首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
为改善β-环糊精(β-CD)的水溶性及对重金属的配位能力,将β-环糊精和甘氨酸在碱性条件下用环氧氯丙烷连接起来,合成水溶性极好并能跟重金属形成配位作用的甘氨酸-β-环糊精(GCD),研究了GCD对铅的增溶、解吸行为,考察了pH、离子强度、有机质和甘氨酸-β-环糊精初始浓度对铅的解吸影响。结果表明,GCD对碳酸铅的增溶效果显著,当其浓度为30g.L-1时,水溶液中铅离子浓度可接近7000mg.L-1。GCD对铅解吸能力随着土壤中有机质含量的增加而降低,pH值的升高、离子强度的增加和GCD初始浓度增加有利于铅的解吸。GCD对铅污染土壤的解吸符合准二级动力学模式,该静态解吸研究可以为铅污染土壤的修复提供基础信息。  相似文献   

2.
为了解酸性条件下粉砂质壤土对Cd2+的吸附-解吸机制,采用一次平衡法进行了不同pH值条件下壤土对Cd2+的吸附-解吸实验。结果表明:壤土对Cd2+的吸附量和吸附率均随着pH值升高而增加,不同初始浓度下达到的最大吸附率为0.69~0.95,酸性条件下壤土对Cd2+的等温吸附Freundlich方程拟合效果最好,通过拟合的Langmuir方程计算出壤土对Cd2+的饱和吸附量为2 500 mg/kg。Cd2+的解吸量和解吸前的吸附量呈显著正相关线性关系,解吸率随着pH值升高而减小,pH值从2以等间隔1变化到6,平均解吸率依次为1.11、0.33、0.07、0.06、0.06;表明在酸性污水灌溉条件下污灌壤土中的镉易向下迁移,污染深层土壤和地下水。  相似文献   

3.
为了探讨羟丙基-β-环糊精对绿原酸的包合作用及增溶效果,以绿原酸包合率为指标,羟丙基-β-环糊精(HP-β-CD)为包合材料,比较分析研磨法、超声法和溶液搅拌法3种制备方法,探索最佳的包合工艺。经红外光谱及X射线衍射法,对包合物进行鉴定,并通过相溶解度法研究HP-β-CD对绿原酸的增溶作用。结果表明,3种包合方法都能形成包合物,且投料摩尔比(绿原酸和HP-β-CD包合的摩尔比)1∶1,反应温度35℃、反应时间3 h时,溶液搅拌法包合率可达74.5%;相溶解度研究表明HP-β-CD对绿原酸具有较好增溶作用,绿原酸的浓度随HP-β-CD浓度的增加而呈线性增加,相溶解度曲线为AL型,绿原酸与HP-β-CD以摩尔比1∶1形成包合物,其平衡常数Kf=2130.0 L·mol-1。本研究为提高绿原酸的应用价值及HP-β-CD作为包合材料提供了一定理论依据。  相似文献   

4.
有机酸对土壤中镉的解吸及影响因素   总被引:13,自引:1,他引:13  
研究了酒石酸和柠檬酸对两种不同处理土壤 (镉质土和污染土 )中Cd的解吸行为 ,探讨了介质pH值、支持电解质等对其解吸镉质土和污染土中Cd的影响。结果表明 ,随有机酸浓度升高 ,柠檬酸和酒石酸对镉质土和污染土中Cd的解吸率呈先降低后升高变化 ,出现一波谷 ,波谷位置与有机酸和土壤类型有关。当解吸液起始pH值由 2升至 8时 ,柠檬酸对镉质土和污染土中Cd的解吸率呈降低—升高—降低的变化 ,先后出现一波谷和一波峰 ,且柠檬酸浓度高时变化趋势尤为明显 ;而酒石酸对镉质土和污染土中Cd的解吸率则一直降低。解吸液中支持电解质浓度提高 ,酒石酸对镉质土和污染土中Cd的解吸率增大 ,且以KCl为支持电解质时的解吸率要高于KNO3。  相似文献   

5.
以武汉某高浓度滴滴涕(DDT)污染场地土壤为研究对象,采用正丙醇和羟丙基-β-环糊精(HPCD)为洗脱剂进行相关的洗脱试验,并嵌合升温措施,研究了其对DDT污染场地土壤的洗脱修复效果。试验结果表明,20%正丙醇和50 g L-1HPCD复配、50℃水浴连续洗脱5次,可以使土壤中DDT总量的平均去除率达到96.41%。研究为DDT污染场地土壤的异位增效洗脱技术研发提供了一种有效手段。  相似文献   

6.
研究了三种可变电荷土壤和两种恒电荷土壤不同铜离子浓度条件下的吸附-解吸行为。结果表明,不同铜离子浓度下土壤的pH-Cu2+吸附率曲线均在低pH段出现会合,且随着铜离子浓度升高,pH-Cu2+吸附率曲线有向右偏移的趋势。证实了可变电荷土壤中吸附性铜离子可被去离子水解吸,并存在解吸峰现象。针对解吸前后吸附体系pH值的变化研究结果显示,吸附时体系pH低于5.0时,解吸后pH上升;而吸附体系pH高于5.0时,解吸后pH下降,表明pH5.0可能是土壤吸附铜离子机理发生变化的又一个转折点。本文还对专性吸附中弱吸附态的存在和形成原因进行了初步探讨。  相似文献   

7.
不同pH值条件下重金属Pb~(2+)的吸附解吸研究   总被引:6,自引:0,他引:6  
采用1次平衡法研究了不同pH值条件下重金属Pb2+的吸附解吸特性。研究结果表明,吸附量随平衡浓度的增加而增大,随pH值的升高而增大。初始浓度为100mgL-1和pH值为7分别为初始浓度和pH值的变化敏感阈值。解吸量随吸附量的增加而增大,解吸量随吸附量变化而变化的幅度随pH值的增大而减小。解吸量随pH值的增大而减小。解析率大小顺序为:pH=3>pH=5>pH=7>pH=9>pH=11。  相似文献   

8.
集约化畜禽养殖场产生的沼液通常就地回用,在循环利用有机物的同时也会带来类固醇雌激素(Steroid Estrogens,SEs)的累积及污染。为降低沼灌后SEs对水土环境的污染风险,该研究采用富集和纯化培养法,对西南地区某奶牛养殖场沼灌区土壤中雌激素降解菌进行分离及筛选,获得一株利用17β-雌二醇(17β-E2)为唯一碳源生长繁殖的降解菌。通过16S rDNA 基因序列进行同源性比对以确定种属,并研究其降解特性。分别研究了菌株在不同温度、pH值、底物浓度三种单因素条件下的降解特性,然后利用三因素三水平正交试验继续优化菌株最适降解条件。结果表明:分离出的优势菌为生丝微菌属(Hyphomicrobium sp.),命名为Hyphomicrobium sp.SS-1,该菌株在10~40 ℃、pH值为5~9、底物浓度为1~10 mg/L的条件下,均能不同程度降解17β-E2。其中菌株在温度为30 ℃、pH值为7、底物浓度5 mg/L的条件下,培养7 d对17β-E2的降解率可达71%,并伴随毒性低于E2的降解产物E1和E3生成,总雌激素去除率为56.8%。正交试验结果显示,各因素对菌株降解能力的影响顺序从小到大为:底物浓度、温度、pH值,且都为显著影响(P<0.05);菌株最适降解条件为温度35 ℃、pH值为7、底物浓度5 mg/L,该条件下培养7 d,菌株对17β-E2的降解率可达97.09%。研究结果可为复杂基质环境中微生物降解SEs提供优质菌种资源,并为沼液灌溉区土壤的雌激素污染修复提供有效途径。  相似文献   

9.
通过吸附解吸实验研究了添加海泡石后典型水稻土对Cd的吸附解吸特性及其对吸附溶液pH值变化的响应。结果表明,Freundlich方程可以较好地拟合红黄泥、黄泥田和红沙泥3种典型水稻土对Cd的等温吸附过程(R2〉0.962)。在溶液初始Cd浓度相同的情况下,添加海泡石可使3种水稻土对Cd的吸附量增加20%以上,增强土壤对Cd的吸附强度,有效降低吸附Cd的解吸率,其效果随海泡石添加量的增大而增强。3种水稻土吸附Cd的解吸率均高于70%,而且都随吸附量的增加而上升。溶液的pH值是影响土壤吸附Cd的一个重要因素,在低pH值的条件下(pH〈4),随着溶液pH值的降低,土壤对Cd的吸附量迅速降低,当溶液pH值高于5时,pH值的变化对吸附量的影响较小。在溶液初始pH值2-8范围内,添加海泡石均能有效提高3种水稻土对Cd的吸附能力。  相似文献   

10.
在模拟酸雨作用下 ,研究了重金属污染和未污染的酸性红壤和黄红壤中铝和水溶性有机质的溶出以及对重金属活动性的影响。结果表明 ,随模拟酸雨pH值下降 ,土壤pH值和盐基饱和度明显降低 ,而交换性酸度明显增加 ,污染土壤中交换性氢含量比未污染土壤高 ,而交换性铝含量比未污染土壤低。铝溶出量与模拟酸雨pH值密切相关 ,当模拟酸雨pH值在 5 .60~ 3.5 0时 ,供试红壤浸出液中铝浓度几乎在同一水平 ;当pH≥ 4 .5 0时 ,供试黄红壤中溶出铝亦未明显变化 ;当模拟酸雨pH =3.5 0时 ,未污染黄红壤中铝溶出明显增多 ;当pH =3.0 0时 ,供试土壤中铝溶出量急剧增加。随模拟酸雨pH值下降 ,污染土壤中铝溶出比未污染土壤低 ,而有效态重金属活动性明显增加 ;污染土壤中水溶性有机质比未污染土壤溶出明显增加 ,水溶性有机质 -重金属络合体促进了重金属的溶解迁移行为。  相似文献   

11.
许多污染场地都呈现重金属和有机污染物叠加的趋势,给修复带来了困难和挑战。以红壤为供试土壤,以铜和芘为代表性污染物,研究了添加表面活性剂羟丙基-β-环糊精(HPCD)和氧化剂H2O2对电动修复该复合污染土壤的影响,其目的是实现重金属和有机污染物的同时去除。结果表明,在所有的处理中,芘和铜都有向阴极迁移的趋势;当提高土柱的pH时降低了芘的氧化和降解,同时也阻碍了土壤中铜的迁移和去除;阳极加10%HPCD,阴极控制酸性条件pH3.5有助于土壤中污染物的解吸和迁移,芘和铜的去除率分别可达到51.3%和80.5%;由于H2O2的不稳定性,添加6%H2O2并未明显提高芘和铜的去除率。  相似文献   

12.
为开发新型马铃薯抑菌保鲜材料,本研究通过共蒸发-冷冻干燥法制备出香芹酮/羟丙基-β-环糊精包合物,采用相溶解度法测定其稳定常数,并采用紫外光谱、1H NMR光谱、热重分析、扫描电镜及X-射线衍射分析的方法进行表征,探究香芹酮/羟丙基-β-环糊精包合物对硫色镰刀菌的抑制效果。结果表明,香芹酮与羟丙基-β-环糊精成功生成了主客体比为1∶1的包合物,产率达到93.6%,表观稳定常数为409.39 L·mol-1。生成包合物后,香芹酮的水溶性和热稳定性都明显增强,且对硫色镰刀菌具有明显的抑制作用,EC50值为3.11 mmol·L-1。因此,将挥发性液体香芹酮制备成羟丙基-β-环糊精固体包合物可行,且对马铃薯贮藏病害干腐病病原菌硫色镰刀菌具有较强的抗菌活性。本研究结果为开发新型马铃薯抑菌保鲜材料提供了理论依据。  相似文献   

13.
《土壤通报》2017,(1):208-213
添加Fe S、电石渣、菌渣复配材料稳定处理砷污染土壤,采用国标硫酸-硝酸法(SNP)和美国毒性浸出程序(TCLP)检测处理前后污染土壤砷的浸出浓度,依据浸出浓度评价稳定效果,并探讨土壤含水量、土壤pH、竞争性离子、反应时间、污染初始浓度对砷稳定效果的影响。结果表明:(1)SNP法和TCLP法浸提土壤,砷的浸出浓度为污染原土>对照处理>>稳定处理,稳定处理有效降低砷的浸出毒性。(2)砷的稳定效果影响因素研究表明,土壤含水率以30%为宜;土壤pH于2.20~9.85时砷的稳定效果良好,且pH=6.05时最佳,pH高于9.85至12.01时稳定效果减弱;竞争性离子对土壤砷稳定效果的抑制作用表现为PO_4~(3-)垌SO_4~(2-)≈NO_3~->Cl~-;土壤砷的稳定效率随反应时间先上升后平缓,于15 d后趋于稳定并持续至120 d;土壤中砷的污染初始浓度为506 mg kg~(-1)、833 mg kg~(-1)、2951 mg kg~(-1)和5290 mg kg~(-1),砷的稳定效率分别为92.36%、90.53%、55.57%和47.54%,稳定效率随着污染初始浓度升高而降低,稳定药剂适用于一定污染浓度范围。  相似文献   

14.
胡宁静  骆永明  宋静 《土壤学报》2007,44(3):437-443
土壤重金属吸附-解吸反应影响重金属的迁移性、生物有效性和潜在毒性,研究土壤重金属的吸附-解吸过程及其机制对土壤污染评价、修复及环境容量预测至关重要。本文研究了长江三角洲地区四种典型土壤对Cd的吸附行为及有机质、pH和温度对土壤Cd吸附的影响,并运用热力学参数K°、ΔG°、ΔH°和ΔS°解释了土壤镉的吸附机制。研究结果表明,在本实验条件下,四种典型土壤镉吸附反应均很好地符合Fre-undlich模型。土壤镉吸附Kf值大小为:滩潮土(石质淡色潮湿雏形土)(238.8dm3kg-1)>乌黄土(底潜铁聚水耕人为土)(115.4dm3kg-1)>青紫泥(普通潜育水耕人为土)(54.40dm3kg-1)>黄泥砂土(铁聚潜育水耕人为土)(10.74dm3kg-1),滩潮土镉吸附Kf是黄泥砂土的24倍。土壤镉吸附量随溶液初始pH和土壤pH升高而增大;去除有机质后的土壤对镉的吸附量降低。吸附反应热力学表明,K°和ΔS°随温度升高而增大,ΔG°随温度升高而降低。ΔG°为负值表明镉吸附反应为自发反应,ΔH°为正值表明土壤镉吸附为吸热反应。  相似文献   

15.
表面活性剂对土壤中石油类污染物的洗脱效果研究   总被引:1,自引:0,他引:1  
表面活性剂具有增溶和乳化性质,能够有效去除土壤中的石油类污染物。本研究以实验室配制的原油污染土壤和苯并[a]蒽污染土壤为供试土壤,采用批量洗脱方法,研究阴、阳离子和非离子等11种表面活性剂的洗脱效果,从而筛选出效果较好的单一表面活性剂进行阴–非复配,并以苯并[a]蒽污染土壤为试验土样,采用单一控制变量法研究复配比、浓度、液固比、温度和添加无机盐种类对洗脱效果的影响。结果表明:对单一表面活性剂,洗脱效果最好的为SDS、Tw80和TX100,三者在浓度10 g/L,液固比为40︰1时对苯并[a]蒽去除率分别为85.3%、74.3%和67.9%;在浓度6 g/L,液固比为20︰1时对原油的去除率分别为65.3%、57.6%和67.3%。SDS-Tw80混合表面活性剂对苯并[a]蒽有协同增溶作用,SDS-Tw80在25℃,浓度6 g/L,液固比20︰1,复配比例6︰4,添加0.02 mol/L碳酸钠为助剂条件下洗脱效果最好,苯并[a]蒽去除率为84.5%。  相似文献   

16.
不同质地土壤对镉的吸附特性及影响因子研究   总被引:1,自引:0,他引:1  
通过Cd~(2+)吸附解吸试验,探究了初始Cd~(2+)浓度、p H、有机质、土壤质地和枯草芽孢杆菌-生物质炭复合体对土壤吸附Cd~(2+)影响。结果表明:土壤对Cd~(2+)的吸附能力随着溶液浓度、p H的升高而增加,土壤有机质可显著提高土壤对Cd~(2+)的固定能力,壤土对Cd~(2+)的吸附能力显著高于砂质壤土。土壤施加枯草芽孢杆菌-生物质炭复合体后,土壤对于Cd~(2+)的吸附能力显著提高,并且施加枯草芽孢杆菌–生物质炭复合体为20 ml/kg时对Cd~(2+)的吸附量提高11.7%;Freundlich模型(R~2=0.997)可以很好地拟合Cd~(2+)吸附过程。枯草芽孢杆菌–生物质炭复合体的施加降低了土壤表面Cd~(2+)的解吸能力,进一步证明复合体能加强土壤对Cd~(2+)的固定稳定化,具有作为钝化剂修复土壤重金属污染、降低食品污染风险的潜力。  相似文献   

17.
茶多酚和铜对可变电荷土壤钙镁释放的影响   总被引:1,自引:0,他引:1  
通过批平衡试验,研究茶多酚、铜和体系pH对可变电荷土壤释放钙镁离子的影响。研究发现,铜离子初始浓度为2.0mmol/L,最终体系pH为5.0时,随着茶多酚添加量的增加,可变电荷土壤表面的负电荷增加,土壤表面释放的钙镁离子量减少。茶多酚初始添加量为20 g/kg,最终体系pH为5.0时,随着铜离子初始浓度的升高,可变电荷土壤对铜离子的吸附量增加,铜离子通过与钙镁离子发生离子交换,形成对吸附位点的竞争,从而增加钙镁离子的释放。茶多酚初始添加量为20 g/kg,铜离子浓度为2.0 mmol/L,随着pH的升高,可变电荷土壤钙镁离子释放量下降。在相同pH条件下,茶多酚可以通过自身的吸附增加可变电荷土壤表面负电荷,减少可变电荷土壤钙镁离子的释放量。研究结果可为茶园土壤酸化和污染控制提供参考。  相似文献   

18.
土壤改良剂对黄绵土持水性能的改良效应研究   总被引:2,自引:1,他引:1  
通过室内土柱培养,研究了PAM、沃特保水剂、β-环糊精、腐殖酸对黄绵土持水性能的改良效果.结果表明,不同改良剂在不同浓度下的土壤水分特征不同,但都符合土壤含水量与土壤吸力之间的关系式;在浓度0.05%~0.4%时,在同一改良剂处理下a值的大小变化规律是随浓度的增加而增大,即:0.4%>0.2%>0.1%>0.05%>CK;在同一浓度下,不同改良剂在培养3周和2个月时,不同改良剂处理下的a值的大小为PAM>沃特保水剂>β-环糊精>腐殖酸;在培养4个月后,在浓度<0.2%时,a值的大小变化规律为:PAM>沃特保水剂>β-环糊精>腐殖酸;在浓度0.2%~0.4%时,a值的大小变化规律为:PAM>沃特保水剂>腐殖酸>β-环糊精.  相似文献   

19.
有机肥非水溶性分解产物对 铜 、镉吸附及解吸的影响   总被引:9,自引:0,他引:9  
研究了稻草、紫云英和猪粪淹水培养的非水溶性分解产物、两种土壤( 红壤、潮土) 与这 3 种有机肥共同淹水培养后的非水溶性产物( 水溶性物质被除去) 对铜、镉的沉淀、吸附及解吸作 用的影响。 结果表明, 当铜初始浓度为 10-4mol/ L, pH <6 时有机残渣促进铜的沉淀;当 pH >6 时则抑制了铜的沉淀。 当铜初始浓度降为 10-5mol/ L 时, 有机残渣对铜沉淀的促进作用加强。 3 种有机残渣均促进镉的沉淀, 但促进程度比铜低。 与有机肥共同培养的红壤, 在相同的 pH 条 件下, 提高对铜、镉的吸附;在不调节 pH 条件下, 由于有机肥料有提高 pH 的作用, 进一步提高 对铜 、镉的吸附。 与有机肥共同培养的潮土, 在相同的 pH 条件下, 对铜、镉吸附的影响很小;在 不调节 pH 时, 提高了潮土对铜的吸附, 但对镉吸附的影响则较复杂。 上述结果表明, 有机肥的 非水溶性分解产物主要通过提高体系的 pH 值、与铜、镉形成不溶性的络合物而影响铜、镉的吸 附。 与有机物料共同培养的红壤所吸附的铜、镉的解吸率均不同程度降低。  相似文献   

20.
采用批平衡方法实验研究了长江三角洲地区4种典型土壤对Pb的吸附、解吸行为及有机质和温度对Pb吸附的影响,并运用热力学参数K°、ΔG°、ΔH°和ΔS°解释了土壤Pb的吸附机理。结果表明,在本实验条件下,Pb在土壤上的吸附过程表现出明显的非线性,符合Freundlich模型。土壤Pb吸附Kf值大小为:滩潮土(石质淡色潮湿雏形土)(3816dm3kg-1)>乌黄土(底潜铁聚水耕人为土)(1984dm3kg-1)>青紫泥(普通潜育水耕人为土)(1030dm3kg-1)>黄泥砂土(铁聚潜育水耕人为土)(348dm3kg-1)。去除有机质后的土壤对Pb的吸附量降低,解吸率升高。吸附反应热力学表明,K°和ΔS°随温度升高而增大,ΔG°随温度升高而降低。ΔG°为负值,表明Pb吸附反应为自发反应,ΔH°为正值表明土壤Pb吸附为吸热反应。乌黄土、青紫泥和滩潮土对铅吸附的主要作用力为化学键力,黄泥砂土为范德华力和偶极间力。Pb在土壤上的解吸过程存在明显的滞后现象。pH、碳酸钙含量和平衡浓度越高,滞后系数越大,这可能与在高pH和高碳酸钙含量时,Pb与土壤形成难解吸内圈配位物有关。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号