首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 180 毫秒
1.
陈华癸  周启 《土壤学报》1961,9(Z1):56-64
自从上世纪末叶,C.H.维诺格拉斯基最先发现硝化细菌以后,由于获得纯培养的困难以及研究方法的不完善,硝化细菌的生理学及其生物化学过程的研究进展不大.直到目前对于硝化细菌的生活规律和硝化作用的本质还不十分清楚.但是对于硝化细菌的下列属性却已做了肯定的结论,即:(1)硝化细菌是无机营养型的,不需要有机养料,能还原 CO2为有机碳化物;(2)硝化细菌氧化 NH4+为 NO2-,NO2-为 NO3-,并从中获得能源.  相似文献   

2.
一种直接测定硝化—反硝化气体的15N示踪—质谱法   总被引:3,自引:0,他引:3  
本文对15N示踪—质谱法的可靠性进行了检验。结果表明,在不同的15N丰度气体样品的测定中,用两种方法(反硝化作用源的15N丰度法和气样的15N丰度法)计得的反硝化损失量基本一致,故建立起来的15N示踪—质谱法是可靠的。该方法的测定偏差随气样15N丰度的降低而增大。此外,回收率结果表明,(N2+N2O+NOx)-15N累积释放量占加入NO3-15N量的94.1%。因此,这一方法可用于直接测定氮肥的硝化—反硝化损失的研究中。  相似文献   

3.
尿素肥斑中氮素形态转化初探   总被引:1,自引:0,他引:1  
采用特制模拟容器,通过尿素扩散形成营养斑,观察斑内NH4+、NO2-和NO3-浓度变化及它们之间的相互转化。结果表明,NH4+、NO2-和NO3-浓度在距离肥斑7~8cm处的微域达到最大,尤以NO2-浓度增加较为显著,是一般土壤NO2-水平的数千倍。随培养时间增加,NO2-和NO3-最大浓度峰向施肥点移动,但两者浓度变化趋势不同,NO2-浓度在21d前随培养时间增加而增加,之后随培养时间增加而下降,而NO3-浓度随培养时间增加一直增加。结果还表明,NO2-是尿素营养斑内主要离子形态,从NH4+到NO2-的转化比较迅速,而NO2-转化为NO3-不是短暂的过程,这可能与施肥引起的土壤pH值变化有很大关系。  相似文献   

4.
地下水硝酸盐(NO3-)污染已经成为全球严重的水环境问题之一,由于饮用水中高含量NO3-会转化成亚硝酸盐而增加各种疾病和癌症风险,其来源的确定对于NO3-污染的预防和控制非常重要。本文以黄河下游第二大灌区——潘庄灌区为例,首次采用NO3-的氮氧稳定同位素结合贝叶斯模型追溯地下水NO3-的来源并量化各种来源的贡献比例。结果表明,地下水NO3-含量分布在0.1~197.0 mg·L-1,平均值为34.2 mg·L-1。与《生活饮用水卫生标准》中规定的地下水NO3-最大含量[20 mg(N)·L-1,相当于NO3-含量90 mg·L-1]相比,有10%的样品NO3-含量超标。井深<30 m、30~60 m和>60 m的地下水NO3-平均含量分别为25.9 mg·L-1、39.7 mg·L-1和20.1 mg·L-1。空间上,宁津县、武城县、平原县和禹城市有大片区域地下水NO3-含量较高。地下水NO3-的δ15N组成范围为0.72‰~23.93‰,平均值为11.62‰;δ18O组成范围为0.49‰~22.50‰,平均值为8.46‰。同位素结果表明粪便和污水、农业化肥是地下水中NO3-的主要污染来源。这反映了人类活动是引起地下水NO3-污染的主要原因。贝叶斯模型结果显示,粪便和污水对潘庄灌区地下水中NO3-平均贡献率高达56.2%,化肥的平均贡献率为19.3%,大气降水和土壤的平均贡献率分别为6.2%和12.3%。由于污水、粪便和化肥是地下水中NO3-的主要来源,为保护和改善研究区地下水水质,建议加强污水管道建设,强化畜禽粪便的管理以及提高化肥利用效率。  相似文献   

5.
通过连续7 年的定位试验, 研究了日光温室生产中不同施肥模式(常规模式、无公害模式和有机模式)对土壤NO3--N 时空分布及累积的影响。结果表明, 随着种植年限的增加, 3 种施肥模式土壤剖面各层次NO3--N含量均呈上升趋势, 年增加量顺序为常规施肥模式>无公害施肥模式>有机施肥模式。受氮素输入量(施肥)的影响, NO3--N 主要分布在0~40 cm 土层, 0~60 cm 土层NO3--N 含量总体呈作物生长前期低、中期高、后期低的趋势; 与上层土壤相比, 100 cm 以下土层NO3--N 含量有不同程度的增加。0~200 cm 土体NO3--N 平均累积量有机施肥模式比无公害施肥模式低33.8%, 比常规施肥模式低45.9%; 无公害施肥模式比常规施肥模式低18.3%。3 种施肥模式下, NO3--N 都有向2 m 以下土体淋洗的趋势。与施用化学肥料相比, 施用有机肥能明显降低土壤剖面NO3--N 含量, 控制其累积峰的下移, 但不合理施用有机肥也会产生NO3--N 淋洗而污染环境。  相似文献   

6.
肥液浓度对单膜孔入渗NO-3-N运移特性影响的室内试验研究   总被引:5,自引:0,他引:5  
该文通过室内入渗试验,研究了不同浓度的单膜孔肥液入渗NO-3-N的分布特性。研究表明:不同浓度的膜孔肥液入渗土壤NO-3-N浓度的湿润锋运移距离与土壤水分运动的湿润锋一致;肥液浓度越大,相同入渗时间的NO-3-N浓度锋运移距离越大,土壤剖面NO-3-N浓度最大值越大,相同深度处土壤NO-3-N浓度也越大。肥液入渗土壤NO-3-N浓度分布特征与湿润体深度符合分段函数模型。供水入渗过程中,NO-3-N浓度锋运移距离和浓度最大值均随时间的延长而增大;再分布过程中,NO-3-N浓度锋运移距离继续增大,而NO-3-N浓度最大值逐渐减小。  相似文献   

7.
沈壬水 《土壤》1974,6(4):164-168
众所周知,对于富含NO3--N、NO2--N的土壤、肥料、污水以及其他样品,用K氏法测得的全氮值不能反映出NO3--N、NO2--N的含量,因此不能代表总氮量。  相似文献   

8.
升高CO2浓度能够促进作物的光合作用,提高作物的生物量和产量,但关于CO2与NH+4/NO-3比及其交互作用对作物影响的研究较少,为探索番茄幼苗生长发育对CO2浓度升高的响应是否对NH+4/NO-3配比有较强的依赖关系,本试验在营养液栽培条件下,以番茄(Lycopersicun esculentum Mill)为试材,研究正常大气CO2浓度(360 μL/L)和倍增CO2浓度(720 μL/L)与不同NH+4/NO-3配比的交互作用对番茄幼苗生长的影响。结果表明:CO2浓度升高提高了低NH+4/NO-3比例处理中番茄叶片的光合速率和水分利用率,提高幅度随NH+4/NO-3比例的降低而增强,光合速率增强最大达55%。在同一CO2浓度处理下净光合速率与水分利用率均随NH+4/NO-3比例的增加而显著降低。这说明CO2浓度升高对番茄幼苗生长发育的促进作用随NH+4/NO-3比例的降低而提高,但并没有减弱全NH+4-N处理中番茄幼苗的受毒害作用。综上所述,CO2浓度升高能提高植物生产的节水能力和水分生产力;水培条件下,NO-3-N是最适合番茄幼苗生长发育的氮源,其它NH+4/NO-3比例对番茄幼苗的生长发育有一定的抑制作用,仅以NH+4-N作氮源则番茄幼苗很难生长。  相似文献   

9.
作为一种重要的土壤调节剂,生物质炭在固碳减排,尤其在氧化亚氮(N2O)减排方面的作用日益突出。本研究通过田间定位试验,分析稻麦轮作体系新鲜和田间不同时间老化生物质炭对N2O排放的影响,旨在明确生物质炭对田间N2O排放的持续效应及其作用机理。试验共设置5个处理,分别为CK(不施氮肥和生物质炭)、N(施氮肥)、NB0y(氮肥+新鲜生物质炭)、NB2y(氮肥+2年老化生物质炭)和NB5y (氮肥+5年老化生物质炭),动态监测稻麦轮作周期N2O排放,测定水稻和小麦收获后土壤理化性质和氮循环功能基因丰度。结果表明,生物质炭显著降低土壤N2O累积排放量32.4% ~ 54.0%,且表现为NB0y> NB2y> NB5y。与N处理相比,NB0y, NB2y 和NB5y处理显著提高土壤pH值0.6 ~ 1.2个单位、土壤有机碳(SOC)含量21.4 % ~ 58.6%、硝态氮(NO3--N)含量1.7% ~ 31.3%,对土壤pH改善能力随着生物质炭老化而下降。生物质炭处理显著提高nosZ基因丰度54.9% ~ 249.4%,土壤 (nirS+nirK)/nosZ比值随着生物质炭老化而增加。相关性分析表明,土壤N2O累积排放量与pH值呈显著负相关,与NO3--N含量和amoA-AOB(氨氧化细菌)丰度呈显著正相关。因此,新鲜和田间不同时间老化生物质炭均能显著改善土壤理化特性,降低土壤 N2O排放且新鲜生物质炭的作用效果优于老化生物质炭。土壤NO3--N 含量及(nirS+nirK)/nosZ比值的增加,是导致老化生物质炭减排N2O能力降低的主要原因。  相似文献   

10.
Plants show different growth responses to N sources supplied with either NH4+ or NO3-. The uptake of different N sources also affects the rhizosphere pH and therefore the bioavailability of soil phosphorus, particularly in alkaline soils. The plant growth, P uptake, and P availability in the rhizosphere of oat (Avena nuda L.) grown in hydroponics and in soil culture were investigated under supply with sole NH4+-N, sole NO3--N, or a combination. Sole NO3--fed oat plants accumulated more biomass than sole NH4+-fed ones. The highest biomass accumulation was observed when N was suppliedw ith both NH4+-N and NO3--N. Growth of the plant root increased with the proportion of NO3- in the cultural medium. Better root growth and higher root/shoot ratio were consistently observed in NO3--fed plants. However, root vigor was the highest when N was supplied with NO3-+NH4+. NH4+ supply reduced the rhizosphere pH but did not affect P uptake by plants grown in soils with CaHPO4 added as P source. No P deficiency was observed, and plant P concentrations were generally above 2 g kg-1. P uptake was increased when N was supplied partly or solely as NO3--N, similarly as biomass accumulation. The results suggested that oat was an NO3--preferring plant, and NO3--N was essential for plant growth and the maintenance of root absorption capacity. N supply with NH4+-N did not improve P nutrition, which was most likely due to the absence of P deficiency.  相似文献   

11.
蔡祖聪 《土壤学报》2003,40(2):239-245
用15N分别标记尿素和KNO3,研究了淹水条件下 ,黄泥土和红壤性水稻土的无机氮转化过程及尿素和KNO3对氮素转化过程的影响。结果表明 ,淹水条件下 ,土壤中存在15NH 4 的成对硝化和反硝化过程。红壤性水稻土15NH 4 硝化只检测到15NO- 2 ,但有反硝化产物15N2 生成 ,因此 ,很可能存在着好气反硝化过程。15NO- 3浓度的下降符合一级反应方程 ,黄泥土的速率常数几乎是红壤性水稻土的 1 0倍。反硝化过程和DNRA过程共同参与15NO- 3的还原。加入尿素提高土壤pH ,增加黄泥土DNRA过程对反硝化过程的基质竞争能力 ,但反硝化过程仍占绝对优势。加入尿素或KNO3改变土壤pH是导致对无机氮转化影响有所不同的主要原因 ,浓度的作用较为次要。  相似文献   

12.
模拟酸雨对太湖地区水稻土铜吸附—解吸的影响   总被引:29,自引:0,他引:29       下载免费PDF全文
以太湖地区三种典型的水稻土(黄泥土、白土、乌泥土)为例,利用模拟-培养试验,着重研究模拟酸雨对土壤的铜吸附解吸能力的影响,研究结果表明:与未淋溶土壤相比,经模拟酸雨淋溶的三种土壤对铜的吸附量有所增加,随着淋溶液pH的降低,增幅减小:易解吸态铜的解吸量则随淋溶液pH的降低而增大,模拟酸雨降低了土壤对重金融污染的缓冲能力;虽然黄泥土、乌泥土对铜的吸附量远大于白土,但模拟酸雨对乌泥土的吸附-解吸能力的影响速度也大于白土。  相似文献   

13.
蔡祖聪 《土壤学报》2003,40(3):414-419
采用15N技术标记尿素和KNO3,研究了淹水条件下黄泥土和红壤性水稻土生成N2 O的主要过程。结果表明 ,黄泥土反硝化过程产物以N2 为主 ,N2 O的生成量可以略而不计。加入KNO3促进NO- 3异化还原成铵过程 ,从而增加N2 O生成速率。红壤性水稻土主要通过反硝化或好气反硝化过程生成N2 O ,随着土壤pH的提高或NO- 3 浓度升高 ,N2 O生成速率增大。无论是黄泥土还是红壤性水稻土 ,有相当一部分样本的N2 O的15N丰度在NO- 2 、NO- 3 、NH 4的15N丰度范围外 ,由此推论 ,氮转化生成N2 O的过程应在微生物细胞内进行。  相似文献   

14.
LAN Ting  HAN Yong  CAI Zu-Cong 《土壤圈》2017,27(1):112-120
Although to date individual gross N transformations could be quantified by ~(15)N tracing method and models,studies are still limited in paddy soil.An incubation experiment was conducted using topsoil(0-20 cm) and subsoil(20-60 cm) of two paddy soils,alkaline and clay(AC) soil and neutral and silt loam(NSL) soil,to investigate gross N transformation rates.Soil samples were labeled with either ~(15)NH4_NO_3 or NH_4~(15)NO_3,and then incubated at 25 °C for 168 h at 60%water-holding capacity.The gross N mineralization(recalcitrant and labile organic N mineralization) rates in AC soil were 1.6 to 3.3 times higher than that in NSL soil,and the gross N nitrification(autotrophic and heterotrophic nitrification) rates in AC soil were 2.4 to 4.4 times higher than those in NSL soil.Although gross NO_3~- consumption(i.e.,NO_3~- immobilization and dissimilatory NO_3~- reduction to NH_4~+ rates increased with increasing gross nitrification rates,the measured net nitrification rate in AC soil was approximately 2.0 to 5.1 times higher than that in NSL soil.These showed that high NO_3~- production capacity of alkaline paddy soil should be a cause for concern because an accumulation of NO_3~- can increase the risk of NO_3~- loss through leaching and denitrification.  相似文献   

15.
Abstract

Denitrification products nitrous oxide ((N2O) and nitrogen (N2)) were measured in three flooded soils (paddy soil from Vietnam, PV; mangrove soil from Vietnam, MV; paddy soil from Japan, PJ) with different nitrate (NO3) concentrations. Closed incubation experiments were conducted in 100-mL bottles for 7 d at 25°C. Each bottle contained 2 g of air-dried soil and 25 mL solution with NO3 (concentration 0, 5 or 10 mg N L?1) with or without acetylene (C2H2). The N2O + N2 emissions were estimated by the C2H2 inhibition method. Results showed that N2O + N2 emissions for 7 d were positively correlated with those of NO3 removal from solution with C2H2 (R2 = 0.9872), indicating that most removed NO3 was transformed to N2O and N2 by denitrification. In PJ soil, N2O and N2 emissions were increased significantly (P < 0.05) by the addition of greater NO3 concentrations. However, N2O and N2 emissions from PV and MV soils were increased by the addition of 0 to 5 mg N L?1, but not by 5 to 10 mg N L?1. At 10 mg N L?1, N2 emissions for 7 d were greater in PJ soil (pH 7.0) than in PV (pH 5.8) or MV (pH 4.3) soils, while N2O emissions were higher in PV and MV soils than in PJ soil. In MV soil, N2O was the main product throughout the experiment. In conclusion, NO3 concentration and soil pH affected N2O and N2 emissions from three flooded soils.  相似文献   

16.
Diversity of denitrifying microflora and ability to reduce N2O in two soils   总被引:1,自引:0,他引:1  
 The ozone-depleting gas N2O is an intermediate in denitrification, the biological reduction of NO3 to the gaseous products N2O and N2 gas. The molar ratio of N2O produced (N2O/N2O+N2) varies temporally and spatially, and in some soils N2O may be the dominant end product of denitrification. The fraction of NO3 -N emitted as N2O may be due at least in part to the abundance and activity of denitrifying bacteria which possess N2O reductase. In this study, we enumerated NO3 -reducing and denitrifying bacteria, and compared and contrasted collections of denitrifying bacteria isolated from two agricultural soils, one (Auxonne, soil A) with N2O as the dominant product of denitrification, the other (Chalons, soil C) with N2 gas as the dominant product. Isolates were tested for the ability to reduce N2O, and the presence of the N2O reductase (nosZ)-like gene was evaluated by polymerase chain reaction (PCR) using specific primers coupled with DNA hybridization using a specific probe. The diversity and phylogenetic relationships of members of the collections were established by PCR/restriction fragment length polymorphism of 16s rDNA. The two soils had similar numbers of bacteria which used NO3 as a terminal electron acceptor anaerobically. However, the soil A had many more denitrifiers which reduced NO3 to gaseous products (N2O or N2) than did soil C. Collections of 258 and 281 bacteria able to grow anaerobically in the presence of NO3 were isolated from soil A and soil C, respectively. These two collections contained 66 and 12 denitrifying isolates, respectively, the others reducing NO3 only as far as NO2 . The presence of nosZ sequences was generally a poor predictor of N2O reducing ability: there was agreement between the occurrence of nosZ sequences and the N2O reducing ability for only 42% of the isolates; 35% of the isolates (found exclusively in soil A) without detectable nosZ sequences reduced N2O whereas 21% of the isolates carrying nosZ sequences did not reduce this gas under our assay conditions. Twenty-eight different 16S rDNA restriction patterns (using two restriction endonucleases) were distinguished among the 78 denitrifying isolates. Two types of patterns appeared to be common to both soils. Twenty-three and three types of patterns were found exclusively among bacteria isolated from soils A and C, respectively. The specific composition of denitrifying communities appeared to be different between the two soils studied. This may partly explain the differences in the behaviour of the soils concerning N2O reduction during denitrification. Received: 31 October 1997  相似文献   

17.
The ability of soils to reduce N2O to N2 depends very largely on their NO3? content. Low concentrations of NO3? delay reduction of N2O to N2 by soil microorganisms, and high concentrations of NO3? almost completely inhibit this process. The inhibitory effect of NO3? on N2O reduction increases markedly with decrease in soil pH. These observations account for the finding in previous work that accumulation of N2O during denitrification of NO3? in soils incubated in closed systems is favored by high NO3? concentration and by low pH. They also indicate that, even if increased N fertilization of soils does not lead to a significant increase in the amount of N volatilized from soils as N2 and N2O through denitrification of NO3?, it may cause a substantial increase in the ratio of N2O to N2 and thereby pose a threat to the stratospheric ozone layer.  相似文献   

18.
A rapid, precise and accurate microtiter most-probable-number (MPN) procedure has been developed and tested for simultaneous (two reagent addition) enumeration of denitrifier and nitrate reducer populations in an agricultural soil. Values from 0.12 × 106 to 0.22 × 106 denitrifiers g?1 soil were determined using two concentrations of each terminal electron acceptor (3.5 and 7.2 mm NO2? or 3.5 and 9.9 mm NO3? in nutrient broth. Nitrate reducer populations ranged from 0.97 × 106 to 1.1 × 106 organisms g?1 soil when two concentrations of NO3? (3.5 and 9.9 mm) were employed. The denitrifiers thus constituted 12–20% of the nitrate reducer population. Neither method (tube or microtiter) or medium significantly altered the values obtained for these two groups of microorganisms.  相似文献   

19.
利用15N同位素标记方法,研究在两种水分条件即60%和90% WHC下,添加硝酸盐(NH4NO3,N 300 mg kg-1)和亚硝酸盐(NaNO2,N 1 mg kg-1)对中亚热带天然森林土壤N2O和NO产生过程及途径的影响.结果表明,在含水量为60% WHC的情况下,高氮输入显著抑制了N2O和NO的产生(p<0.01);但当含水量增为90% WHC后,实验9h内抑制N2O产生,之后转为促进.所有未灭菌处理在添加NO2-后高氮抑制均立即解除并大量产生N2O和NO,与对照成显著差异(p<0.01),在60% WHC条件下,这种情况维持时间较短(21 h),但如果含水量高(90% WHC)这种情况会持续很长时间(2周以上),说明水分有效性的提高和外源NO2-在高氮抑制解除中起到重要作用.本实验中N2O主要来源于土壤反硝化过程,而且加入未标记NO2-后导致杂合的N2O(14N15NO)分子在实验21 h内迅速增加,表明这种森林土壤的反硝化过程可能主要是通过真菌的“共脱氮”来实现,其贡献率可多达80%以上.Spearman秩相关分析表明未灭菌土壤NO的产生速率与N2O产生速率成显著正相关性(p<0.05),土壤含水量越低二者相关性越高.灭菌土壤添加NO2-能较未灭菌土壤产生更多的NO,但却几乎不产生N2O,表明酸性土壤的化学反硝化对NO的贡献要大于N2O.  相似文献   

20.
Nitrous oxide (N2O) from agricultural soil is a significant source of greenhouse gas emissions. Biochar amendment can contribute to climate change mitigation by suppressing emissions of N2O from soil, although the mechanisms underlying this effect are poorly understood. We investigated the effect of biochar on soil N2O emissions and N cycling processes by quantifying soil N immobilisation, denitrification, nitrification and mineralisation rates using 15N pool dilution techniques and the FLUAZ numerical calculation model. We then examined whether biochar amendment affected N2O emissions and the availability and transformations of N in soils.Our results show that biochar suppressed cumulative soil N2O production by 91% in near-saturated, fertilised soils. Cumulative denitrification was reduced by 37%, which accounted for 85–95 % of soil N2O emissions. We also found that physical/chemical and biological ammonium (NH4+) immobilisation increased with biochar amendment but that nitrate (NO3) immobilisation decreased. We concluded that this immobilisation was insignificant compared to total soil inorganic N content. In contrast, soil N mineralisation significantly increased by 269% and nitrification by 34% in biochar-amended soil.These findings demonstrate that biochar amendment did not limit inorganic N availability to nitrifiers and denitrifiers, therefore limitations in soil NH4+ and NO3 supply cannot explain the suppression of N2O emissions. These results support the concept that biochar application to soil could significantly mitigate agricultural N2O emissions through altering N transformations, and underpin efforts to develop climate-friendly agricultural management techniques.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号