首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 108 毫秒
1.
Upland rice plants, cultivar ‘IAC 202,’ were grown in nutrient solution until full tillering. Treatments consisted of ammonium nitrate (AN) or urea (UR) as nitrogen (N) source plus molybdenum (Mo) and/or nickel (Ni): AN + Mo + Ni, AN + Mo ? Ni, AN ? Mo + Ni, UR + Mo + Ni, UR + Mo ? Ni, and UR ? Mo + Ni. The experiment was carried out to better understand the effect of these treatments on dry‐matter yield, chlorophyll, net photosynthesis rate, nitrate (NO3 ?‐N), total N, in vitro activities of urease and nitrate reductase (NR), and Mo and Ni concentrations. In UR‐grown plants, Mo and Ni addition increased yield of dry matter. Regardless of the N source, chlorophyll concentration and net photosynthesis rate were reduced when Mo or Ni were omitted, although not always significantly. The omission of either Mo or Ni led to a decrease in urease activity, independent of N source. Nitrate reductase activity increased in nutrient solutions without Mo, although NO3 ?‐N increased. There was not a consistent variation in total N concentration. Molybdenum and Ni concentration in roots and shoots were influenced by their supply in the nutrient solution. Molybdenum concentration was not influenced by N sources, whereas Ni content in both root and shoots was greater in ammonium nitrate–grown plants. In conclusion, it can be hypothesized that there is a relationship between Mo and Ni acting on photosynthesis, although is an indirect one. This is the first evidence for a beneficial effect of Mo and Ni interaction on plant growth.  相似文献   

2.
Abstract

The objective of this study was to evaluate the effects of cobalt (Co) and molybdenum (Mo) doses in the treatment of seeds on the biosynthesis of nitrogen compounds, photosynthetic pigments, sugars, and production of peanut plants. The doses of Co and Mo used were 0, 2, 3, and 4?mL kg?1 seed, which were applied immediately before sowing. Seeds treated with Co and Mo at a dose of 4?mL kg?1 yielded peanut plants with higher concentrations of photosynthetic pigments, carotenoids, and sucrose in leaves. Application of Co and Mo doses also increased biological nitrogen fixation by increasing the concentration of allantoic acid, nitrate, ammonia, and amino acids in leaves. The concentration of total amino acids corresponded to most of the nitrogen compounds (on average 50%), followed by the concentrations of nitrate (35%), ammonia (11%), allantoic acid (7%), and allantoin (0.2%). Application of 4?mL kg?1 increased the production of total amino acids compared with the control treatment. Pod yield was not affected by the Co and Mo doses; however, treatment of peanut seeds with 4?mL kg?1 was the most viable alternative for increased production of primary metabolism compounds, nitrogen forms, and photosynthetic pigments in peanut plants. This study provides important information regarding the role of Co and Mo in the biological nitrogen fixation of peanut plants. Future experiments should be conducted using a dose of 4?mL kg?1 with different genotypes to verify the potential for increasing peanut yield.  相似文献   

3.
《Journal of plant nutrition》2013,36(9):1377-1386
Wheat (Triticum aestivum L.) cv. Sonalika was grown in refined sand at variable molybdenum (Mo) supply ranging from acute deficiency (0.00002 mg L?1) to excess (10 mg L?1). Deficiency as well as excess of Mo decreased significantly the biomass, grain yield, Mo content in leaves and seeds and activity of nitrate reductase in leaves. The effect of high (>0.02 mg L?1) Mo was more marked than its deficiency on wheat. Low and excess Mo deteriorated the quality of grains by lowering the content of starch, sugars, protein, non-protein, and total nitrogen (N) as well as that of prolamin, glutelin, and globulin fractions of seed proteins and increasing the content of albumin and electrical conductivity (EC) of seed leachate. Molybdenum deficiency and excess both resulted in production of lightweight immature seeds, poor in vigor and germination potential. The post fertilization developmental stages required one tenth of the adequate Mo supply for normal bold seed production in wheat. The values of sufficiency and threshold of toxicity in leaves were 0.13 and 1.15 μ Mo g?1 dry matter of wheat.  相似文献   

4.
The objective of this growth chamber study was to evaluate the effect of adding N-(n-butyl) thiophosphoric triamide (NBPT) and dicyandiaminde (DCD) to urea fertilizer, on the physiology and growth of cotton (Gossypiumhirsutum L.) under normal and high temperatures. Treatments consisted of two day temperature regimes, 30°C and 38°C, and five nitrogen fertilization applications: unfertilized control, 125 kg ha?1 of urea, 93 kg ha?1 of urea, 93 kg ha?1 urea + NBPT, and 93 kg ha?1 urea + NBPT + DCD. The addition of NBPT to urea fertilizer had positive effects on leaf chlorophyll, leaf area, dry matter, nitrogen (N) uptake, and N use efficiency. The absence of a significant interaction effect indicated that N fertilization was not influenced by temperature. Deficiency of N significantly decreased leaf chlorophyll, increased glutathione reductase, decreased protein and increased leaf nitrate reductase. Physiological changes under high temperature included increased plant N uptake, glutamine synthetase, leaf chlorophyll, protein content, plant height and leaf area were due to high N uptake and utilization.  相似文献   

5.
The phytotoxicity of salts in composted sewage sludge (CSS) was evaluated. Concentrations of sodium (Na+), chloride (Cl?1), calcium (Ca2+), and magnesium (Mg2+) were present at levels that would induce salt stress in plants. Nutrient imbalances were also found that would adversely affect the use of CSS as a growth medium. To further understand the phytotoxic nature of these salts, sodium chloride (NaCl), calcium nitrate [Ca(NO3)2] and magnesium nitrate [Mg(NO3)2] solutions were used to simulate the composition of salts found in CSS in an investigation of radish (Raphanus sativus L.) seed germination. High concentrations of Ca2+ (92.1 mmol.L?1) and Mg2+ (27.4 mmol.L?1) inhibited seed germination to an equal extent as did Na+ (40.6 mmol.L?1). The lower concentration of Ca2+ (10 mmol.L?1), however, significantly relieved the stress caused by NaCl. These results indicated that the composition and total amount of Na+, Cl?1, Ca2+, and Mg2+ in CSS should be carefully monitored before it is used as a soil amendment or growth medium.  相似文献   

6.
A field experiment was conducted to investigate the effect of nitrogen (N) application on the growth and metabolism of sugar beet (Beta vulgaris L.). Changes in nitrate, ammonium, soluble protein and pigment levels, nitrogen metabolism enzyme activity, biomass of leaves and beet, and sucrose and α-amino-N were studied in relation to five different NPK application rates (0, 50, 100, 150, and 200 kg N ha?1) and association with Azotobacter chrooccocum. The availability of nitrate and ammonium ions in the leaves proved to be influenced by the different nitrogen treatments. The most important enzymatic activities within nitrogen metabolism were affected negatively by the highest NPK rate. With increasing nitrogen supply, the concentration of α-amino-N increased considerably and that of sucrose decreased. Application of NPK had a significant positive effect on the growth and biomass production. The measured parameters of plants associated with A. chrooccocum were of similar magnitude comparing to the controls.  相似文献   

7.
ABSTRACT

Field experiments were conducted to determine the interactive effect of sulfur (S) and nitrogen (N) on nitrogen accumulation, its distribution in various plant parts, and nitrogen harvest of oilseed crops viz. rapeseed (Brassica campestris L. cv. ‘Pusa Gold’) and taramira (Eruca sativa Mill.) differing in their N-assimilation potential. Two combinations of S and N (in Kg/ha): 0S + 100N (?S+N) and 40S + 100N (+S+N) were used. The results showed that combined application of S and N (+S+N) significantly (P < 0.05) increased the nitrogen accumulation in both the genotypes at all the growth stages compared with N applied alone (?S+N). This increase in nitrogen accumulation was due to the improvement in the reduction of nitrate into reduced nitrogen as evident from higher nitrate reductase (NR) activity in the leaves of plants grown with both S and N, compared with N alone. Nitrate-N content in the leaves of plants grown with only N (?S+N) was higher compared to those grown with both S and N (+S+N), showing that combined application of S along with N (+S+N) appreciably reduced the nitrate content in the leaves due to higher NR activity. This decline in nitrate (NO3 ?) was followed by an overall increase in N-accumulation in the plants. Consequently, the nitrogen content in the plant was increased by 29–148% in rapeseed and 38-166% in taramira with +S+N treatment. Combined application of S along with N (+S+N) also increased seed protein content and nitrogen harvest index of both the genotypes. It is concluded that combined application of S along with N (+S+N) not only increased the N-accumulation, but also its mobilization towards economic sinks.  相似文献   

8.
ABSTRACT

Nickel (Ni) is an essential element for activation of urease in higher plants. The effects of Ni as an essential micronutrient on growth and chlorophyll content of wheat plants grew in nutrient solutions supplied either with ammonium nitrate or urea as two different nitrogen (N) sources were investigated. Plants were allowed to grow for six weeks, then leaf chlorophyll content, shoot and root fresh and dry weights, and Ni concentration in shoots and roots were determined. Shoot and root Ni concentration in both urea and ammonium nitrate-fed plants increased significantly with the increase in Ni concentration. Growth and chlorophyll content in leaves of the urea-fed plants increased when Ni concentration in the solution was as high as 0.05 mg L?1 and decreased at 0.1 mg Ni L?1. In ammonium nitrate-fed plants, these parameters increased up to 0.01 mg Ni L?1 and started to decrease with further increase in Ni concentration. Plants that grew in nutrient solutions containing urea had more shoots and roots fresh and dry weight at third and fourth Ni levels (0.05 and 0.1 mg L?1) than those that grew in media containing ammonium nitrate with similar Ni levels. Total chlorophyll content was also higher in plants supplied with urea plus Ni. The amount of Ni required for optimum wheat growth was dependent on the forms of N used. When supplied with ammonium nitrate or urea, the amount of Ni needed was 0.01 and 0.05 mgL?1 of nutrient solutions, respectively.  相似文献   

9.
The influence of manure and diammonium phosphate (DAP) mineral fertilizer on germination, leaf nitrogen content, nitrate accumulation and yield of vegetable amaranth (Amaranthus hypochondriacus) was investigated. Field trials were set up at the University of Nairobi Field Station at the Upper Kabete Campus during the long rains of March–May in 2007 and 2008. Trials were laid out as complete randomized block design with four fertilization treatments: 20, 40, and 60 kg nitrogen (N) ha?1 supplied by DAP (18:46:0), 40 kg N ha?1 supplied by cattle manure and an unfertilized control variant. The vegetables were harvested at three maturity stages at 6, 7, and 8 weeks after planting. Results indicated that there were significant differences between treatments in germination percentage, leaf nitrogen content, nitrate accumulation and vegetable yield. Plants that received manure had a higher germination percentage than those that received the same amount of N supplied by the chemical fertilizer DAP. The yields generally increased from week 6 to week 8. The highest yield was recorded in plots receiving 40 kg N ha?1 from DAP at eight weeks after planting. Plots that were supplied with manure recorded the lowest yield when compared to the fertilizer treated plots at all rates. Leaf nitrogen content increased with increasing rate of N but only when N was supplied by DAP fertilizer. The leaf nitrogen content decreased with increasing age of the plants. The leaf nitrate content increased with increase in DAP application rate. Results indicate that manure application produced quality vegetables in terms of low nitrate levels, but leaf nitrogen and vegetable yields were low. DAP application effected higher yields, but the vegetables had high though acceptable nitrate levels.  相似文献   

10.
The nitrogen (N) fertilizer-use efficiency (20–50%) is low in rice fields in India. The neem-oil coated urea can increase N-use efficiency in lowland rice, but the desirable thickness of neem-oil coating onto urea is not known yet. Therefore, field experiments were conducted during kharif (rainy) season years 2004 and 2005 at the Research Farm of Indian Agricultural Research Institute, New Delhi to know the suitable thickness of neem-oil coating on prilled urea (PU) for increased N-use efficiency and yield. The treatments comprised of twelve combinations of four N sources (PU coated with neem-oil thickness of 0, 500, 1000 and 2000 mg kg?1 PU) and three N levels (50, 100, and 150 kg N ha?1) plus a no-N control. Prilled urea (PU) refers to the common urea available commercially in prills, which is different from urea super granules. Application of urea coated with neem-oil thickness of 1000 mg kg?1 PU resulted in significantly higher growth, yield parameters, grain yield, N uptake, and efficiency of aromatic rice (Oryza sativa L.) over uncoated PU. Nitrogen application at 122 kg ha?1 was optimum for increased yield of rice. Nitrogen-use efficiency decreased significantly and substantially with each successive increase in levels of N from 50 to 150 kg ha?1.  相似文献   

11.
After harvest, sugarcane residues left on the soil surface can alter nitrogen (N) dynamics in the plant-soil system. In Oxisols, the nitrogen fertilizer applied had its effects on the levels of ammonium and nitrate in the soil, N concentration in the plant leaves, and on the growth and productivity of second ratoon plants. The N rates tested were of 0, 60, 120, 180, and 240 kg ha?1. Each treatment was replicated four times. Four months after the experiment was started, ammonium and nitrate concentration in the soil, N levels in plant leaves, and plant growth were evaluated. Productivity was evaluated 11 months after the experiment was set. By increasing the content of mineral N in soil, plant growth variables reflected differences in the production of stems; however, it did not affect foliar N. The use of leaf analysis was not important to assess the nutritional status of nitrogen in the ratoon sugarcane. Nitrogen concentration in soil was affected by nitrogen fertilization, but not the N content in leaves. The rate of 138 kg N ha?1enabled greater production of sugarcane stalks (140 t ha?1).  相似文献   

12.
ABSTRACT

Black walnut (Juglans nigra L.) half-sib 1+0 seedlings were exponentially fertilized with ammonium (NH4 +) as ammonium sulfate [(NH4)2SO4], nitrate (NO3 ?) as sodium nitrate (NaNO3), or a mixed nitrogen (N) source as ammonium nitrate (NH4NO3) at the rate of 0, 800, or 1600 mg N plant?1 and grown for three months. One month following the final fertilization, N concentration, growth, and photosynthetic characteristics were assessed. Compared with unfertilized seedlings, N addition increased plant component N content, chlorophyll content, and photosynthetic gas exchange. Net photosynthesis ranged from 2.45 to 4.84 μmol m?2 s?1 for lower leaves but varied from 5.95 to 9.06 μmol m?2 s?1 for upper leaves. Plants responded more favorably to NH4NO3 than sole NH4 + or NO3 ? fertilizers. These results suggest that N fertilization can be used to promote net photosynthesis as well as increase N storage in black walnut seedlings. The NH4NO3 appears to be the preferred N source to promote black walnut growth and physiology.  相似文献   

13.
ABSTRACT

A hydroponic experiment was conducted to study the effects of nitrogen (N) and calcium (Ca) nutrition on oxalate contents of different forms in spinach tissues. Results showed that leaves were the main locations of oxalates in spinach. Total oxalate, soluble oxalate, and insoluble oxalate contents were highest in leaves, followed by petioles and then roots. Soluble oxalate was the dominant form of oxalate in spinach. Nitrogen and Ca2+ (calcium ion) concentrations could markedly affect oxalate contents. Soluble oxalate contents in leaves increased obviously with the increase of N concentration until 8 mmol L?1, above which oxalate content started to decrease. Supplied with the same amount of N, increasing Ca2+ concentration reduced soluble oxalate content in leaves. Total oxalate reached the lowest with 5 mmol L?1 of Ca2+ supply. Leaves and petioles had lower total oxalate and lower proportion of soluble oxalate when N and Ca2+ concentrations were 8 and 5 mmol L?1.  相似文献   

14.
A hydroponic trial was conducted to assess interaction of molybdenum (Mo) and phosphorus (P) on uptake and translocation of P and Mo by Brassica napus. Molybdenum was applied at four rates (0, 0.01, 0.1 and 1 mg L?1) and P at three rates (1, 30, and 90 mg L?1) in nutrient solution. The results indicated that P increased shoot growth and 0.01 mg L?1 Mo improved the growth of shoots and roots. Molybdenum increased shoot P uptake and root P concentration and uptake when higher P was provided, and had a stimulating effect on P translocation from shoots to roots. P increased shoot Mo concentration and uptake, decreased those in roots, and enhanced Mo transport from roots to shoots. These results implied that both Mo and P had beneficial effects on Mo and P absorption and translocation and co-application of them were necessary to promote growth and utilization of Mo and P for Brassica napus.  相似文献   

15.
ABSTRACT

The volatilization of ammonia is the main reaction that decreases the efficiency of nitrogen fertilization and in order to reduce losses. new technologies such as addition of N-n-butyltriamide thiophosphate (NBPT) to the conventional urea granule (UNBPT) or the covering with polymer and sulfur (UPS) have been developed with the aim to optimize nitrogen fertilization. This work aimed to evaluate the volatilization of ammonia (NH3) in conventional urea (CU) and fertilizers with associated technology under: (a) three temperature conditions (b) and three soil moisture management. The fertilizer CU presented the highest losses by volatilization of 25.93 mg dm?3 while fertilizers with associated technology registered 23.93 mg dm?3 and 8.26 mg dm?3 for UNBPT and UPS. respectively. The highest volatilization of NH3 was registered at 45°C for all fertilizers. Fertilizers with associated technology extended the N-release time. delaying the volatilization peak up to the 6th day or even promoted the gradual release of fertilizer in the soil. such as UPS. The UNBPT showed the lowest volatilization values in the 1st water application. while the CU had lower volatilization values at 25°C (14.48 mg dm?3 NH3) and 35°C (16.99 mg dm?3 NH3) when the matric potential was increased from ?100 to ?50 kPa in the 1st application of water. The UPS did not differ from the volatilization values for the three times of water application.  相似文献   

16.
Black gram (Vigna mungo L.) var. Shyam plants were raised in refined sand at four levels of molybdenum (Mo), i.e., low (0.002 µM) to excess (2 µM) for 70 days. The molybdenum deficiency symptoms appeared as interveinal chlorosis of young and middle leaves. Compared to control (0.2 µM Mo), total dry matter, seed yield and seed protein decreased at low and excess Mo. The concentration of Mo in leaves and seed as well as activity of nitrate reductase increased with an increase in Mo supply. Low and excess Mo deteriorated the quality of seeds by lowering the content of starch, sugars, protein, and nitrogen and increasing electrical conductivity of seed leachate. Molybdenum deficiency and excess both resulted in production of lightweight immature seeds, poor in vigor and germination potential. The values of sufficiency and threshold of toxicity in leaves were 0.078 and 2.15 µg Mo g?1 dry matter of black gram.  相似文献   

17.
The effect of chelating ligands on iron (Fe) uptake and growth of radish (Raphanus sativus L.) was investigated. The ethylenediaminetetraacetic acid (EDTA) increased 55Fe uptake in roots of radish though its subsequent translocation from roots to shoots and leaves did not increase. About 70%—80% of the total 55Fe was distributed in the roots while about 5%—15% and 11%—17% were in shoots and leaves, respectively. The EDTA increased iron uptake into the roots of radish, but not in the above ground parts of the plant. The growth of radish (Raphanus sativus L.) decreased drastically in alkaline condition (pH > 9), even though the concentration of iron was sufficient in the growth medium. The growth of radish was enhanced successfully by the addition of hydroxyiminodisuccinic acid (HIDS) and EDTA. This might be because HIDS and EDTA solubilize iron from its precipitation with hydroxides at higher pH, and increase iron bioavailability. The influence of EDTA and HIDS on radish growth was comparable. Increase of radish growth by ethylenediaminedisuccinic acid (EDDS) and methylglicinediacetic acid (MGDA) was less than those by EDTA and HIDS. Considering the reproducibility of the radish growth (biomass production) at pH 10, HIDS is supposed to be more effective compared to EDTA.  相似文献   

18.
The objective of this study was to determine the effect of nitrogen (N) application source and rate on silage corn (Zea mays L.). Urea, ammonium nitrate, and ammonium sulfate were compared at 50, 100, 150, and 200 kg N ha?1. The application of ammonium sulfate produced the highest plant height, leaf area index (LAI), total yield, and stem, leaf, and ear dry matter, followed by ammonium nitrate and urea. However, nitrogen sources had no marked effects on the content of protein, ash, oil, soluble carbohydrates, acid detergent fiber (ADF) and neutral detergent fiber (NDF). As the rate of nitrogen increased plant height, LAI, total yield, and stem, leaf, tassel, and ear dry matters, and protein, ash and oil contents increased while soluble carbohydrates, ADF, and NDF contents decreased. Ammonium sulfate was the most effective N source on production and 200 kg N ha?1 was the most effective N rate on corn yield and quality.  相似文献   

19.
We evaluate the feasibility of using foliar-applied molybdenum, (Mo) instead of side-dressed nitrogen (N) in three experiments. In soils with native rhizobia, plants received 0, 30, 60, 90 or 120 kg N ha?1 with +Mo (80 g ha?1) or -Mo. N concentration in leaves (NCL) -Mo ranged from 35.1 to 42.5 g kg?1 and NCL +Mo from 40.3 to 49.2 g kg?1; yield -Mo ranged from 1560 to 3350 kg ha?1and yield +Mo from 2829 to 3567 kg ha?1. In two experiments, NCL or yield -Mo increased linearly or quadratically with increasing N rates, but NCL or yield +Mo did not. In one experiment, NCL increased linearly with increasing N rates and 16% with +Mo relative to –Mo, but yield was not affected significantly. Our results suggest that using Mo fertilizer instead of side-dressed N can allow common bean plants to meet crop demands for N to support yields as high as 3000 kg ha?1.  相似文献   

20.
Poinsettia (Euphorbia pulcherrima Willd. ex Klotz) cultivars ‘Annette Hegg Brilliant Diamond’ (AH), ‘Gutbier V‐14 Glory’ (GG), and ‘Eckespoint C‐1 Red’ (ER) were grown in a peat‐perlite potting medium to study lime and Mo effects on the occurrence of Mo deficiency. Two rates of dolomitic limestone, 0 and 3 kg/m3of growing medium, and weekly applications of micronutrient solutions containing 0.0 or 1.0 ppm Mo were made in factorial combination. Lime, Mo, or both prevented Mo deficiency symptoms in all cultivars. Without both lime and Mo, Mo deficiency symptoms appeared on AH and GG, but not on ER. Lime and/or Mo reduced NO3‐N content, increased Mo content and increased nitrate reductase enzyme activity (NRA) in the upper recently matured leaves of all cultivars. Lime and Mo interacted to affect these parameters in all cultivars. Comparing the three cultivars without both lime and Mo, NO‐‐N content was lowest and NRA highest in ER. However, the Mo content of ER leaves was equal to or less than that of AG and GG which showed Mo deficiency symptoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号