首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
土壤水分变化受地形地貌、土壤质地、土地利用方式等多种因素的影响.为了分析东北典型黑土区土壤水分变化规律,以该区农业小流域为研究对象,采用野外实验的方法,从坡向和坡位出发,系统分析土壤水分在不同坡向和坡位的变化特征.结果表明:1)半阴坡平均土壤含水量低于阳坡和半阳坡;各坡向土壤水分剖面变化趋势不同,坡向仅对0 ~ 35 cm深度范围内土壤含水量变化有显著影响.2)3坡向(阳坡、半阳坡和半阴坡)土壤含水量均为下坡位>上坡位>中坡位,各坡向不同坡位土壤含水量剖面变化呈现不同趋势,坡位对测量范围内的阳坡和半阴坡,以及25 ~ 100 cm范围内的半阳坡土壤水分变化有显著影响,但对半阳坡0~ 25 cm土壤水分影响不显著.研究结果可对该地区小流域农作物合理配置及农田土壤水分管理提供科学依据.  相似文献   

2.
陕北黄土区浅沟土壤水分空间分布特征   总被引:1,自引:0,他引:1  
以陕北黄土区吴起县合沟流域浅沟土壤水分为研究对象,通过对研究区不同深度、不同坡向、不同坡位的浅沟土壤水分空间分布特征进行研究。结果表明:(1)根据浅沟与原状坡油松生长量关系,将浅沟划分为深浅沟(40 cm≤浅沟深度)和浅浅沟(20 cm≤浅沟深度40 cm);(2)研究区浅沟土壤水分高于原状坡;浅沟土壤水分在0—60 cm土层聚集,原状坡则在0—40 cm土层聚集;(3)浅沟不同土层土壤水分变异程度不同,阳坡土壤水分变异性较阴坡小;20—60 cm土层中,浅沟土壤水分变异系数较大,土壤水分较活跃,其他土层变异系数较小,土壤水分较稳定;(4)不同坡位、不同坡向和不同深度的浅沟土壤水分存在显著差异;在浅浅沟中,土壤水分表现为下坡位上坡位中坡位;深浅沟则为上坡位下坡位中坡位;在浅沟内,阴坡在中、下坡位土壤水分显著高于阳坡,阳坡上坡位土壤水分则高于阴坡;原状坡阴坡土壤水分显著高于阳坡。  相似文献   

3.
衡阳盆地紫色土丘陵坡地土壤水分变化动态研究   总被引:16,自引:0,他引:16  
2007年对衡阳盆地紫色土丘陵坡地0-50 cm土壤进行研究.结果表明:(1)在同一水平空间位置上,土壤平均含水量总的变化趋势是阴坡>阳坡.而土壤水分变异系数则呈现出相反的变化规律;(2)在同一垂直空间位置上,阴坡与阳坡不同坡位的土壤含水量的变化规律均为:下坡>中坡>上坡.阳坡的土壤水分变异系数的大小顺序是:阳坡上坡>阳坡中坡>阳坡下坡;而阴坡则呈现出相反的变化趋势;(3)土壤含水量的消长与同期的降雨量有关,1-6月为雨季水分补偿期,7-12月属于旱季水分亏缺期;(4)在同一水平空间,不同坡向土壤含水量剖面变化明显.随着土层深度的增加,土壤含水量增加.从土壤水分的变异系数来看,阳坡土壤水分的变异系数随土壤的加深而变大,阴坡土壤水分的变异系数随土壤深度的加深而变小,土壤水分的最稳定层均出现在10-30 cm处.  相似文献   

4.
对铜川市耀州区韩家塬30龄刺槐林地12个立地类型土壤水分含量进行测定,研究土壤水分含量与立地因子之间的关系。spss方差分析结果表明,坡向、坡度、坡位3个立地因子对土壤水分含量的影响依次为坡向为极显著,坡度为显著,坡位不显著。土壤水分含量半阴坡最高,其次为半阳坡,阳坡最低。同一坡向坡度越小土壤水分含量越高。土壤含水量随坡位的变化只在半阴坡才表现出从上到下有规律的增加,其它坡向没有表现出此规律。通过分析12个立地类型土壤水分含量的变化,提出了调整不同立地类型的造林树种及密度是当地防止土壤干化及植被衰退的有效途径。  相似文献   

5.
选择宁南黄土区贾新庄组的3种土地利用类型(川地农田、阴坡梯田、阳坡人工林),在2021年生长季使用土钻监测土壤含水量(SMC),同时利用自动气象站监测气象数据,分析土地利用、坡位、作物种类影响下的土壤水分时空变化特征。结果表明:3种土地利用类型的SMC大小为川地农田(16.32%)>阴坡梯田(12.66%)>阳坡人工林(10.82%);随着研究时段推进,SMC呈先降后升的变化,SMC与降水量存在较好的时间协同性,气温、太阳辐射、饱和水汽压差与阳坡人工林SMC显著相关;随土层深度增加,川地农田、阴坡梯田、阳坡人工林的SMC分别呈升高、降低、先降后升的变化,0—100 cm土层的土壤水分变异系数大于100—200 cm土层。SMC季节变化分为相对稳定期(4—5月)、消退期(6—8月)和恢复期(9—10月);SMC土层变化分为活跃层(0—40 cm)、相对活跃层(40—140 cm)、相对稳定层(140—200 cm)。土壤水分的补给时间滞后于降水,下层土壤水分补给滞后于上层土壤。阴坡梯田和阳坡人工林SMC随坡位降低均先降后升,最小值分别在坡上和中下坡位。土地利用、坡位差异、作物种类、气象因子均是影响SMC的因素;从SMC的变异程度看,各因子对SMC的作用大小依次为气象>土地利用>坡位>作物种类。研究结果有利于指导半干旱黄土区的植被重建与生态产业发展,确定不同立地环境下的合理植被配置。  相似文献   

6.
不同地形部位土壤水分的年变化分析   总被引:16,自引:4,他引:16       下载免费PDF全文
 通过测定飞马河流域阴坡、阳坡、半阴半阳坡、川地不同部位0-180cm土壤的储水量,分析土壤水分空间、时间变异性,以及不同植被在不同部位土壤水分亏缺程度。结果表明:梯田宽度不同,土壤水分分布不同,在0-180cm土层,窄式梯田水分分布较均匀,宽式梯田土壤水分由内侧向外侧递减;坡向、坡位不同,土壤水分变异很大,阴坡土壤年平均储水量远比阳坡高111.9mm;在坡地上修建水平阶后,沿坡长土壤水分趋于均匀。土壤水分年变化总体看来,可分3个阶段:11月初至翌年6月底,土壤水分变化很缓慢;7月初至8月底,急剧变化;9-10月缓慢变化,阴坡土壤水分变化比阳坡缓慢。在不同立地条件上生长的作物,水分满足程度差异很大,阴坡生长的次生林,坡中部和坡下部水分基本不亏缺,坡上部水分亏缺较严重,玉米地和果园,自5月开始水分出现亏缺,玉米地4-10月平均水分满足程度为74.4%,果园4-10月平均水分满足程度为83%。  相似文献   

7.
黄土丘陵区侵蚀环境不同坡面及坡位土壤理化特征研究   总被引:8,自引:2,他引:6  
研究了黄土丘陵区纸坊沟流域阴阳坡面及不同坡位土壤水分、物理和养分特征,结果表明,与坡顶距离越远,表层土壤含水量由小变大。阴坡蒸发量小,土壤含水量较大。容重阴坡<阳坡,距坡顶越远,土壤容重、非活性孔度越小,孔隙比、活性孔度越大,同一坡向阳坡随土层加深土壤容重增大,阴坡表层土壤容重增加幅度较下层小,容重在剖面趋于均化。阴坡对土壤的改善优于阳坡,有利于植被生长。表层土壤全氮含量阴坡>阳坡,且随土层加深而减少。全氮和有机质在坡中下部累积。全磷在不同坡向和坡位变化不明显。速效钾在各坡位变化幅度较小且阴坡>阳坡。阴阳坡土壤各养分有向表层富集的趋势。坡面土壤容重与土壤孔隙比、活性孔度、毛管含水量和有机质呈极显著负相关,与土壤非活性孔度和表层土壤含水量呈显著正相关,土壤有机质和土壤全氮、速效钾呈极显著正相关。在对坡面进行植被恢复时,需结合坡面土壤变化规律,因地制宜,合理利用和开发土地资源,促进植被恢复演替。  相似文献   

8.
黄土丘陵区侵蚀环境不同坡面及坡位土壤理化特征研究   总被引:1,自引:0,他引:1  
研究了黄土丘陵区纸坊沟流域阴阳坡面及不同坡位土壤水分、物理和养分特征,结果表明,与坡顶距离越远,表层土壤含水量由小变大。阴坡蒸发量小,土壤含水量较大。容重阴坡〈阳坡,距坡顶越远,土壤容重、非活性孔度越小,孔隙比、活性孔度越大,同一坡向阳坡随土层加深土壤容重增大,阴坡表层土壤容重增加幅度较下层小,容重在剖面趋于均化。阴坡对土壤的改善优于阳坡,有利于植被生长。表层土壤全氮含量阴坡〉阳坡,且随土层加深而减少。全氮和有机质在坡中下部累积。全磷在不同坡向和坡位变化不明显。速效钾在各坡位变化幅度较小且阴坡〉阳坡。阴阳坡土壤各养分有向表层富集的趋势。坡面土壤容重与土壤孔隙比、活性孔度、毛管含水量和有机质呈极显著负相关,与土壤非活性孔度和表层土壤含水量呈显著正相关,土壤有机质和土壤全氮、速效钾呈极显著正相关。在对坡面进行植被恢复时,需结合坡面土壤变化规律,因地制宜,合理利用和开发土地资源,促进植被恢复演替。  相似文献   

9.
以修建遂宁铁路时经液压喷播处理过的路堑边坡为对象,对道路边坡土壤水分在不同坡位、坡向的空间变异性和季节变异性进行了观测研究。结果表明,在坡位层面上,道路边坡的土壤含水量10月份坡上最高,达到18.3%,其余3个季度均为坡下的土壤含水量显著高于坡上和坡中。在坡向层面上,道路边坡4个坡向的土壤含水量在1月份和10月份差异不显著,但4月份和7月份阴坡的土壤含水量显著高于阳坡。在季节层面上,道路边坡3个坡位土壤含水量的最高值均出现在秋季,土壤含水量在4个坡向上均为1月份和10月份显著高于4月份和7月份。道路边坡的土壤含水量除坡下外,不同坡位、坡向之间的土壤含水量均有显著相关性,坡下的土壤含水量只与季节呈显著相关。除季节与各坡向土壤含水量呈负相关外,其余均为正相关。季节与各坡位之间的土壤含水量相关性密切,而与各坡向含水量无相关性。  相似文献   

10.
为了探讨坡向、坡位对苜蓿地土壤含水量的影响程度,在宁南黄土丘陵区,采用时域反射仪TDR对不同坡向、坡位种植的7 a生苜蓿地土壤体积含水量进行了分层动态监测,分析结果表明:(1)种植苜蓿7 a后,土壤旱化显现,土壤水分明显分为补水期与耗水期,3-7月属于耗水期,8-10月为补水期;(2)各坡向苜蓿地旱化最为严重的土层深度也不同,西坡(阴坡)为40-60 cm,南坡苜蓿地旱化最为严重的土层为80-100 cm,东坡(阳坡)为100-120 cm;西坡(阴坡)0-180 cm土壤平均含水量最高(13.8%).其次为南坡苜蓿地,东坡(阳坡)最低(12.8%).(3)受降水再分配影响,上、中、下坡0-180 cm平均土壤含水量变化趋势为:下坡(13.69%)>中坡(13.61%)>上坡(12.29%);土壤含水量最为活跃的0-100 cm范围内,相同层土壤含水量相比,CK>下坡>上坡>中坡.这说明种植苜蓿多年后土壤出现旱化现象,且坡位越高,土壤旱化越严重.  相似文献   

11.
黄土丘陵区采煤塌陷裂缝对坡面土壤水分的影响   总被引:1,自引:0,他引:1  
通过研究采煤塌陷裂缝对坡面土壤水分分布的影响,以及不同坡向上的裂缝周边土壤水分状况,以期找出坡面及不同坡向上的裂缝对土壤水分的影响机制。结果表明:不同坡向上的土壤水分状况阴坡>坡底平地>坡顶>阳坡;坡面下部水分状况比上部好,坡面上的采煤塌陷裂缝对裂缝上坡位土壤水分的影响大于下坡位;裂缝对裂缝处土壤水分影响最大,在不同土壤层次上土壤水分含量均是20—40 cm>10—20 cm>0—10 cm。  相似文献   

12.
黄土丘陵沟壑区小流域土壤水分空间变异性及其影响因素   总被引:1,自引:0,他引:1  
为了解不同土地利用方式和地形条件下土壤含水率的数量特征及其变异规律,以黄土高原丘陵沟壑区纸坊沟小流域为研究对象,利用经典统计学方法系统分析了小流域尺度土壤含水率的空间变异性。结果表明:不同土地利用方式下土壤平均含水率之间呈极显著差异,其顺序为:农田>草地>林地>灌木地;土壤含水率在土壤剖面上呈先减小后增大的趋势。地形条件显著影响土壤含水率,其中梯田>沟底>坡地>峁顶;不同坡位土壤含水率的顺序为坡下>坡上>坡中,不同坡向间为阴坡>阳坡。上述土壤含水量的变异程度均为中等。在小流域尺度,土地利用和地形对土壤水分具有显著的交互作用。相关结果可为黄土丘陵沟壑区的土壤水分管理、土地利用结构优化、不同地形条件下的植被布局提供参考。  相似文献   

13.
坡向和坡位对小流域梯田土壤有机碳、氮变化的影响   总被引:2,自引:0,他引:2  
坡向和坡位是影响土壤有机碳(SOC)和全氮(TN)变化的两大重要地形因素。研究其对小流域梯田SOC和TN变化的影响,对预测黄土高原地区坡改梯条件下土壤碳汇变化具有重要意义。本文以黄土丘陵沟壑区高泉沟小流域为例,区分东、西两种坡向,再根据海拔区分上(2220~2326 m)、中(2130~2220 m)、下(1938~2130 m)三种坡位,共采集213个土壤样品,研究坡向、坡位对梯田耕层(0~20 cm)SOC和TN的影响。结果表明,西向坡SOC和TN含量分别比东向坡高22.8%和13.6%(p0.1),东西向坡的中、下坡位SOC和TN含量均大于上坡位。在西向坡,SOC含量下坡位(8.78 g/kg)最高,中坡位(7.82 g/kg)次之,上坡位(7.46 g/kg)最低;与上坡位相比,中坡位和下坡位的TN含量提高了12.1%,24.2%。在东向坡,SOC含量中坡位(7.15 g/kg)最高,下坡位(6.28 g/kg)次之,上坡位(5.37 g/kg)最低;与上坡位相比,中坡位和下坡位的TN含量提高了37.3%,29.4%。坡向与坡位的交互作用对流域SOC的空间分布影响显著(p0.1)。坡向、坡位对土壤碳氮比值(C/N)也有显著影响(p0.1)。这一结果对准确估算流域梯田SOC和TN的变化提供了参考。  相似文献   

14.
基于西安市三条道路黄土路堑边坡植被防护调查和室内土壤含水率测试结果,研究分析了坡位、坡度、坡向、植被类型和植被防护模式对黄土路堑边坡土壤水分空间分布特征的影响。结果显示,中坡位土壤含水率大于下坡位,下坡位大于上坡位;高坡级边坡土壤含水率大于低坡级;小坡度边坡土壤含水率大于大坡度;阴坡土壤含水率大于阳坡;贴地植被土壤含水率大于直立植被土壤含水率;草灌结合模式的边坡土壤含水率小于灌木单一模式,但前者的生长状况优于后者。  相似文献   

15.
以浙江舟山已进行生态恢复的矿山为对象,研究海岛矿山人工土壤的养分变化。结果表明:在2~5 a的生态恢复过程中,土壤养分呈现出逐步增加的趋势,土壤有机质含量、全钾含量和脲酶活性与恢复年限在0.01水平上显著正相关。此外,土壤全钾含量还与坡向在0.05水平上显著负相关,坡位同土壤养分的相关性不显著。经主成分分析:不同坡向上的土壤养分得分表现为阴坡>阳坡>半阴坡>半阳坡,不同坡位上的土壤养分得分表现为下坡>上坡>中坡。  相似文献   

16.
两种边坡生态修复模式土壤肥力与酶活性的变化   总被引:2,自引:1,他引:1  
[目的]研究不同修复技术处理对边坡土壤酶活性的长期影响,以期为土壤地力培育提供理论依据。[方法]以向家坝水电站工程扰动区代表性的天然次生林以及人工次生林为基础,测定不同坡位以及坡向土壤酶活性,探讨土壤酶活性的变化规律,分析酶活性与其他肥力因子间的相互关系。[结果]不论阴坡还是阳坡,两种林地坡面地形部位(上坡位、中坡位、下坡位),除土壤pH值降低以外,下坡位肥力因子均显著提高1.1倍以上,酶活性水平与肥力因子变化基本一致。除过氧酶活性增长不显著外,磷酸酶活性增长91.67%~116.67%,脲酶活性增长5.3%~30.01%,蔗糖酶活性增长1.38~1.56倍;阴坡各项指标均高于阳坡,除过氧酶以外,都增长显著。相关性分析表明,两种修复技术下,碱性磷酸酶、脲酶、蔗糖酶两两之间的正相关关系均达到极显著水平,但与过氧化氢酶活性之间相关性均不显著。[结论]研究区肥力因子总体上呈现空间分布不均匀,沿着坡体从上至下依次增加,北坡高南坡低的趋势,说明坡位坡向影响着土壤内环境的变化进程,因此对于此类边坡坡顶和阳面的二次修复,适当追肥可以更好地进行地力培育和生态修复。  相似文献   

17.
以季节性干旱区-川中丘陵区-内江市农耕地作为研究对象,选择坡向、坡位、土层厚度作为影响土壤团聚稳定性的作用因子,采用标准化平均质量直径和分形理论,探讨了土壤团聚体的稳定性、分形特征及二者之间的关系.结果表明:研究区土壤团聚体稳定性标准化平均质量直径(NMMD)表现出阳坡>阴坡、下坡>中坡>上坡、15-30cm>30-45cm>0-15cm的特点,说明在坡向上,阳坡的土壤团聚体与阴坡相比较稳定;在坡位变化上,下坡团聚体稳定性最高、中坡次之、上坡最低,在土层深度变化上,15-30cm团聚体稳定性最高,30-45cm次之,0-15cm最低.微地形条件下分形维数的变化特征为:阴坡>阳坡,下坡>中坡>上坡,15-30cm>30-45cm>0-15cm;3个地形因子作用下,分形维数与<0.1mm的粒级质量分布达到极显著正相关,与其他粒级的质量分布相关性呈显著或不显著.研究结果可以为研究区土地利用及农业耕作提供一定的理论依据.  相似文献   

18.
坡位对土壤水分及植被空间分布的影响   总被引:2,自引:2,他引:2  
[目的]探讨微地形对土壤含水量和生物量的影响,为浑善达克沙地环境建设和合理开发利用提供理论参考。[方法]以内蒙古锡林郭勒盟白音锡勒牧场境内的中国科学院内蒙古草原生态系统定位站沙地样地为研究对象,对坡底、坡顶、阴坡和阳坡等坡位的植被和土壤水分等指标的测定,对其进行方差分析和相关性分析。[结果]坡底以多年生杂类草占优,阴坡以灌木、半灌木及多年生禾草为主,阳坡以灌木、半灌木、多年生禾草及1,2年生植物为主,坡顶以多年生禾草和1,2年生草本植物为主;0—50cm土壤平均含水量的大小顺序为:坡底阴坡阳坡坡顶,生物量顺序与土壤平均含水量一致;坡顶、坡底、阳坡和阴坡各层土壤水分变异系数由大到小的顺序因土层和坡位的不同而表现出一定的差异性,0—50cm各层平均变异系数坡顶最大,坡底次之,阳坡最低;生物量和各层土壤含水量均呈现正相关关系,其中0—5,5—10和20—30cm土壤含水量与生物量之间表现为极显著线性正相关(p0.01)。[结论]微地形对植被种类和土壤含水量具有一定影响,且土壤含水量和植物生物量呈现正相关关系。  相似文献   

19.
以陕西省铜川-黄陵-延安高速公路(简称铜延高速公路)为例,选取不同防护模式(穴状整地植草模式、挂网喷播植草模式、骨架植草模式)下有代表性的18个边坡为研究对象,通过边坡土壤特性数据的处理分析,发现:1)铜延高速公路边坡干旱缺水,肥力匮乏,有机质和全氮处于极缺乏和缺乏等级,速效磷处于中等等级,平均含量为16.28mg/kg;2)土壤水分、土壤养分以及植被盖度均表现为阴坡〉阳坡,而土壤密度则是阳坡〉阴坡;土壤水分含量呈现下坡位〉上坡位〉中坡位规律,土壤养分含量呈现从上坡位到下坡位逐渐升高,有自上而下累积的趋势,植被盖度呈现明显的分层现象,表现为下坡位〉上坡位〉中坡位;3)3种护坡模式中,骨架植草模式涵养水分能力最强,其次是穴状整地植草模式,最后是挂网喷播植草模式;4)水分是黄土高原地区高速公路边坡防护成功与否的关键因子,另外施加有机肥和氮肥,保护和收集表层土,增施磷肥以及合理确定边坡坡度和斜面长对边坡的保水保肥性和稳定性意义重大。  相似文献   

20.
在龙滩流域内,不论阴坡、半阳坡还是阳坡,柠条林地土壤含水量年内变化均呈现不对称的双峰曲线,4月与7月出现土壤含水量的低值,5月与9月出现土壤含水量的高值,且一年当中土壤含水量生长末期明显高于生长初期,柠条林地在该区域表现出随季节变化对土壤水分较为稳定的利用特性;不同坡向人工柠条林土壤水分具有显著性差异,具体表现为阳坡半阳坡阴坡。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号