN increases lentil protein content, but more efforts are needed to optimize N management in lentils in order to reduce the environmental concerns in the shallow soil.  相似文献   

10.
ABSTRACT

Grain protein content is one of the most important quality constraints for bread wheat (Triticum aestivum L.) production in eastern Canada. A field experiment was conducted for two years (1999 and 2000) on the Central Experimental Farm, Ottawa, Canada, to study whether split application of nitrogen (N) fertilizer improved grain protein content and nitrogen-use efficiency (NUE). Two cultivars (‘Celtic,’ as N-responsive and ‘Grandin’, as N-non-responsive) were grown using three different N doses and application methods: (1) 100 kg N ha?1 as NH4NO3, soil-applied at seeding with 15N2-labeled NH4NO3 to microplots, (2) 60 kg N ha?1 soil-applied at seeding plus 40 kg N ha?1 foliar-applied at the boot stage with 15N2-labeled urea to microplots, and (3) 90 kg N ha?1 as soil-applied at seeding plus 10 kg N ha?1 foliar-applied at the boot stage with 15N2-labeled urea to microplots. Plants were sampled at heading and maturity. While dry-matter production and grain yields were not affected by the treatments in either year, N application methods influenced tissue N concentration and NUE. In 1999, extended drought stress led to significant yield reduction; in 2000, foliar application of 10 kg N ha?1 at the boot stage significantly increased grain N concentration when grain protein was under the limit for bread quality, suggesting that later-applied N can contribute to grain protein content. At maturity, the average NUE was 22.3% in 1999 and 34.5% in 2000, but was always greater when all N was applied at seeding (42.5%) than when N was foliar-applied at the boot stage (18.5% to 24.5%). We conclude that application of a small amount of fertilizer N at the boot stage can improve the bread-making quality of spring wheat by increasing grain protein concentration.  相似文献   

11.
《Journal of plant nutrition》2013,36(8):1561-1580
Abstract

The Magruder plots are the oldest continuous soil fertility wheat research plots in the Great Plains region, and are one of the oldest continuous soil fertility wheat plots in the world. They were initiated in 1892 by Alexander C. Magruder who was interested in the productivity of native prairie soils when sown continuously to winter wheat. This study reports on a simple estimate of nitrogen (N) balance in the Magruder plots, accounting for N applied, N removed in the grain, plant N loss, denitrification, non‐symbiotic N fixation, nitrate (NO3 ?) leaching, N applied in the rainfall, estimated total soil N (0–30 cm) at the beginning of the experiment and that measured in 2001. In the Manure plots, total soil N decreased from 6890 kg N ha?1 in the surface 0–30 cm in 1892, to 3198 kg N ha?1 in 2002. In the Check plots (no nutrients applied for 109 years) only 2411 kg N ha?1 or 35% of the original total soil organic N remains. Nitrogen removed in the grain averaged 38.4 kg N ha?1 yr?1 and N additions (manure, N in rainfall, N via symbiotic N fixation) averaged 44.5 kg N ha?1 yr?1 in the Manure plots. Following 109 years, unaccounted N ranged from 229 to 1395 kg N ha?1. On a by year basis, this would translate into 2–13 kg N ha?1 yr?1 that were unaccounted for, increasing with increased N application. For the Manure plots, the estimate of nitrogen use efficiency (NUE) (N removed in the grain, minus N removed in the grain of the Check plots, divided by the rate of N applied) was 32.8%, similar to the 33% NUE for world cereal production reported in 1999.  相似文献   

12.
Evaluation of any crop response to different nitrogen amounts is important for determining the amount that can be considered as optimum from economical and environmental point of view. This study was conducted to (1) evaluate the growth and yield of pumpkin (Cucurbita pepo L.) under different nitrogen rates and (2) determine the nitrogen use efficiency (NUE) of pumpkin in two growing seasons (2013 and 2014). In both growing seasons, nitrogen fertilizer (at three rates including 50, 150, and 250 kg ha?1) was band-dressed on the planted side of each furrow, coinciding with 4–6 leaves stage and flowering. Crop performance over 2 years was evaluated by measuring shoot dry matter, crop growth rate (CGR), leaf area index (LAI), leaf area duration (LAD), intercepted PAR (PARi), radiation use efficiency (RUE), shoot nitrogen uptake, water use efficiency (WUE), NUE, and fruit and seed yield. The results showed that in both growing seasons, the highest growth and yield of pumpkin were obtained by applying 250 kg N ha?1 (using urea fertilizer containing 46% nitrogen). Increased nitrogen rate from 50 to 250 kg ha?1 resulted in 87.3%, 27.0%, 62.1%, 87.5%, and 84.5% increase in shoot dry weight, RUE, WUE, fruit yield, and seed yield of pumpkin, respectively, across both growing seasons. However, higher application nitrogen rate decreased the NUE of pumpkin, i.e., the NUE decreased by 62.5% when the nitrogen rate increased from 50 to 250 kg ha?1. The effect of nitrogen applied in 2014 growing season on growth and yield of pumpkin was higher than that in 2013 growing season, which might be due to more suitable weather condition. In conclusion, the nitrogen rate of 250 kg ha?1 produced the highest amount of fruit and seed yield in pumpkin.  相似文献   

13.
Nitrogen and sulfur play an important role in maize production. The aim of this study was to evaluate the effect of nitrogen (N) and sulfur (S) levels applied in various ratios on maize hybrid Babar yield at Peshawar in 2011 and 2013. Four N levels (120, 160, 200 and 240 kg N ha?1) and four S levels (20, 25, 30 and 35 kg S ha?1) were applied in three splits: a, at sowing; b, V8 stage; c, VT stage in ratios of 10:50:40, 20:50:30 and 30:50:20. Grains ear?1, thousand grain weight, grain yield ha?1 and soil pH were significantly affected by years (Y), N, S and their ratios, while no effect of N, S and their ratios was noted on ears plant?1. Maximum grains ear?1 (390), thousand grain weight (230.1 g) and grain yield (4119 kg ha?1) were recorded in 2013. N increased grains ear?1 (438), thousand grain weight (252 g) and grain yield (5001 kg ha?1) up to 200 kg N ha?1. Each increment of S increased grains ear?1 and other parameters up to 35 kg S ha?1, producing maximum grains ear?1 (430), thousand grain weight (245 g) and grain yield (4752 kg ha?1), while soil pH decreased from 8.06 to 7.95 with the application of 35 kg S ha?1. In the case of N and S ratios, more grains ear?1 (432), heavier thousand grains (246.7 g) and higher grain yield (4806 kg ha?1) were observed at 30:50:20 where 30% of N and S were applied at sowing, 50% at V8 and 20% at VT stage. It is concluded that 200 kg N ha?1 and 35 kg S ha?1 applied in the ratio of 30% at sowing, 50% at V8 and 20% at VT stage is recommended for obtaining a higher yield of maize hybrid Babar.  相似文献   

14.
Based on experiments conducted during 1988–2009 on rainfed pearl millet/sorghum with 9 treatments in Vertisols, an efficient treatment for sustainable productivity is identified. Twenty kg of nitrogen (N) from farmyard manure (FYM) + 20 kg N (urea) + 10 kg phosphorus (P) ha?1 in pearl millet and 40 kg N (urea) + 20 kg P + 25 kg zinc sulfate (ZnSO4) ha?1 in sorghum gave maximum yield and rainwater-use efficiency, whereas 20 kg N (FYM) + 20 kg (urea) + 10 kg P ha?1 in pearl millet and 40 kg (urea) + 20 kg P ha?1 in sorghum and gave maximum soil N, P, and potassium (K) over years. The regression model of 20 kg N (crop residue) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 for predicting sorghum equivalent yield separately through precipitation and soil variables, whereas 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 gave maximum R2 under combined model of both variables. Treatment of 20 kg N (FYM) + 20 kg N (urea) + 10 kg P ha?1 was superior for attaining maximum sorghum equivalent yield of 1062 kg ha?1, net returns of Rs. 4805 ha?1, benefit/cost (BC) ratio of 1.50, and 127 kg ha?1 of soil N, 10.3 kg ha?1 of soil P, and 386 kg ha?1 of soil K over years.  相似文献   

15.
Leaf color chart (LCC) guides fertilizer nitrogen (N) application to rice as per requirement of the crop on the basis of a critical leaf color. Two field experiments were conducted to evaluate the effect of silicon (Si) and LCC based N management in aerobic rice. Following LCC-based N management, from 60 to 90 kg N ha?1 and 75 to 100 kg N ha?1 with 10–40% and 25–30% less fertilizer N was used without any reduction in yield as compared to the package of practices of 100 (50 kg N ha?1 as basal + two split of 25 kg N ha?1) kg N ha?1 respectively, during both the seasons. The highest grain yield was noticed with 90 kg N ha?1 (30 kg N ha?1 as basal + LCC-3) and 100 kg N ha?1 (50 kg N ha?1 as basal + two split of 25 kg N ha?1) along with the application of calcium silicate (CaSiO3) at 2 t ha?1 as sources of Si and on par with 60 kg N ha?1 (no basal + LCC-3) and 75 kg N ha?1 (30 kg N ha?1 as basal + LCC-3), respectively, during the season in 2008 and 2009. Higher fertilizer N use efficiency was recorded with Si and need-based N management using LCC-3 rather than recommended dose of fertilizer N.  相似文献   

16.
ABSTRACT

This study was conducted to formulate an in-season nitrogen (N) fertilization optimization algorithm (NFOA) to estimate midseason N rates that maximize corn (Zea mays L.) growth and minimize fertilizer inputs. Treatments included: a zero kg N ha?1; three treatments of 134 kg N ha?1 fixed rate applied in split, preplant, or sidedress; two treatments of 67 kg N ha?1 fixed rate preplant or sidedress applied; three NFOA-based midseason N rates (RI-NFOA, RICV-NFOA, flat-RICV-NFOA) with (67 kg N ha?1) and without preplant N; and two resolutions (0.34 and 2.32 m2) tested for RICV-NFOA only. With the 67 kg N ha?1 preplant application, midseason RI-NFOA-based N rates resulted in an N use efficiency (NUE) of 65% while the 134 kg N ha?1 fixed rate split applied had 56% NUE. Using the RICV-NFOA, NUE and net returns to N fertilizer were higher when spatial variability was treated at 2.32 m2 resolution.  相似文献   

17.
Field experiments were conducted with four nitrogen fertilizer treatments to study the effects of controlled-release urea combined with conventional urea on the nitrogen uptake, root yield, and contents of protein, soluble sugar, saponin, zinc (Zn), iron (Fe), magnesium (Mg), and copper (Cu) in Platycodon grandiflorum. Field experiments were conducted with four nitrogen (N) fertilizer treatments: no N fertilization; conventional urea with N rate of 175 kg N ha?1; conventional urea with N rate of 160 kg N ha?1; controlled-release urea combined with conventional urea with N rate of 160 kg N ha?1; controlled-release urea combined with conventional urea with N rate of 135 kg N ha?1. The results showed that nitrogen application significantly increased the yield of P. grandiflorum compared with the control. Treatment with controlled-release urea combined with conventional urea at 160 kg N ha?1 provided the highest yield of 7329.58 kg ha?1. Nitrogen application also increased the contents of soluble sugar, total saponin, protein, Zn, Fe, and Mg but decreased Cu content. Protein, saponin, and Zn contents were significantly higher, but Cu content was lower in P. grandiflorum fertilized with controlled-release urea combined with conventional urea than those fertilized with conventional urea alone. The combination of controlled-release urea with conventional urea at 160 kg N ha?1 was the optimal treatment under the experimental condition investigated in this study.  相似文献   

18.
Current sugarcane nitrogen (N) rate recommendations are based of crop age and soil type. Fertilization is typically done up to two months prior to rapid N uptake by sugarcane crop. This study was established to evaluate the effect of N rate and application timing on sugarcane yield and quality. Treatments included four different N rates (0, 45, 90, and 135 kg N ha?1) and four different application times (mid-April, late-April, mid-May, and late-May) arranged in a split-plot design with application time as the main plot and N rate as the sub-plot. Two of three site-years showed a significant positive effect of N rate on sugarcane yield. Further, the critical N rates range from 40 to 60 kg N ha?1 for responsive years, which is lower than current N rate recommendations. Results indicated that N fertilization could be delayed to later in the growing season in 5 of 6 sites.  相似文献   

19.
A study was conducted to assess fertilizer effect on pearl millet–wheat yield and plant-soil nutrients with the following treatments: T1, control; T2, 100% nitrogen (N); T3, 100% nitrogen and phosphorus (NP); T4, 100% nitrogen, phosphorus and potassium (NPK); T5, 100% NPK + zinc sulfate (ZnSO4) at 25 kg ha?1; T6, 100% NPK + farmyard manure (FYM) at 10 t ha?1; T7, 100% NPK+ verimcompost (VC) at 2.5 tha?1; T8, 100% NPK + sulfur (S) at 25 kg ha?1; T9, FYM at 10 t ha?1; T10, VC at 2.5 t ha?1; T11, 100% NPK + FYM at 10 t ha?1 + 25 kg S ha?1 + ZnSO4 at 25 kg ha?1; and T12, 150% NPK treatments. Treatments differed significantly in influencing soil-plant nutrients and grain and straw yields of both crops. Grain yield had significant correlation with soil-plant N, P, K, S, and zinc (Zn) nutrients. The study indicated superiority of T11 for attaining maximum pearl millet grain yield (2885 kg ha?1) and straw yield (7185 kg ha?1); amounts of N (48.9 kg ha?1), P (8.8 kg ha?1), K (26.3 kg ha?1), S (20.6 kg ha?1), and Zn (0.09 kg ha?1) taken up; and amounts of soil N (187.7 kg ha?1), P (13.7 kg ha?1), K (242.5 kg ha?1), S (10.1 kg ha?1), and Zn (0.70 kg ha?1). It was superior for wheat with grain yield (5215 kg ha?1) and straw yield (7220 kg ha?1); amounts of N (120.7 kg ha?1), P (13.8 kg ha?1), K (30 kg ha?1), S (14.6 kg ha?1), and Zn (0.18 kg ha?1) taken up; and maintaining soil N (185.7 kg ha?1), P (14.5 kg ha?1), K (250.5 kg ha?1), S (10.6 kg ha?1), and Zn (0.73 kg ha?1). Based on the study, 100% NPK + FYM at 10 tha?1 + Zn at 25 kg ha?1 + S at 25 kg ha?1 could be recommended for attaining maximum returns of pearl millet–wheat under semi-arid Inceptisols.  相似文献   

20.
Forage pearl millet (Pennisetum americanum var. Nutrifeed) is a new forage crop in Iran. A field experiment was conducted at the University of Tehran to evaluate the response of pearl millet to four nitrogen (N) levels (0, 75, 150, and 225 kg N ha?1) and four irrigation regimes (40%, 60%, 80%, and 100% of available soil water abbreviated to I40, I60, I80 and I100, respectively) during 2006–2007. Total dry matter production reached a maximum of 24.4 and 23.5 t ha?1at I40 and I60 at N225, respectively. Nitrogen use efficiency decreased by adding more fertilizer and minimum nitrogen use efficiency was recorded at N225 over all irrigation regimes. At N225, water use efficiency reached the maximum of 3.57 and 4.10 kg m?3 in I80 and I100, respectively. Pearl millet forage could be produced in the regions where water is scarce and additional N fertilizer could increase total dry matter and water use efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号