首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
The patterns of soil nitrogen(N) isotope composition at large spatial and temporal scales and their relationships to environmental factors illustrate N cycle and sources of N,and are integrative indicators of the terrestrial N cycle and its response to global change. The objectives of this study were:i) to investigate the patterns of soil N content and natural abundance of 15N(δ15N) values in different ecosystem types and soil profiles on the Qinghai-Tibetan Plateau; ii) to examine the effects of climatic factors and soil characteristics on the patterns of soil N content and soil δ15N values; and iii) to test the relationship between soil δ15N values and soil C/N ratios across ecosystems and soil profiles. Soil profiles were sampled at 51 sites along two transects 1 875 km in length and 200 km apart and distributed in forest,meadow and steppe on the Qinghai-Tibetan Plateau. Each site was sampled every 10 cm from a soil depth of 0 to 40 cm and each sample was analyzed for soil N content and δ15N values. Our results indicated that soil N and δ15N values(0–40 cm) in meadows were much higher than in desert steppe. Soil N decreased with soil depth for each ecosystem,while variations of soil δ15N values along soil profiles were not statistically significant among most ecosystems but for mountain meadow,lowland meadow,and temperate steppe where soil δ15N values tended to increase with soil depth. The parabolic relationship between soil δ15N values and mean annual precipitation indicated that soil δ15N values increased with increasing precipitation in desert steppe up to 500 mm,and then decreased with increasing precipitation across all other ecosystems. Moreover,the parabolic relationship between δ15N values and mean annual temperature existed in all individual ecosystem types. Soil N and δ15N values(0–40 cm) increased with an increase in soil silt and clay contents. Furthermore,a threshold of C/N ratio of about 11 divided the parabolic relationship between soil δ15N values and soil C/N ratios into positive(C/N 11) and negative(C/N 11) parts,which was valid across all ecosystems and soil profiles. The large explanatory power of soil C/N ratios for soil δ15N values suggested that C and N concentrations,being strongly controlled by precipitation and temperature,were the primary factors determining patterns of soil δ15N on the Qinghai-Tibetan Plateau.  相似文献   

2.
Soil remediation is an important part of the restoration process of degraded terrestrial ecosystems. Due to its unique properties, biochar is being used widely as an effective soil modifier in agricultural systems, but research is still rare on biochar application in grassland ecosystems, especially in degraded alpine grasslands. In this study, we conducted a plot experiment to investigate the effect of biochar application on soil physicochemical properties and microorganisms at the 0–20 cm soil depth of a degraded alpine grassland in Qinghai-Tibet Plateau, China. The experiment consisted of four corn straw biochar application levels (0%, 0.5%, 1% and 2%, with the percentage representing the ratio of biochar weight to the dry weight of soil in the surface 20 cm soil layer). When the biochar addition increased from 0% to 2%, total nitrogen, total organic carbon and available phosphorus in the 0–10 cm soil layer increased by 41%, 55% and 45%, respectively, in the second year after biochar addition. Meanwhile, soil electrical conductivity decreased, and soil water content increased. Total microbial, fungal and bacterial biomasses in the 0–10 cm soil layer increased from 9.15 to 12.68, 0.91 to 1.34, and 3.85 to 4.55 μg g-1, respectively. The relative biomasses of saprophytic fungi and methanotrophic bacteria decreased, while the relative biomasses of ectomycorrhizal fungi and arbuscular mycorrhizal fungi increased. These results indicate that biochar has a great potential in improving microbial activity and soil fertility in soil remediation of the degraded alpine grassland.  相似文献   

3.
In the past 50 years, large areas of the Horqin sandy land were afforested to prevent desertification. Although the afforestation policy appears successful, many people now doubt whether it is suitable to plant trees with high density on the poor soils in semiarid regions. Little is known about the impacts of afforestation on the sandy soil properties, although the evaluation of these impacts is fundamental to judge the rationality of afforestation policy. Soil phosphorus (P) fractions, acid phosphomonoesterase activities, and other soil chemical properties were compared among five adjoining typical ecosystems on poor sandy soils in southeastern Horqin sandy land. The ecosystems studied are natural elm savanna, degraded grassland, Mongolian pine (Pinus sylvestris var. mongolica) plantation, Chinese pine (Pinus tabulaeformis) plantation, and mixed plantation of Mongolian pine and poplar (Populus simonii). The results showed that organic P dominated soil P (47%-65%) was the principal source of available P. The degradation of elm savanna to grassland significantly reduced soil pH and resulted in an overall reduction in soil fertility, although slightly increased labile inorganic P. Grassland afforestation had no significant influence on soil pH, organic carbon, and total N but significantly reduced total P. Impacts of grassland afforestation on soil P fractions depended on tree species. Natural elm savanna had higher soil P conserving ability than artificial plantations. Therefore, with the aim of developing a sustainable ecosystem, we suggested that vegetations with low nutrient demand (particularly P) and efficient nutrient cycling would be more suitable for ecosystem restoration in the semiarid region.  相似文献   

4.
In the Three Gorges Area of China, soil erosion and the resultant non-point source pollution and ecological degradation have endangered agricultural ecosystems and fresh water reservoirs. Although efforts have been undertaken to reduce soil and water losses from slope land used for citrus production, information on the effects of management practices on soil fertility indices is either limited or nonexistent. This study was conducted to compare the effects of 10 years of various management practices, citrus intercropped with white clover (WC), citrus mulched with straw (SM), citrus intercropped with contour hedgerows (CH), citrus orchard land with impermeable membrane (IM), and citrus intercropped with wheat (Triticum aestivum) and peanut (Arachris hypogaea) (WP), as treatments on soil fertility indices with that of the conventional citrus management (CM). Results showed that the soil organic carbon, total and available nitrogen, available potassium, and water-stable aggregate (> 0.25 mm) contents at the 0–5 cm depth were higher for the WC and SM treatments than the CM treatment. There was also spatial variation in soil fertility along slopes of the WC and SM treatments. The soil total and available nitrogen, phosphorus, and potassium, and water-stable aggregate (> 0.25 mm) contents at both the 0–5 and 5–20 cm depths were higher for the CH and IM treatments than the CM treatment. The average soil available nitrogen and available potassium contents were higher for the WP treatment than the CM treatment, but the WP treatment had little effect on the soil organic carbon, total nitrogen, and water-stable aggregate (> 0.25 mm) contents. These suggested that white clover intercropping and straw mulching were the most effective approaches to improve soil fertility in citrus orchard land of the Three Gorges area.  相似文献   

5.
Activities of selected soil enzymes (invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase) were determined under different spruce forests with restoration histories of 5, 13, 18, 23, 27 years and an old growth forest over 400 years old in the eastern Qinghai-Tibetan Plateau, China, and their possible use as indicators of ecosystems health were analyzed. Plots 10 × 10 m with 4 replications were established to investigate three hypotheses: soil enzyme activities a) would increase with the restoration process; b) would be greater in surface soils than at lower depths; and c) would be correlated to selected physicochemical properties. Results showed that as the forests developed after restoration, invertase and peroxidase activities usually increased up to the 23 year point. Also soil enzyme activities were associated with surface soils and decreased with depths, suggesting that in earlier restoration stages surface addition of organic fertilizer to soils might be more effective than additions at depth. In the 0-20 cm soil, there were significant correlations (P < 0.01 or < 0.05) between some soil enzyme activities and some selected chemical properties. Therefore, temporal changes in enzyme activities should be included as an indicator when evaluating sustainable forest management practices.  相似文献   

6.
In nutrient-limited alpine meadows,nitrogen(N) mineralization is prior to soil microbial immobilization;therefore,increased mineral N supply would be most likely immobilized by soil microbes due to nutrient shortage in alpine soils.In addition,low temperature in alpine meadows might be one of the primary factors limiting soil organic matter decomposition and thus N mineralization.A laboratory incubation experiment was performed using an alpine meadow soil from the Tibetan Plateau.Two levels of NH4NO3(N) or glucose(C) were added,with a blank without addition of C or N as the control,before incubation at 5,15,or 25 ℃ for 28 d.CO2 efflux was measured during the 28-d incubation,and the mineral N was measured at the beginning and end of the incubation,in order to test two hypotheses:1) net N mineralization is negatively correlated with CO2 efflux for the control and 2) the external labile N or C supply will shift the negative correlation to positive.The results showed a negative correlation between CO2 efflux and net N immobilization in the control.External inorganic N supply did not change the negative correlation.The external labile C supply shifted the linear correlation from negative to positive under the low C addition level.However,under the high C level,no correlation was found.These suggested that the correlation of CO2 efflux to net N mineralization strongly depend on soil labile C and C:N ratio regardless of temperatures.Further research should focus on the effects of the types and the amount of litter components on interactions of C and N during soil organic matter decomposition.  相似文献   

7.
Climate warming may promote soil organic carbon(SOC) decomposition and alter SOC stocks in terrestrial ecosystems, which would in turn affect climate warming. We manipulated a warming experiment using open-top chambers to investigate the effect of warming on SOC stock and chemical composition in an alpine peatland in Zoigê on the eastern Tibetan Plateau, China. Results showed that 5 years of warming soil temperatures enhanced ecosystem respiration during the growing season, promoted above-and be...  相似文献   

8.
It is globally accepted that soil carbon (C) dynamics are at the core of interlinked environmental problems,deteriorating soil quality and changing climate.Its management remains a complex enigma for the scientific community due to its intricate relationship with soil nitrogen (N) availability and moisture-temperature interactions.This article reviews the management aspects of soil C dynamics in light of recent advances,particularly in relation to the availability of inorganic N pools and associated microbial processes under changing climate.Globally,drastic alterations in soil C dynamics under changing land use and management practices have been primarily attributed to the variation in soil N availability,resulting in a higher decomposition rate and a considerable decline in soil organic C (SOC) levels due to increased soil CO2 emissions,degraded soil quality,and increased atmospheric CO2 concentrations,leading to climate warming.Predicted climate warming is proposed to enhance SOC decomposition,which may further increase soil N availability,leading to higher soil CO2 efflux.However,a literature survey revealed that soil may also act as a potential C sink,if we could manage soil inorganic N pools and link microbial processes properly.Studies also indicated that the relative,rather than the absolute,availability of inorganic N pools might be of key importance under changing climate,as these N pools are variably affected by moisture-temperature interactions,and they have variable impacts on SOC turnover.Therefore,multi-factorial studies are required to understand how the relative availability of inorganic N pools and associated microbial processes may determine SOC dynamics for improved soil C management.  相似文献   

9.
黄土丘陵小流域蒸散发和水分平衡对植被恢复的影响   总被引:6,自引:0,他引:6  
Evapotranspiration, soil moisture balance and the dynamics in a gully catchment of the Loess Plateau in China were determined with 6 land use treatments including natural grassland, shrubs (Caragana rnicrophylla), two woodlands (Prunus armeniaca var. ansu and Pinus tabulaeformis), cultivated fallow, and farmland (Triticum aestiuum L.) in order to obtain a better understanding of soil moisture balance principles and to improve vegetation restoration efficiency for ecological rebuilding on the plateau. Average runoff from cultivated fallow was very high, reaching 10.3% of the seasonal rainfall. Evapotranspiration under T. aestivurn was not significantly different from natural grasslands. Compared with natural grass, evapotranspiration was significantly greater (P 〈 0.05) in 2002 and there was an increase in soil moisture depleted in the 1-3 m soil under P. armeniaca, P. tabulaeformis and C. microphylla. During the two years of the study the average soil moisture (0-100 cm soil profile) of T. aestivurn was generally the highest, with P. armeniaca, P. tabulaeformis and C. rnicrophylla usually the lowest. Thus, according to the soil moisture balance principle for this area the planned reforestation project was not ecologically reasonable. Reducing human disturbance and restoration with grass could be more effective.  相似文献   

10.
中国黄土高原区轮耕对土壤团聚体、有机碳氮含量的影响   总被引:2,自引:0,他引:2  
In rain-fed semi-arid agroecosystems, continuous conventional tillage can cause serious problems in soil quality and crop production, whereas rotational tillage (no-tillage and subsoiling) could decrease soil bulk density, and increase soil aggregates and organic carbon in the 0-40 cm soil layer. A 3-year field study was conducted to determine the effect of tillage practices on soil organic carbon (SOC), total nitrogen (TN), water-stable aggregate size distribution and aggregate C and N sequestration from 0 to 40 cm soil in semi-arid areas of southern Ningxia. Three tillage treatments were tested: no-tillage in year 1, subsoiling in year 2, and no-tillage in year 3 (NT-ST-NT); subsoiling in year 1, no-tillage in year 2, and subsoiling in year 3 (ST-NT-ST); and conventional tillage over years 1-3 (CT). Mean values of soil bulk density in 0-40 cm under NT-ST-NT and ST-NT-ST were significantly decreased by 3.3% and 6.5%, respectively, compared with CT, while soil total porosity was greatly improved. Rotational tillage increased SOC, TN, and water-stable aggregates in the 0-40 cm soil, with the greatest effect under ST-NT-ST. In 0-20 and 20-40 cm soils, the tillage effect was confined to the 2-0.25 mm size fraction of soil aggregates, and rotational tillage treatments obtained significantly higher SOC and TN contents than conventional tillage. No significant differences were detected in SOC and TN contents in the >2 mm and <0.25 mm aggregates among all treatments. In conclusion, rotational tillage practices could significantly increase SOC and TN levels, due to a fundamental change in soil structure, and maintain agroecosystem sustainability in the Loess Plateau area of China.  相似文献   

11.
ABSTRACT

The change in soil microbial biomass (SMB) content and its direct links to soil organic matter (SOM) and environmental factors are not well understood for high-elevation regions. Therefore, this research investigated the temporal variation of SMB and its relationship with SOM and environmental factors in an alpine meadow site on the Qinghai-Tibetan Plateau. The soil organic carbon (SOC) and total nitrogen (TN) contents in alpine meadows showed monthly and seasonal variations and were higher in colder months, and the soil C/N ratio was higher in winter and in autumn than it was in the other seasons (P < 0.05). In addition, the changes in the SMB C and SMB N contents were notable at monthly and seasonal scales, whereas the SMB C and SMB N contents were higher in the winter and spring than they were in the other seasons (P < 0.05); the ratio of SMB C/SOC was higher in spring than it was in the other seasons; the ratio of the SMB N/TN content was higher in cold or cool months than it was in the other months; and the ratio of the SMB C/SMB N was highest in August (P < 0.05). Moreover, the SMB C and SMB N contents were significantly positively correlated to the SOC and TN contents (P < 0.01), and the SMB content was also significantly positively correlated to soil water content and air temperature (P < 0.05), or to soil bulk density and soil pH (P < 0.05). The results suggested that the change in the SMB in the alpine meadows was highly regulated by the SOC and TN and by monthly and seasonal changes in the soil bulk density, the soil pH, soil moisture, and air temperatures.  相似文献   

12.
  【目的】  藏东南地区高山生态系统有巨大的土壤碳汇潜力,研究其不同生态系统下土壤有机碳 (SOC) 储存的变化特征及其影响因子,有助于深入了解青藏高原土壤碳循环及区域碳源汇平衡。  【方法】  本研究在西藏色季拉山西坡海拔3000~4600 m开展密集土壤采样,研究不同海拔高度下不同植被类型SOC的储存特征,并分析其关键影响因子。  【结果】  表层0—5 cm的SOC含量随海拔升高而增加,4个植被带SOC含量平均值表现为高寒草甸 (8.31% ± 0.77%) > 暗针叶林 (7.20% ± 0.90%) > 高寒灌丛草甸 (6.74% ± 0.80%) > 针阔混交林 (3.88% ± 0.46%)。在剖面5—10、10—15、15—20、20—30、30—40、40—60 cm各层SOC含量随海拔升高呈先增加后降低趋势,SOC含量在4种植被带的平均值表现为暗针叶林 > 高寒灌丛草甸 > 高寒草甸 > 针阔混交林。SOC含量随剖面深度增加而显著下降,高寒草甸和高寒灌丛草甸SOC垂直分布特征为表层聚集型,而针阔混交林和暗针叶林SOC垂直分布特征为普通递减型。剖面0—20、20—40、40—60 cm的SOC储量随海拔升高呈先增加后降低的特征。在表层0—20 cm高寒草甸SOC储量最高 (C 95.66 ± 4.81 t/hm2);在剖面20—40和40—60 cm暗针叶林SOC储量最高,且其在整个0—60 cm剖面的SOC总储量在所有植被类型中最高 (C 199.14 ± 11.10 t/hm2);针阔混交林SOC储量在剖面各层均为最低,且其在整个剖面的SOC总储量 (C 111.45 ± 10.30 t/hm2) 显著低于其他植被类型。剖面各层SOC储量与年平均温度、凋落物碳氮比呈显著负相关,而与海拔高度、年平均降水量和土壤含水量呈显著正相关。逐步回归显示土壤含水量是影响剖面各层以及整个剖面SOC储存的关键因子。随机森林模型对SOC储存的解释度为50.32%~65.82%,土壤含水量对表层土体SOC预测的相对贡献最高,年平均温度、年平均降水量和凋落物质量对各层SOC预测均有显著贡献,而植被类型对SOC预测的相对贡献随剖面加深而逐步增加。  【结论】  色季拉山西坡不同海拔高度下SOC的储存特征随不同植被类型和剖面深度而发生显著变化,环境因子(如土壤水分) 对表层土体SOC储存有关键影响,植被类型对深层土体SOC储量变化的预测有重要贡献。  相似文献   

13.
以天山中部中科院巴音布鲁克草原生态观测站三种类型草地长期(26 a)围栏封育样地为研究对象,通过野外调查取样结合室内分析的方法,研究了长期(26 a)围栏封育对草地土壤有机碳和微生物量碳含量的影响,结果表明:(1)围栏外(自然放牧条件下),表层的土壤有机碳含量为高寒草甸(165.29 g·kg-1)〉高寒草甸草原(98.73 g·kg-1)〉高寒草原(83.54 g·kg-1),微生物量碳含量依次为高寒草甸草原(181.70 mg·kg-1)〉高寒草甸(146.37 mg·kg-1)〉高寒草原(43.06 mg·kg-1)。围栏封育后,高寒草甸、高寒草甸草原、高寒草原表层土壤有机碳含量分别提高了11.37%、3.26%和2.21%;高寒草甸草原和高寒草甸微生物量碳含量分别增长2.89%和12.04%,而高寒草原降低40.36%。(2)从围栏内外土壤剖面来看,土壤有机碳、微生物量碳含量随着土壤深度的增加依次降低,微生物熵也随土壤深度的增加呈现降低的趋势。(3)微生物量碳含量与土壤速效钾、全磷含量达到极显著负相关(P〈0.01),与速效磷含量达到极显著正相关(P〈0.01),与土壤有机碳、全氮、全钾含量呈显著正相关(P〈0.05)与土壤速效氮含量正相关,但不显著。  相似文献   

14.
唐仲霞  王文颖  柯君  刘泽华 《土壤》2009,41(4):649-653
在青海玛沁地区,选择 4 种处于不同退化阶段以及 2 种人工处理的高寒草甸为研究对象,探讨不同放牧强度和人工干预措施下,植被特征、土壤营养元素和土壤物理性状的变化过程,为合理利用和提高草地生产力提供依据.结果表明:随着退化的加剧,高寒草甸的盖度、高度、地上生物量和种类呈下降趋势,可食性牧草逐渐让位于杂草;土壤 N、C 含量以及含水量逐渐降低,体积质量逐渐增大.与重度退化草甸相比,经人工干预处理后草甸的生物量、盖度、高度以及土壤营养元素和物理性状都有所增加提高.这些结果表明随着植被的退化演替,土壤退化越来越严重,土壤越来越贫瘠化.人工干预能够在一定程度上改善土壤物理特征,提高草地的生物量.  相似文献   

15.
不同管理措施下高寒退化草地恢复效果评估   总被引:3,自引:2,他引:3  
为了科学评估不同管理措施下退化高寒草地生态治理的综合成效,该研究采用VOR及CVOR生态系统健康评价模型,对甘肃省玛曲退化高寒草甸实施2a的围封、划破、施肥、补播和综合措施等五种不同生态恢复措施,以及自由放牧下的草地生态系统健康状况进行了评估。根据两种模型测算结果,用VOR指数评价综合生态恢复措施的效果大致为:综合措施、施肥划破、补播、围封放牧,用CVOR指数评价综合生态恢复措施的效果:综合措施划破施肥、补播、围封放牧。综合措施在2种评价体系下均显著优于各单一处理措施,实施2a后其CVOR数值处于健康范围,高达0.917,且放牧导致高寒草甸生态系统健康趋于警戒水平,健康指数值为0.572。结果表明,VOR及CVOR指数模型应用于生态恢复管理措施的效果评价,可反映出不同措施实施后的具体量化效果,可进行更广泛适用。在退化严重亟需生态恢复的草地,可通过综合生态恢复措施的实施,以达到全面迅速恢复草地生态系统健康的目的。此外,需具体考量每种措施的经济学和生态学双重效益,利用更全面的CVOR指数模型评价草地健康状况,因地制宜地制定和实施管理措施。  相似文献   

16.
The aim of this study was to assess initial effects of warming on the nutrient pools of carbon and nitrogen of two most widespread ecosystem types, swamp meadow and alpine meadow, in the Qinghai-Tibet Plateau, China. The temperature of the air and upper-soil layer was passively increased using open-top chambers (OTCs) with two different temperature elevations. We analyzed air and soil temperature, soil moisture, biomass, microbial biomass, and nutrient dynamics after 2 years of warming. The use of OTCs clearly raised temperature and decreased soil moisture. The aboveground plant and root biomass increased in all OTCs in two meadows. A small temperature increase in OTCs resulted in swamp meadow acting as a net carbon sink and alpine meadow as a net source, and further warming intensified this processes, at least in a short term. On balance, the alpine ecosystems in the Fenghuoshan region acted as a carbon source.  相似文献   

17.
依托青藏高原东北隅高寒矮嵩草草甸的5a放牧强度(禁牧、轻度放牧、中度放牧、重度放牧)试验平台,2016年在植物生长季的6-9月,基于静态暗箱-气相色谱法,测定N2O的释放特征及相应的环境、生物因子,探讨放牧强度对高寒草甸N2O释放特征的影响及其内在环境生物驱动机制。结果表明:环境、生物因子中仅表层土壤容积含水量、土壤容重及土壤有机碳含量对放牧强度响应显著(P<0.05)。高寒草甸N2O释放的季节特征表现出生长季的早期和晚期相对较高的“U”型趋势。禁牧样地N2O释放速率最小,极显著(P<0.01)低于其它3个放牧样地。高寒草甸N2O释放强度与放牧强度间表现出正相关趋势(R= 0.49, P<0.01)。相关分析表明,表层土壤温度是高寒草甸N2O释放速率的主要影响因子,但放牧强度改变了土壤温度的影响程度。中短期放牧管理改变了高寒草甸植被生长季N2O释放速率,但未改变其释放的季节特征。禁牧管理提高了土壤温度,进而显著降低植被生长季N2O释放强度。  相似文献   

18.
Alpine wetlands and meadows across the Three Rivers Source Region (TRSR) store high soil organic carbon (SOC). However, information on factors affecting SOC storage is scanty. Herein, we investigated SOC storage and explored factors affecting SOC storage, including climate, soil properties and above- and belowground biomass, using 50 soil profiles across the TRSR on the Tibetan Plateau. The SOC storage was 491.9 ± 158.5 Tg C and 545.2 ± 160.8 Tg C in the TRSR alpine wetlands and meadow, respectively. The SOC stock was positively correlated with the mean annual precipitation. However, no significant correlation between SOC stock and mean annual temperature was observed, as opposed to the global trend. In addition, SOC stock was positively correlated with both the aboveground biomass (AGB) and belowground biomass (BGB). Soil pH indirectly affected SOC stock, while SOC stock positively correlated with Al and Fe oxyhydroxides. Compared with vegetation biomass and climatic factors, soil properties, including soil pH and Al and Fe oxyhydroxides (Alo and Feo), affected not only SOC stock variation but also affected the impact of vegetation and climatic factors on SOC stock. Climate factors, AGB, BGB, soil pH, Alo and Feo jointly accounted for 59% of SOC stock variation in alpine wetlands and 64% of SOC stock variation in alpine meadow. This study suggests that soil properties are the dominant factors affecting SOC variation in alpine wetlands and meadow on the Tibetan Plateau.  相似文献   

19.
研究高寒草甸微尺度海拔和坡向下土壤酶活性及其化学计量特征的变化对于探讨草地生态系统养分循环过程具有重要的生态学意义。以东祁连山高寒草甸为研究对象,分析了7个海拔(2 800,3 000,3 200,3 400,3 600,3 800,4 000 m)和2个坡向(阴坡、阳坡)高寒草甸的土壤酶活性、化学计量特征变化规律及其与土壤理化因子之间的关系。结果表明:海拔和坡向的交互效应对土壤亮氨酸氨基肽酶(LAP)、β-葡萄糖苷酶(BG)、多酚氧化酶(PPO)和过氧化物酶(POD)酶活性、lnBG/ln (NAG+LAP)、lnBG/lnAP和ln (NAG+LAP)/lnAP有显著影响;LAP、AP、BG、POD、lnBG/ln (NAG+LAP)、lnBG/ln (NAG+LAP)随海拔的升高呈先升高后降低,β—1,4—乙酰基氨基葡萄糖苷酶(NAG)和PPO随海拔升高而降低;同一海拔,阳坡土壤AP、BG、POD、PPO酶活性低于阴坡,阳坡土壤NAG酶活性高于阴坡,海拔3 800 m以下阳坡LAP酶活性低于阴坡,除海拔3 000 m和4 000 m外的其他海拔阳坡的土壤lnBG/ln (NAG+LAP)高于阴坡,海拔3 000~3 400 m的土壤lnBG/lnAP和海拔3 000~3 600 m的土壤ln (NAG+LAP)/lnAP在阳坡低于阴坡。相关分析发现,土壤酶活性及其化学计量特征不同程度受土壤C、N、P资源及土壤水分条件等的调控,土壤含水量和有机碳是影响土壤酶活性的主要因子。综上,土壤酶活性及其化学计量特征在微尺度海拔和坡向上具有差异性,且受土壤C、N、P资源及土壤水分条件的综合影响,以土壤含水量和有机碳尤为突出。  相似文献   

20.
Desertification is reversible and can often be prevented by adopting measures to control the causal processes. Desertification has generally decreased in most of the arid and semiarid areas of China during the last few decades because of the restoration of degraded vegetation and soil nutrients. However, little is known about the responses of soil nutrients in different particle‐size fractions to the restoration process and about the importance of this response to the restoration of bulk‐soil nutrients. In this study, we separated bulk‐soil samples in different sieve fractions: coarse‐fine sand (2·0–0·1 mm), very fine sand (0·10–0·05 mm) and silt + clay (<0·05 mm) fractions. Soil organic carbon (SOC), N, P and K contents stored in the silt + clay were greater than the contents of non‐protected nutrients in the coarser fractions. During the restoration of desertified land, the content and stability of bulk‐soil SOC, total N and P and available N, P and K increased with increasing nutrient contents in all fractions. Topsoil nutrients stored in coarse‐fine sand and very fine sand fractions were more sensitive than those stored in the silt + clay fraction to the fixation of mobile sandy lands and vegetation recovery. The changes of bulk‐soil nutrients and their stability were decided by the soil nutrients associated with all particle‐size fractions. Path analysis revealed that SOC and total nutrients in very fine sand and available nutrients in coarse‐fine sand were the key factors driving the soil recovery. These results will help us understand soil recovery mechanisms and evaluate the degree of recovery. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号