首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 151 毫秒
1.
盆花包装机开袋机构设计与试验   总被引:1,自引:1,他引:0  
为进一步提高现有盆花包装机的作业性能,针对现有盆花包装机开袋作业环节中存在负压吸盘吸附包装袋不稳定易脱落的问题,该文设计了增设钩袋装置的开袋机构,确定了负压吸盘、开袋运动装置和钩袋装置的主要结构参数,并对无钩袋开袋机构与有钩袋装置的开袋机构分别进行了开袋作业性能试验。试验结果表明:无钩袋开袋机构为保证作业成功率大于等于90%,开袋速度小于0.30 m/s;有钩袋装置开袋机构为保证作业成功率≥95%,当钩袋爪与吸盘的间距为2 mm、钩袋爪宽为4 mm时,开袋速度可提高到0.41 m/s,据此,可使盆花包装机整机作业生产率提高7.3%,生产率达到1 287盆/h。该研究结果为盆花包装机的开发提供重要技术参考。  相似文献   

2.
水稻气力式播量可调排种器设计与参数优化   总被引:6,自引:6,他引:0  
为了满足杂交水稻播种量不同的要求,该文设计了一种水稻播量可调气力式排种器,对其工作原理进行了分析,对关键部件进行了参数设计,该排种器采用多个相互独立的负压流道对吸种精度进行控制。利用ANSYS-FLUENT有限元流体分析软件对负压流道结构的吸孔负压影响规律进行了分析,优选了最佳流道结构。选取超级杂交稻Y-2优900为试验材料,进行了不同播种量下吸室负压、排种盘转速与排种盘吸孔组数对播种精度的影响试验研究,试验结果表明:当吸孔组数为12、吸种负压为1.6k Pa和排种盘转速为20r/min时,1孔播种达到最佳效果,合格率为82.41%;当吸孔组数为12、吸种负压为1.6k Pa和排种盘转速为40r/min时,2孔播种达到最佳效果,合格率为96.36%;当吸孔组数为12、吸种负压为1.6k Pa和排种盘转速为20r/min时,3孔播种达到最佳效果,合格率为92.79%;当吸孔组数为16、吸种负压为1.2k Pa和排种盘转速为20r/min时,4孔播种达到最佳效果,合格率为91.93%;当吸孔组数为12、吸种负压为1.6 kPa和排种盘转速为30 r/min时,5孔播种达到最佳效果,合格率为87.88%。说明水稻气力式播量可调排种器可满足杂交稻在采用直播式时不同播量的要求,相比于原有的排种器更佳适应水稻的多样性。该研究可为水稻机械化穴直播技术提供了参考。  相似文献   

3.
禽蛋自动捡拾系统结构设计及机械手运动规划   总被引:1,自引:1,他引:0  
针对目前国产自动集蛋设备自动化程度低,无法满足自动化禽蛋生产需要的问题,设计了包括禽蛋运输装置、震动矫正装置和捡拾执行装置的禽蛋自动捡拾系统,开发了禽蛋捡拾控制系统,实现了传送带上禽蛋的自动捡拾装盘功能;分析确定了捡拾机械手提升舵机输出力矩和吸盘吸气压力参数,优选了捡拾机械手的提升舵机和抽气泵,研究了机械手路径规划、追踪路线预估及取蛋-放蛋方案,加工了禽蛋自动捡拾系统样机,开展了样机捡蛋成功率、捡拾速率和取蛋-放蛋方案优化试验。试验结果表明:该装置操作简单、定位可靠,捡拾机械手捡蛋成功率达到98.3%,捡蛋入盘操作速率每次最快达2.4 s;禽蛋自动捡拾系统采用从传送带远离机械手一侧开始同向取蛋与蛋托左端靠近机械手一侧开始同向放蛋的组合,捡拾30枚鸡蛋平均所用时间最短为73.2 s。该研究为禽蛋自动化生产中的捡拾系统结构设计提供了参考。  相似文献   

4.
结合上海某机场跑道真空预压加固软基的试验成果,对加固试验区的地表沉降及其估算方法,不同深度处的超孔隙水压力消散和加固效果等方面进行了研究.结果表明,加固区土体沉降从大到小依次为场地中央、场地边缘和场地角落,反映出真空预压的空间效应;当真空度发生变化时,加固区竖向排水体负压沿深度的分布基本一致,负压范围集中在58~65 kPa,约占膜下真空度的68%~76%;该地基表面沉降能够联合竖向等效渗透系数、一维太沙基固结理论和分层总和法进行估算.  相似文献   

5.
气力式包衣杂交稻单粒排种器研制   总被引:5,自引:5,他引:0  
为满足杂交稻单粒播种的作业需求,该研究结合包衣稻种设计了一种单粒气力式排种器,分析了吸种姿态对吸种精度的影响,利用稻种导流原理,设计了一种导流式吸种盘,对稻种在该吸种盘导流作用下的运动过程进行了分析,建立了吸附过程中稻种与吸种盘之间的运动模型。采用包衣稻种(杂交稻五优1179)为试验材料,采用三因素三水平全因素试验方法,在不同吸种盘转速、吸室负压和吸种盘结构情况进行试验分析。试验结果表明:在转速30 r/min、吸室负压1 400 Pa时,有导流槽和辅助吸种装置的吸种盘吸种效果最佳,单粒吸种率最高为81.58%,漏吸率为2.89%。试验结果验证了该吸种盘可有效提高单粒吸种率,满足杂交稻单粒播种的作业需求,为杂交稻单粒播种提供了一定理论基础。  相似文献   

6.
水果套袋技术可以减少水果的农药残留,提高果品品质,是生产无公害水果的重要手段之一。人工套袋劳动强度大、危险性高。该文根据人工套袋的步骤,自主开发了自动化套袋装置。整个装置分为:果袋自动撑开机构和套袋机构,该文主要介绍果袋自动撑开机构。包括果袋分开机构、果袋撑开机构和撑好果袋的输送机构,采用单片机控制,用气力驱动,采用两个转动块和一对真空吸盘将成叠的果袋逐个分开;采用弧形手指,将果袋的内腔撑开到最大容积,满足水果套袋的要求,实现了果袋撑开过程的自动化,作业速度达到3个/min,为套袋作业做好了准备。  相似文献   

7.
为保证植物工厂蔬菜穴盘育苗高质量作业要求,该研究在气吸滚筒式蔬菜穴盘育苗精密播种器的基础上,优化设计了在线漏播检测与智能补种装置,以可编程逻辑控制器(programmable logic controller, PLC)为控制核心,实时进行播种器吸孔漏吸检测及穴盘穴孔漏播位置预报,并完成漏播穴孔的定点定穴补种。采用光电检测技术检测播种器吸孔漏吸位置,构建漏吸吸孔与育苗穴盘穴孔的对应动态补种矩阵,实现穴盘穴孔漏播位置精准预报;优化设计了智能补种装置,根据预报的穴盘穴孔漏播位置实现定点定穴精准补种。以中双11号菜心种子为对象,开展播种器吸孔漏吸检测与穴孔漏播位置预报试验,得到吸孔漏吸平均检测准确率为98.82%,穴孔漏播位置预报准确率为100%。采用Box-Behnken试验设计方法,对智能补种装置开展作业性能试验,构建主要性能指标(单粒合格指数、重播指数和漏播指数)与主要影响因素(吸针负压、吸针孔径和种室振动压力)的关系,并进行多目标优化,确定智能补种装置最优工作参数组合为吸针负压10.19 kPa、吸针孔径0.67 mm、种室振动压力0.07 MPa,此时补种装置播种的平均单粒合格指数为94.80%、重播指数为2.94%、漏播指数为2.26%。开展整机性能试验,在生产率为100盘/h条件下,整机的单粒合格指数由补种前的93.96%提高到98.18%;在生产率为300盘/h条件下,单粒合格指数由补种前的93.18%提高到97.89%。试验结果满足植物工厂和大田蔬菜穴盘育苗播种装置高精密播种作业要求,可提高蔬菜穴盘育苗的播种性能。  相似文献   

8.
气力式小粒径种子精量排种器吸种效果影响因素研究   总被引:9,自引:8,他引:1  
针对油菜、青菜等类球形小粒径种子粒径小、质量轻,通过排种合格指数、漏播指数等指标研究吸种环节影响机制易受后续卸种、导种等串联环节影响的问题,以正负气压组合式小粒径种子精量排种器为研究对象,通过吸种运移状态图像拍摄试验,确定型孔漏吸、单粒吸种及重吸发生概率,开展吸种环节研究。吸种状态分析发现小粒径种子质量轻,-200Pa时即可被吸附,在负压绝对值较大时会出现4~6粒重吸;型孔单粒吸种发生概率与种子千粒质量、排种盘转速、型孔直径、工作负压等因素相关性极显著(P0.01);排种器存在稳定吸种临界负压,当工作负压在临界负压1~2倍范围内,型孔单粒吸种概率高于0.92,漏吸与重吸发生概率均低于0.04;结合吸种过程受力分析可知排种盘转速变化造成单粒吸种概率变化的主要机制是影响型孔与种子吸附作用时间,进而影响单粒吸种可靠性;当转速增加,实现稳定吸种的临界负压绝对值增大,吸种负压计算的可靠性系数应增大;以漏吸概率0.02及单粒吸种概率0.92的工作负压为参考值,建立了可靠性系数与排种盘工作转速及型孔直径相关的数学模型,利用该模型计算排种器吸种可靠性系数,进而确定吸种负压临界值,可使排种器漏吸发生概率小于0.04,单粒吸种概率大于0.92,排种器稳定工作。研究明确了正负气压组合式小粒径种子精量排种器吸种环节影响机制和用于计算吸种临界负压的可靠性系数模型,为气吸式排种器设计与性能提升提供了参考。  相似文献   

9.
蔬菜类型多,种子尺寸差异大,为扩大排种器的适用范围,该研究提出一种基于扰种条辅助充种的蔬菜气吸轮式精量排种器。通过理论分析确定了排种器的关键结构参数,设计了一种带有坡度的扰种条结构,最薄处厚度为0.5 mm、最厚处厚度为1.0mm,并对充种阶段种子在扰种条上和清种阶段的受力情况分别进行分析,确定了扰种条和清种装置结构。选取菜心、萝卜和辣椒种子为试验对象,利用台架试验获得扰种条倾角和厚度的较优值;开展较优结构参数下的排种器充种性能试验,以工作负压、排种转速和清种距离为试验因素,进行三因素三水平正交试验。试验结果表明,对于菜心种子,工作负压为0.92 kPa,排种转速为13.3 r/min,清种距离为0.70 mm时,充种合格率为99.20%,漏吸率为0.13%;对于萝卜种子,工作负压为4.47 kPa,排种转速为25.5r/min,清种距离为1.20mm时,充种合格率为97.34%,漏吸率0.53%;对于辣椒种子,工作负压为1.49 kPa,排种转速为16.9 r/min,清种距离为0.69 mm时,充种合格率为88.27%,漏吸率为2.67%,满足菜心、萝卜、辣椒的种植农艺要求,研究结...  相似文献   

10.
盘吸式水稻排种器吸种动力学过程模拟及参数优化   总被引:3,自引:2,他引:1  
准确控制盘吸式排种器的吸种位置是提高水稻育秧播种精度的关键因素,吸盘的吸种位置能够根据种盘内籽粒数量的变化进行自适应调节则是稳定排种器连续作业性能的重要保证。该文通过多球拟合建立了2种椭球体水稻籽粒模型,采用标准k–ε湍流模型和Euler气固两相流模型进行计算流体动力学和离散元(CFD-DEM)耦合,完成了排种器的吸种动力学过程仿真。根据籽粒的空间分布特点,采用均匀分布模型和矩估计法计算了籽粒的空间分布范围和离散系数,获取了垂直往复振动激励下的籽粒离散运动状态和稳定特性,确定了理想的种层厚度范围。以能够有效吸附籽粒为条件,仿真获取了不同种层厚度下的临界吸种位置,分析了吸种距离的变化规律、籽粒形状对吸种性能的影响以及造成漏吸和重吸的原因。受到籽粒相互碰撞挤压等因素影响,CFD-DEM仿真获取的吸种距离小于静止状态下的籽粒吸附临界距离,考虑到实际振动种盘内种群运动的随机性更强,提出在仿真获取的临界吸种位置基础上,适当降低调节距离以提高吸盘的整体吸种性能。结合振动种盘内种层厚度的实时监测技术,以PLC为控制器设计了排种器吸种位置的自动控制装置,并在排种器性能试验台上以压差、吸种位置调节距离、种盘振动频率、种层厚度为因素进行正交试验,通过对吸种合格率的数学回归建模和优化得到:当吸孔直径为2.5 mm、种盘振幅为4.0 mm时,理想的压差为4.4 k Pa、种盘振动频率为10.6 Hz、吸种位置调节距离为2.7 mm。根据优化结果进行吸种性能试验,当种层厚度在15~25 mm范围变化时,排种器的吸种合格率达到94.5%。研究结果可以为提高盘吸式排种器的自动化水平和连续作业性能提供借鉴。  相似文献   

11.
目前,组培苗移植设备中针对组培苗抓取主要采用尺寸定位方式夹持,夹持手结构复杂,占用空间大,且对幼嫩的组培苗会有一定的损伤,影响后期成活率。为克服以上问题,该研究设计了一基于负压吸附的力定位单株条状组培苗拾取手,并对负压拾取手吸嘴内腔体,吸嘴材料及吸嘴口尺寸进行了设计。该论文对吸嘴内腔体形式采用CFD(computational fluid dynamic)软件进行了仿真分析,并通过拾取对比试验验证,确定吸嘴内腔体采用变形腔体结构为宜;对吸嘴材料及吸嘴口尺寸进行正交试验、单因素试验及交互作用试验,试验结果表明在组培苗吸嘴采用厚度为0.5 mm,内径为6 mm硅胶管,吸嘴口处长圆形半径为0.7 mm,吸嘴口唇高为1.5 mm的组合下,拾取手吸嘴对苗径在1.2~2.0 mm范围内的单株条状组培苗拾取效果稳定。在较优组合条件下,整体性能试验证明组培苗负压拾取手拾取系统吸附成功率可达到98%,能够满足下一步的移植插入作业要求。  相似文献   

12.
负压吸附把持手具有对幼苗苗径变化适应性强、减少幼苗把持损伤的优点,但其难以实现对弯曲幼苗的自动吸附把持。针对上述问题,该研究提出了一种利用正压气流对弯曲幼苗进行导向的作业方法。以常见嫁接用黄瓜幼苗为代表进行研究,考察正压气流对纤细幼苗导向效果。首先进行了弯曲应力测定,结果表明,对于长轴平均直径为(1.82±0.07)mm、短轴平均直径为(1.47±0.02)mm的黄瓜幼苗在10 mm长度上矫正5 mm弯曲偏差时所需最大弯曲力平均值为(0.082±0.005)N;针对黄瓜幼苗进行了单管正压气流导向试验并进行高速摄影记录,结果表明,当正压气管内径为4 mm,负压把持手吸嘴口与正压气管口间距为25~30 mm,导向气压为0.3 MPa时,导向成功率为93.3%;为改善导向效果,对黄瓜幼苗进行双管正压气流导向试验,结果表明,在正压气管内径4 mm条件下,当负压把持手吸嘴口与正压气管口间距为20~25mm、导向气压为0.3 MPa时,黄瓜幼苗导向成功率为100%。该研究结果可为基于气力导向方法的幼苗把持作业提供技术参考。  相似文献   

13.
为了探索气力滚筒式播种机对不同规格小粒蔬菜种子吸附性能的影响,该文对种子在吸种孔外部气流场中处于临界运动时与吸种孔的位置关系进行了理论分析。通过分析吸种孔外部气流场的气体的流动状态以及种子在气流场中的绕流阻力与其到吸种孔距离的关系,并对种子在气流场中运动临界状态进行受力分析,从而推导出种子吸附边界的数学模型。分析吸附边界大小对种子吸附性能的影响,以菜心种子、芥兰种子、辣椒种子为试验对象,排种器真空度在1 k Pa~12 k Pa变化,吸种孔半径为0.25 mm,导种板为无振动和振幅为0.4 mm。试验结果与模型分析结果一致:种子吸附的前提条件是种子持续不断的进入吸附边界内,种子的吸附性能与种子边界的大小和种子形状和大小有关;对于小粒蔬菜种子,扁平种子的单粒率低于球形种子,球形种子的直径越小,越难获得高的单粒率。对于小粒扁平种子和直径较小的小粒球形种子,合理的供种方法和增大排种器真空度使吸种孔不空种,再清除吸种孔上的多余种子,是实现排种器精密播种的一种途径。研究结果为气力滚筒式播种机的精密播种研究提供参考。  相似文献   

14.
大豆窄行密植播种机单盘双行气吸式排种器设计   总被引:4,自引:3,他引:1  
为满足大豆窄行密植播种作业要求,解决传统大豆播种机窄行密植行距过大,不易调节,排种性能差等问题,设计了一种单盘双行气吸式排种器,阐述了其基本结构与工作原理,并对工作过程及关键部件进行了理论分析,确定了影响排种性能的主要因素,利用搭建的单盘双行气吸式排种器试验装置进行单因素试验,得到排种性能较好情况时负压真空度、排种盘转速以及单圈吸种孔数的合理变化范围。以负压真空度、排种盘转速和单圈吸种孔数为试验因素,以合格指数、漏播指数和重播指数为指标进行3因素3水平正交试验。结果表明:对合格指数、漏播指数和重播指数各指标影响最显著的因素分别为排种盘转速、负压真空度、负压真空度;当参数组合为单圈吸种孔数64孔、排种盘转速18 r/min、负压真空度5 kPa时,内圈合格指数为98.45%,重播指数为0.72%,漏播指数为0.53%;外圈合格指数为97.82%,重播指数为0.63%,漏播指数为1.35%,对该因素组合进行试验验证,各指标优于行业标准要求。该文设计的单盘双行气吸式排种器实现了播种单体120 mm窄行密植播种,排种性能好,为黄淮海地区大豆密植播种机的研发提供参考。  相似文献   

15.
基于气动无损夹持控制的番茄采摘末端执行器设计与试验   总被引:2,自引:2,他引:0  
为实现类球形果实采收过程中稳定夹持和无损采摘,该研究以番茄为研究对象,设计了一款全气动吸-夹一体式无损采摘末端执行器。首先设计空间多连杆三爪机构,采用3个夹持爪单元空间轴向均布的方式构成空间多连杆末端执行器主体机构,实现中心吸盘回拉果实和夹持爪夹持果实两个动作由单一主动气缸驱动并实现顺序动作;其次,建立末端执行器夹持爪单元的数学模型,并确定满足夹持爪尖端张开最大范围156 mm和吸盘回拉移动最大距离38.7 mm条件下的末端执行器结构参数,通过ADAMS软件对其进行运动学和动力学仿真分析,获得各部件间运动速度和加速度的相对关系,以及夹持力与气动系统压力和果实尺寸的关系。最后,设计并搭建具有压力负反馈和气压连续调节功能的电气伺服控制系统,通过分析果实在拉动和转动两种情况的滑移试验,提出基于动态标准差波动上升节点的双阈值滑移判别算法和基于滑移判据及损伤极限压力的无损采摘控制策略。204个不同尺寸番茄果实的实地采摘试验表明,末端执行器采摘成功率为96.03%,采摘过程耗时5 s,采摘过程中的直接损伤率为1.58%,72 h褐变率为1.76%。结果表明该采摘末端执行器具有较好的采摘效果,可满足实际工作需求。  相似文献   

16.
为明确增压管结构对油麦兼用型气送式集排器分配均匀性的影响,该文运用DEM-CFD气固耦合方法仿真分析了波纹间距、凹窝深度和增压管长度对种子运动特性、分配均匀性和增压管气流场的影响,台架试验研究了增压管长度和气流压强对分配均匀性的影响.结果表明:增设增压管明显提高种子分布均匀度系数,降低种子速度和分配均匀性变异系数.速度流场分析表明增压管波峰与波谷的气流速度和压强交替变化,增压管中种子速度与受力呈现"正弦形"变化趋势.凹窝深度、波纹间距和增压管长度分别为4.2、15和180 mm时,种子分布均匀度系数和分配均匀性变异系数分别为91.17%和4.91%.台架试验表明,在优化结构参数组合下,排种油菜和小麦的气流压强分别为1200和1600 Pa时,分配均匀性变异系数分别达2.84%和2.89%.该研究为分析增压管中种子运动特性和优化其结构参数提供了参考.  相似文献   

17.
远红外常压、负压联合干燥香菇的试验研究   总被引:6,自引:0,他引:6  
该研究是在对现有的香菇干燥设备及其存在问题进行分析的基础上,提出了负压远红外线干燥香菇的方法,并进行了现有一些干燥方法的同条件对比试验,在分析它们失水特性曲线的基础上,又提出联合干燥香菇的方法,即在干燥前期用远红外线配以排湿气流干燥法较快地把香菇的含水率降到50%左右,然后在干燥后期用换气负压远红外线干燥法把香菇的含水率降到要求值。采用这种干燥方法,不仅可使香菇干燥时间缩短和能耗降低,而且提高了香菇干制品的优等率。  相似文献   

18.
气吸滚筒式排种器吸种过程的动力学分析   总被引:14,自引:12,他引:2  
为了分析工作参数对气吸滚筒式排种器吸种性能的影响,建立了种子和滚筒的三维模型,在恒压力边界条件下,运用Fluent软件计算种子在真实吸种气流场中的受力,并采用中心差分法求解种子运动方程,得到种子吸附瞬态运动轨迹为:首先在轴向吸力的作用下,种子沿种盘作水平运动;随着滚筒的转动,种子受到的径向吸力迅速增大,并从种盘上被吸起,与滚筒发生碰撞后,沿壁面向着吸孔中心滑移,最终被吸孔吸附。排种器的吸种性能随滚筒转速的提高而降低,随负压差的升高而增强。以油菜种子为对象,在自制的排种器上进行性能试验,结果表明,当负压差为3~4 kPa、滚筒转速在15 r/min附近时,排种器的播种合格指数超过95%,为排种器的结构调整和工作参数优化提供了依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号