首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Indigenous grasses have been effectively used to rehabilitate degraded African drylands. Despite their success, studies examining their effects on soil bioindicators such as microbial biomass carbon(C) and enzyme activities are scarce. This study elucidates the effects of drought stress and phenological stages of a typical indigenous African grass, Enteropogon macrostachyus, on microbial biomass and enzyme activities(β-glucosidase, cellobiohydrolase, and chitinase) in the rhizosphere soil. Enteropogon macrostachyus was grown under controlled conditions. Drought stress(partial watering) was simulated during the last 10 d of plant growth, and data were compared with those from optimum moisture conditions. The rhizosphere soil was sampled after 40 d(seedling stage), 70 d(elongation stage), and 80 d(simulated drought stress). A high root:shoot ratio at seedling stage compared with elongation and reproduction stages demonstrated that E. macrostachyus invested more on root biomass in early development, to maximise the uptake of nutrients and water. Microbial biomass and enzyme activities increased with root biomass during plant growth. Ten-day drought at reproduction stage increased the microbial biomass and enzyme activities, accompanying a decrease in binding affinity and catalytic efficiency. In conclusion, drought stress controls soil organic matter decomposition and nutrient mobilization, as well as the competition between plant and microorganisms for nutrient uptake.  相似文献   

2.
A study on the effect of Pb-Cd interaction on plant growth and on the chemistry of elements in plants was conducted under greenhouse condition with red soil-wetland rice system in different growth stage.The results showed that Pb-Cd interactions on growth and metal uptake varied with different growth stages and chemical compounds added .The plant height and the root weght were markedly affected by Pb-Cd interication in the young stage but not in the ripening stage of rice at the treatments of PbCl2 and CdCl2 added.However,the weight of rice straw in the ripening stage was significantly affected by Pb-Cd interaction with the treatments of Pb(OAc)2 and CdCl2.The chemistry of elements in plants also depended on Pb-Cd interaction in varying degrees on account of different plant parts and growth stage.It seems that Pb-Cd interaction occurred not only in roots but also in other parts of wetland rice.  相似文献   

3.
氮肥对草莓根系生长发育和内源激素影响的研究   总被引:5,自引:0,他引:5  
Endogenous hormones play an important role in the growth and development of roots. The objective of this research was to study the effect of four types of N fertilizer on the root growth of strawberry (Fragaria ananassa Duchesne) and the endogenous enzymes of indole-3-acetic acid (IAA), abscisic acid (ABA), and isopentenyl adenosine (iPA) in its roots and leaves using enzyme-linked immunosorbent assay. Application of all types of N fertilizers at 20 d after transplanting significantly depressed (P ≤ 0.05) root growth. Application of organic-inorganic fertilizer (OIF) as basal fertilizer had a significant negative effect (P ≤ 0.05) on root growth. The application of OIF and urea at 60 d lowered the lateral root frequency in strawberry plants (P ≤ 0.05) compared with the application of two organic fertilizers (OFA and OFB) and the control (CK). With the fertilizer treatments, there were the same concentrations of IAA and ABA in both roots and leaves at the initial growth stage (20 d), lower levels of IAA and ABA at the later stage (60 d), and higher iPA levels at all seedling stages as compared to those of CK. Thus, changes in the concentrations of endogenous phytohormones in strawberry plants could be responsible for the morphological changes of roots due to fertilization.  相似文献   

4.
玉米根鞘改变土壤粒径及养分有效性   总被引:3,自引:0,他引:3  
Root exudates,microorganism colonization and soil aggregates together form the rhizosheath,a special cylinder of micro-ecosystem adhering to the root surface.To study how the rhizosheath affects soil structure and nutrient distribution,we analyzed the impact of maize rhizosheath on soil particle size and nutrient availability in pot and field experiments.The results showed that there was a significant size decrease of soil particles in the rhizosheath.Meanwhile,the soil mineral nitrogen in the rhizosheath was significantly higher than that in the rhizosphere or bulk soil at tasseling and maturity stages of maize.The contents of Fe and Mn were also differentially altered in the rhizosheath.Rhizosheath development,indicated by a dry weight ratio of rhizosheath soil to the root,was relatively independent of root development during the whole experimental period.The formation of maize rhizosheath contributed to the modulation of soil particle size and nutrient availability.The subtle local changes of soil physical and chemical properties may have profound influence on soil formation,rhizospheric ecosystem initiation,and mineral nutrient mobilization over the long history of plant evolution and domestication.  相似文献   

5.
The creation of controlled-release urea (CRU) is a potent substitute for conventional fertilizers in order to preserve the availability of nitrogen (N) in soil, prevent environmental pollution, and move toward green agriculture. The main objectives of this study were to assess the impacts of CRU''s full application on maize production and to clarify the connection between the nutrient release pattern of CRU and maize nutrient uptake. In order to learn more about the effects of CRU application on maize yields, N uptake, mineral N (Nmin) dynamics, N balance in soil-crop systems, and economic returns, a series of field experiments were carried out in 2018–2020 in Dalian City, Liaoning Province, China. There were 4 different treatments in the experiments: no N fertilizer input (control, CK); application of common urea at 210 kg ha-1 (U), the ideal fertilization management level for the study site; application of polyurethane-coated urea at the same N input rate as U (PCU); and application of PCU at a 20% reduction in N input rate (0.8PCU). Our findings showed that using CRU (i.e., PCU and 0.8PCU) may considerably increase maize N absorption, maintain maize yields, and increase N use efficiency (NUE) compared to U. The grain yield showed considerable positive correlations with total N uptake in leaf in U and 0.8PCU, but negative correlations with that in PCU, indicating that PCU caused excessive maize absorption while 0.8PCU could achieve a better yield response to N supply. Besides, PCU was able to maintain N fertilizer in the soil profile 0–20 cm away from the fertilization point, and higher Nmin content was observed in the 0–20 cm soil layer at various growth stages, particularly at the middle and late growing stages, optimizing the temporal and spatial distributions of Nmin. Additionally, compared to that in U, the apparent N loss rate in PCU was reduced by 36.2%, and applying CRU (PCU and 0.8PCU) increased net profit by 8.5% to 15.2% with less labor and fertilization frequency. It was concluded that using CRU could be an effective N fertilizer management strategy to sustain maize production, improve NUE, and increase economic returns while minimizing environmental risks.  相似文献   

6.
增硝营养对水稻不同生育时期生长及氮素吸收同化的影响   总被引:14,自引:0,他引:14  
The effect of nitrate (NO3^-) on rice (Oryza sativa L.) growth as well as N absorption and assimilation during different growth stages was examined using three typical rice cultivars. Dry weight, yield, N uptake, nitrate reductase activity (NRA) in leaves, and glutamine synthetase activity (GSA) in roots and leaves during their entire growth periods, as well as the kinetic parameters of ammonium (NH4^+) uptake at the seedling stage, were measured with solution culture experiments. Results indicated that addition of NH4^+-N and NO3^-N at a ratio of 75:25 (NH4^++NO3^- treatment) when compared with that of NH4^+-N alone (NH4^+ treatment) increased the dry weight of ‘Nanguang' cultivar by 30% and ‘Yunjing 38' cultivar by 31%, and also increased their grain yield by 21% and 17%, respectively. For the four growth stages, the total N accumulation in plants increased by an average of 36% for ‘Nanguang' and 31% for ‘Yunjing 38', whereas the increasing effect of NO3^- in the ‘4007' cultivar was only found at the seedling stage, in the NH4^++NO3^- treatment compared to the NH4^+ treatment, NRA in the leaves increased by 2.09 folds, and GSA increased by 92% in the roots and 52% in the leaves of the three cultivars. NO3^- supply increased the maximum uptake rate (Vmax) in the ‘Nanguang' and ‘Yunjing 38' cultivars, reflecting that the NO3^- itself, not the increasing N concentration, increased the uptake rate of NH4^+ by rice. There was no effect on the apparent Michaelis-Menten constant (Kin) of the three cultivars. Thus, some replacement of NH4^+ with NO3^-could greatly improve the growth of rice plants, mainly on account of the increased uptake of NH4^+ promoted by NO3^-, and future studies should focus on the molecular mechanism of the increased uptake of NH4^+ by NO3^-.  相似文献   

7.
Pot-grown tomato plants (Lycopersicon esculentum Mill. cv. Maofen) was used to study the effects of three shading levels (0, 75% and 40%) for 8 days on dry matter partitioning, contents of nitrogen (N),phosphorus (P) and potassium (K) in leaves and yield at three growth stages (early flowering (EF), peak flowering (PF) and later flowering (LF)). Shading reduced the dry weight of root and stem tissues at the EF and PF stages, but the 40% shading increased root dry weight and stem dry weight by 43.2% and 21.6%,respectively, at the LF stage. The influence of shading on the dry weight of leaves was very small at most growth stages. Shading had no effects on total leaf N, P and K contents at the EF and PF stages, showing that N, P and K absorption were regulated by the carbon assimilation at these two stages. The leaf N, Pand K contents of 40% shaded plants at the LF stage were significantly increased. There were no obvious differences in leaf N and K contents between 75% and 40% shading treatments, but significant difference in leaf P contents was found between them at the LF stage. Shading significantly enhanced the friit yield of 40% shaded tomato plants at the LF stage, but failed to affect the fruit yield of shaded plants at the EF stage. These showed that tomato could grow well and a better yield could be obtained if some moderate shading (i.e., 40% shading) was applied at the LF stage at s, mmer midday.  相似文献   

8.
The effects of K and Al in K-deficient and complete nutrient solutions on the growth and nutrient uptake of rice were studied in the work.The effect of Al on the growth of roots and above-ground part of rice was associated with the concentration of Al in solution .A low level(0.1 mmol L^-1) of Al promtoed but a high level(1 mmol L^-1)of Al inhibited the growth of both the root and the aerial part of rice,and the magnitude of K concentration in the nutrient solution also had an appreciable impact on this,Thus ,in the low-Al solution,the plant treated with K2(80 mg K L^-1)produced much longer roots,showing the presence of interaction between Al and K; in the high-Al solution the K-reated plant had more and longe roots and a considerably greater dry weigh of the above-ground part compared with the plant deficient in K, showing the alleviating effect of K^ on Al toxicity.The mechanism of the Al-K interaction affecting the rice aerial part growth is not yet known,but part of the reason might be that the excessive amount of Al inhibited the uptake of some nutrients such as Ca and Mg and reduced their transfer to the plant aerial organs,whereas K showed its compensating effect on this;therefore,K could relieve Al toxicity at a high level of Al and promoted rice growth at a low level of Al.  相似文献   

9.
限量单次灌溉对套作冬小麦和春玉米产量的影响   总被引:2,自引:0,他引:2  
A field experiment was conducted during the 2002/2003 cropping season of winter wheat (Triticum aestivum) and spring maize (Zea mays) to evaluate the effect of limited single drip irrigation on the yield and water use of both crops under relay intercropping in a semi-arid area of northwestern China. A controlled 35 mm single irrigation, either early or late, was applied to each crop at a certain growth stage. Soil water, leaf area, final grain yield and yield components such as the thousand-grain weight, length of spike, fertile spikelet number, number of grains per spike, and grain weight per spike were measured, and water use efficiency and leaf area index were calculated for the irrigated and non-irrigated relay intercropping treatments and sole cropping controls. The results showed that yield, yield components, water use efficiency, and leaf area index in the relay intercropping treatments were affected by limited single drip irrigation during various growth stages of wheat and maize. The total yields in the relay intercropping treatment irrigated during the heading stage of wheat and the heading and anthesis stage of maize were the highest among all the treatments, followed by that irrigated during the anthesis stage of wheat and silking stage of maize;so was the water use efficiency. Significant differences occurred in most yield components between the irrigated and non-irrigated relay-intercropping treatments. The dynamics of the leaf area index in the relay-intercropped or solely cropped wheat and maize showed a type of single-peak pattern, whereas that of the relay intercropping treatments showed a type of double-peak pattern. Appropriately, limited single irrigation and controlled soil water content level could result in higher total yield, water use efficiency, and leaf area index, and improved yield components in relay intercropping. This practice saved the amount of water used for irrigation and also increased the yield. Therefore, heading stage of wheat and heading and anthesis stage of maize were suggested to be the optimum limited single irrigation time for relay-intercropped wheat and maize in the semi-arid area.  相似文献   

10.
西红柿对聚烯烃控释肥这种新的施肥方法的反应   总被引:2,自引:0,他引:2  
The response of tomato (Lycopersicon esculentum) plants basically fertilized with 0.3 g N per plant of compound fertilizer with a N:P2O5:K2O ratio of 20:10:20 to sticks of polyolefin-coated fertilizer (POCF) (LongT0 with a N:P2Os:K2O ratio of 14:12:14) applied 23 d after transplanting was investigated using rooting boxes in the greenhouse. The results at 26 and 40 d after stick fertilizer treatment showed that the use of the stick fertilizer greatly increased the production of many new fine roots from the tomato plants. Compared to the unfertilized control, root length and root length density in the stick fertilizer treatment increased by 3.6-6.7 fold. In the soil zones near the stick fertilizer, root weight and root mass density were also significantly higher for the stick fertilizer treatment. Additionally, the use of the stick fertilizer increased the N, P and K concentrations in the leaves and stems of the tomato plants. The new fine roots growing near the stick fertilizer not only absorbed more nutrients and translocated them to the shoots, but also contained more nutrients within themselves. The soil ammonium and nitrate N data showed that N released from the stick fertilizer played a major role in inducing the production of new fine roots. These results indicated that stick fertilizer could be used as an alternative to the co-situs application technique to change and control the root distribution of crops as well as to increase the potential capacity of roots for water and nutrient absorption.  相似文献   

11.
Sewage sludge (SS) can be used as an alternative fertilizer in agriculture. It is normally broadcasted and plowed into soil, but it is not clear if it has a potential as a placement fertilizer. A rhizobox experiment was conducted to investigate the placement effect of SS and mineral nitrogen (N) fertilizer on shoot and root growth as well as nutrient uptake of spring wheat (Triticum aestivum L.). The treatments included localized SS, mixed SS, localized SS and ammonium, localized ammonium, and a control without addition of SS and ammonium to examine the effect of SS placement and, further, if ammonium co‐localization would enhance the placement effect. The results show that SS fertilization improved soil N and P availability, which significantly increased plant N and P uptake and enhanced shoot growth, while root length was significantly reduced compared to the control. Localized SS increased root proliferation in the placement region, resulting in enhanced uptake of P from the SS patch compared to homogenous application. However, co‐localized application of ammonium with SS significantly depressed plant shoot and root growth. Localized ammonium markedly restricted root proliferation in the placement region and reduced soil pH in both bulk soil and placement region, contributing to decreased nutrient uptake and plant growth.  相似文献   

12.
碳酸氢根与水肥同层对玉米幼苗生长和吸收养分的影响   总被引:4,自引:1,他引:4  
把水分(NaHCO3溶液或纯水)供应于底施了铵态或硝态N肥的土层内,以研究HCO3-及水肥供应方式对石灰性土壤上玉米生长及养分吸收的影响。结果表明,在限制灌水量的条件下,在土壤上层供应HCO3-显著抑制根系生长,但在下层供应对生长无明显影响;当施用不同形态N素时,HCO3-对N素吸收并无明显影响;此外,供应HCO3-溶液能明显提高灌水土层的土壤pH。总体来看,在供试条件下,HCO3-对玉米幼苗生长量、根系分布及养分吸收量的影响均较为有限,而后三者主要受施肥灌水层次的影响,即:在土壤上层施肥灌水,幼苗生长量显著降低;而在下层施肥灌水是一种节水节肥的水肥供应方式。但下层施肥灌水不利于植株的直立性。因为下层施肥灌水时根系主要分布在下层,在上层分布数量极少;而上层施肥灌水根系在上下两层中的分布无明显差异;下层施肥灌水的玉米植株,其N、P、K吸收量远高于上层施肥灌水的植株。  相似文献   

13.
Influence of ammonium supply on growth, mineral nutrient and polyamine contents of young maize plants The influence of an increasing ammonium supply on the growth, mineral nutrient and polyamine contents of young maize plants was investigated in nutrient solution culture. A high ammonium concentration in the nutrient solution reduced shoot growth, lowered the shoot/root ratio and increased the dry matter content. The N content of the roots was increased, while the K content of the whole plant was reduced considerably. However, the plant analysis did not indicate nutrient deficiency. Ammonium nutrition induced an accumulation of putrescine in shoots and roots. None the less, regarding the ionic balance, K was only marginally substituted by putrescine, despite a close negative relationship between the putrescine and the K contents.  相似文献   

14.
分层供水和表层施锌对玉米植株生长和锌吸收的影响   总被引:1,自引:0,他引:1  
进行分层水分隔离盆栽试验,模拟田间不同层次土壤中水分含量分布不均条件,研究表层土壤施锌情况下,玉米植株生长和锌吸收以及根系在表层和底层土壤中的分配。结果表明,施锌明显促进了玉米地上部生长。在土壤表层水分充足时,施锌对植株增长效果较明显,有利于玉米利用土壤水分。缺锌条件下,改善土壤水分并未显著提高玉米生物量。表层土壤干旱时,上下层土壤中根系干物重之比减小,底层土壤中根系分布相对增加,当表层土壤水分增加时,根系在表层土壤中干物重显著增加,分布相对增多。施锌并没有影响根系在不同层次土壤中的分配。表层土壤水分对苗期玉米植株锌吸收总量有显著影响,干旱条件下,玉米植株锌吸收总量下降;底层土壤水分供应状况对玉米锌浓度影响不大,但植株中锌向地上部运转增加。尽管施锌没有提高生长早期玉米根系生长和对底层土壤水分的利用,但本研究表明缺锌旱地土壤上如通过灌溉等措施增加了耕层土壤水分,应该注意施用锌肥,否则严重影响玉米生物量和玉米对土壤水分的利用效率。  相似文献   

15.
土壤养分空间异质性与根系觅食作用:从个体到群落   总被引:2,自引:1,他引:1  
土壤中分布着许多大小不一的养分富集区域(也称之为养分斑块)。植物为了适应环境最大限度的获取资源,会对这些养分斑块做出形态及生理上的响应。当根系接触到这些富集养分的区域就会大量的增生,尤其是比根长较大的细根,并且根系对养分的生理吸收能力也强于养分富集区域以外的根系。养分斑块的属性(大小、强度、组成和位置等)和植物体本身的属性(敏感性和觅食能力等)共同决定了养分空间异质性对于植物体生长的影响。由于不同物种的根系对于养分斑块的可塑性和养分斑块的属性的差异及植物根系接触到养分斑块的时间和规模的不同会加剧种间或种内的竞争强度;先接触到养分斑块的植物根系可能在其他植物的根系到达之前将养分斑块内部的养分大部分吸收或耗尽,从而引起根系间的不对称性竞争。养分空间异质性造成的群体内部竞争强度的增加甚至不对称性会引起群体内植株大小变异性的增加,从而进一步影响群体结构。同时养分空间异质性对根系竞争的影响也会改变群落内部物种的多样性及整个体系的生产力,这与群落内物种之间觅食精度及竞争力的差异有关;觅食能力较强的物种可能会高效整合并占据大量的小养分斑块从而提高自身生长,进而降低了小养分斑块对群落物种丰度的正效应。  相似文献   

16.
To overcome soil nutrient limitation, many plants have developed complex nutrient acquisition strategies including altering root morphology, root hair formation or colonization by arbuscular mycorrhizal fungi (AMF). The interactions of these strategies and their plasticity are, however, affected by soil nutrient status throughout plant growth. Such plasticity is decisive for plant phosphorus (P) acquisition in P‐limited soils. We investigated the P acquisition strategies and their plasticity of two maize genotypes characterized by the presence or absence of root hairs. We hypothesized that in the absence of root hairs plant growth is facilitated by traits with complementary functions, e.g., by higher root mycorrhizal colonization. This dependence on complementary traits will decrease in P fertilized soils. At early growth stages, root hairs are of little benefit for nutrient uptake. Regardless of the presence or absence of root hairs, plants produced average root biomass of 0.14 g per plant and exhibited 23% root mycorrhizal colonization. At later growth stages of maize, contrasting mechanisms with functional complementarity explained similar plant biomass production under P limitation: the presence of root hairs versus higher root mycorrhizal colonization (67%) favored by increased fine root diameter in absence of root hairs. P fertilization decreased the dependence of plant on specific root traits for nutrient acquisition. Through root trait plasticity, plants can minimize trade‐offs for developing and maintaining functional traits, while increasing the benefit in terms of nutrient acquisition and plant growth. The present study highlights the plasticity of functional root traits for efficient nutrient acquisition strategies in agricultural systems with low nutrient availability.  相似文献   

17.
杉木根系对不同磷斑块浓度与异质分布的阶段性响应   总被引:3,自引:0,他引:3  
【目的】对杉木根系在异质供磷(P)条件下的觅磷行为进行动态监测,探讨磷斑块的浓度与其异质分布对杉木根系觅磷行为的影响。【方法】以福建漳平五一国有林场的半同胞杉木家系为试验材料,利用垂直异质供磷装置,设置KH2PO4 0 mg/kg(缺磷,P0)、4 mg/kg(低磷,P4)、16 mg/kg(正常供磷,P16)和30 mg/kg(高磷,P30)4个磷浓度斑块,将其按照不同顺序垂直排列构建异质供磷处理。在生长50、100、150 d时,进行3次破坏性取样,测定不同阶段不同异质供磷处理下杉木根系形态、生物量及觅磷效率的变化,进行杉木根系生长及觅磷行为的动态观测。【结果】杉木根系表现出阶段性的觅磷策略: 1)当杉木根系处于表层缺磷或低磷斑块时,通过根系的增生向供磷量更高的斑块觅磷,根系增生促进了缺磷或低磷斑块根系的干物质积累,但其根系含磷量较低; 至处理中期,表层缺磷处理的根系从缺磷斑块生长至低磷斑块后,杉木根系受低磷胁迫持续大量增生; 而当表层低磷处理的根系从低磷斑块生长至高磷斑块后,根系在高磷斑块内大量增生,且促进了根系磷养分的吸收及干物质的积累; 处理末期,当高磷斑块置于最底层时,其斑块内的根系生长量、 干物质积累量及根系含磷量均明显较大。2)当杉木根系处在表层高磷斑块时,根系初期仅在供磷量较高的表层生长,其根系生长量与干物质积累量均低于表层供磷量较低的处理,但其根系含磷量却显著大于表层供磷量较低的处理; 处理中期及末期,表层的根系生长量、 干物质积累量及根系含磷量均显著大于其他层次,且表层充足供磷处理的根系向地生长速度最快。【结论】异质供磷条件下,当杉木根系处在缺磷或低磷斑块时,主要通过根系的大量增生来寻觅磷养分; 当杉木根系处在高磷斑块时,在初期致力于斑块磷养分的吸收之后,表层根系大量增生,且根系的磷养分吸收和干物质积累显著大于其他层次,同时提高根系向地生长速度。  相似文献   

18.
Microbial‐based inoculants have been reported to stimulate plant growth and nutrient uptake. However, their effect may vary depending on the growth stage when evaluated or fertilizer applied. Thus, the objective of this study was to test the hypothesis that microbial‐based inoculants known to promote root growth and nutrient uptake will promote plant growth, enhance early root development, and increase nutrient concentrations of corn (Zea mays L.). Plants were evaluated at four different growth stages and in the presence of three different nitrogen (N) fertilizers. The microbial‐based treatments evaluated were: SoilBuilder™ (SB), a filtered metabolite extract of SoilBuilder™ (SBF), a mixture of four strains of plant growth‐promoting Bacillus spp (BM), and a water‐inoculated control. The experiment also included four fertilizer treatments: urea (U), urea‐ammonium nitrate (UAN), calcium‐ammonium nitrate (CAN), and an unfertilized control. Corn plants were evaluated at growth stages V2, V4, V6, and VT. Plant growth parameters for biomass, height, and SPAD readings were enhanced by the three microbial‐based treatments. A greater effect of microbial‐based treatments was observed when plants were evaluated at V6 and VT stages. Parameters of early root development such as total root length (TRL), root surface area (RSA), and length of fine roots were enhanced when microbial‐based treatments were applied. Concentrations of N, P, and K were also increased by microbial‐based treatments compared to the non‐inoculated control. Increases in plant N concentration due to microbial‐based treatments were on average 72% for CAN, 61% for UAN, 72% for urea, and 54% for the unfertilized control. Phosphorus concentration was increased most (138%) when BM was applied with CAN. In the same way, when CAN was present, K concentration was increased by 95% with BM and 65% when SB and SBF were applied. Overall, the results demonstrate that microbial‐based inoculants evaluated in this study can positively impact corn growth and nutrient concentration, especially during the late vegetative stages. Furthermore, the results indicate that the enhancement of nutrient concentrations (N, P, and K) in this case was related to the capacity of microbial‐based treatments to impact root morphology at early stages of corn growth.  相似文献   

19.
玉米根系对土壤氮、磷空间异质性分布的响应   总被引:2,自引:2,他引:0  
氮、磷资源富集区(patches)通常独立存在,揭示植物根系对异质性氮、磷分布的响应,对于通过根系调控充分挖掘根系高效获取氮、磷资源的生物学潜力,提高氮、磷资源利用效率具有重要的理论与实践意义。通过盆栽试验研究了3种氮、磷供应方式(氮磷均匀供应,氮磷混合局部供应,氮磷分开局部供应)对玉米根系生长和分布以及氮、磷吸收的影响。结果表明,氮磷混合和分开局部供应均显著增加了玉米根系干重。与均匀供应处理相比,氮磷混合局部供应使玉米总根长、根干重、根质量比分别增加了28%,66%和31%,磷吸收量减少了35%,但对地上部干重和氮吸收量没有显著的影响。相比之下,氮磷分开局部供应使根和地上部干重均增加55%,氮、磷吸收量分别提高58% 和81%,但对总根长和根冠干物质分配比例无显著影响;与局部供氮相比,局部供磷显著刺激了根系的生长,表明更多的干物质优先分配到局部供磷的区域。由此可见,与氮磷混合局部供应相比,在氮、磷资源分开供应条件下,玉米通过改变根系形态和分布来协调和整合对氮、磷资源的响应,从而强化根系对不同土壤氮、磷资源的摄取能力,这为优化氮、磷资源的管理和空间配置提供了重要依据。  相似文献   

20.
一次性施用控释肥对水稻根系活力及养分吸收特性的影响   总被引:10,自引:1,他引:10  
采用盆栽试验,研究了一次性施用控释肥对水稻根系活力及养分吸收特性的影响。结果表明,在等养分量下,控释肥BNCRF和BRCU处理较专用肥分次施用的SNRSF处理能提高水稻生育前期、中期根系伤流强度,显著提高全生育期伤流液的氨基酸态氮输出强度;明显增加了根系总吸收面积和有效吸收面积。同时,BNCRF处理在前、中期氮、磷吸收速率显著增强,BRCU处理仅在生育中期显著提高。采用低钾控释肥BLCRF处理,水稻前期伤流强度、氨基酸态氮输出强度及吸收面积均较小,但中、后期明显增高,氮、磷吸收速率与高钾含量的SNRSF处理相当。说明一次性施用控释肥能显著增强根系活力,提高生育中期养分吸收速率,改善水稻根系生理功能。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号