首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 140 毫秒
1.
不同生长期柑橘叶片磷含量的高光谱预测模型   总被引:2,自引:2,他引:2  
针对传统柑橘叶片磷含量检测耗时费力、操作繁琐且损伤叶片等弊端,该研究引入高光谱信息探索柑橘叶片磷含量快速无损检测与预测模型,选ASD Field Spec 3光谱仪采集柑橘4个重要生长期的叶片反射光谱,同步采用硫酸-双氧水消煮-钼锑抗比色法测定叶片的磷含量;先用正交试验确定小波去噪的最佳去噪参数组合,再分别选拉普拉斯特征映射(laplacian eigenmaps,LE)、局部线性嵌入(locally-linear embedding,LLE)、局部切空间对齐(local tangent space alignment,LTSA)、等距映射(isometric mapping,Isomap)和最大方差展开(maximum variance unfolding,MVU)5种典型的流形学习算法对去噪后的光谱数据进行降维和特征提取,进而建立基于支持向量机回归(support vector regression,SVR)的柑橘叶片磷含量预测模型。结果表明,基于一阶导数谱的Isomap-SVR建模结果最佳,全生长期校正集和验证集模型决定系数分别为0.9430和0.8949。试验表明,5种流形学习算法皆适用于对柑橘叶片磷含量的预测,为高光谱检测技术用于柑橘树长势监测和营养诊断提供了参考。  相似文献   

2.
基于高光谱的柑橘叶片氮素含量多元回归分析   总被引:8,自引:6,他引:2  
快捷、准确、无损地检测柑橘叶片氮(N)素含量,对柑橘树N肥施用的精准动态管理有重大现实意义。以117株园栽罗岗橙为试验研究对象,在不同生长期用ASD公司的FieldSpec3采集柑橘树健康叶片的高光谱反射值,以高光谱反射数据或其变换形式作为柑橘树样本多元矢量描述;用凯氏定氮法同期检测出柑橘树叶的真实N素含量值;在用PCA对高维光谱矢量降维的基础上,利用支持矢量回归算法(SVR)建立高光谱多元表达和N素含量间的映射关系,以实现任意柑橘树N素含量的预测分析。试验结果表明,测试集上预测值和真实值间的平方决定系数R2为0.9730,平均相对误差为0.9033%,均方误差MSE为0.090343,证明了该方法的有效性,为利用高光谱技术进行柑橘树N素含量的无损检测提供了参考。  相似文献   

3.
基于SVR算法的小麦冠层叶绿素含量高光谱反演   总被引:21,自引:14,他引:7  
为给小麦的长势监测与农艺决策提供科学依据,利用高光谱技术实现了小麦冠层叶绿素含量的估测。通过分析18种高光谱指数对叶绿素的估测能力,筛选出可敏感表征叶绿素含量的指数REP,利用地面光谱数据为样本集,以最小二乘支持向量回归(least squares support vector regression,LS-SVR)算法建立了小麦冠层叶绿素含量反演模型,其校正决定系数C-R2与预测决定系数P-R2分别为0.751与0.722,在各指数中反演精度最高。进一步分析表明,REP对叶绿素含量以及LAI值较高与较低的样本均具备良好的预测能力,可有效避免样本取值范围以及冠层郁闭度等因素对叶绿素含量估测的影响。利用LS-SVR反演模型完成了OMIS影像叶绿素含量的遥感填图,并以地面实测值进行检验,其拟合模型R2与RMSE值分别为0.676与1.715。结果表明,高光谱指数REP所建立的LS-SVR模型实现了叶绿素含量的准确估测,可用于小麦叶绿素含量信息的快速、无损获取。  相似文献   

4.
基于高光谱图像的黄瓜叶片叶绿素含量分布检测   总被引:7,自引:3,他引:4  
植物叶片叶绿素含量及分布是植物营养信息表达的重要指标。为了给大棚黄瓜营养元素的控制提供理论依据,该研究利用高光谱图像建立简单实用的光谱值和叶绿素含量关系的模型,从而实时、无损地检测叶片的叶绿素分布。选取黄瓜叶片的高光谱图像数据块中450~850 nm波段作为研究波段。选取8个具有代表性的植被指数,建立特征波长λ下相应的光谱反射值Rλ与黄瓜叶片叶绿素含量之间的关系模型。结果显示,基于最优指数(R695–705)-1-(R750–800)-1的模型可以很好地预测黄瓜叶片叶绿素的含量,校正集和预测集相关系数r分别为0.8410和0.8286,最小均方根误差RMSE分别为0.2045和0.2190 mg/g。最后根据最优模型预测叶片上任意位置叶绿素的含量,并通过伪彩手段描述叶绿素含量的分布。研究结果表明,利用高光谱图像技术分析黄瓜叶片叶绿素含量及其在叶面上的分布是可行的。另外,该研究确定的最优植被指数所包含的695~705和750~800 nm 2个波段可用于搭建更加简便实用的快速检测叶片叶绿素的便携式多光谱设备。  相似文献   

5.
基于叶绿素荧光光谱的生菜硝酸盐含量检测   总被引:3,自引:3,他引:0  
为了寻求生菜叶片硝酸盐含量的快速无损检测方法,该文利用叶绿素荧光光谱分析技术对生菜(Lactuca sativa L.)叶片硝酸盐含量进行检测研究。对比及分析500~550、650~715和715~800 nm 3个波段的叶绿素荧光光谱特征参数与生菜叶片硝酸盐含量的关系,得出650~715 nm波段的叶绿素荧光光谱特征参数与生菜叶片硝酸盐含量之间线性关系显著,决定系数R2为0.816,标准误差为0.147,以此建立的回归模型能够很好地反映生菜叶片硝酸盐含量与叶绿素荧光光谱特征参数的关系;将同批进行试验的30个样本作为回归方程的校验集,进行模型验证,预测值与实测值之间决定系数R2为0.752,表明回归模型对生菜叶片硝酸盐含量有良好的预测效果。研究结果为生菜叶片硝酸盐含量的快速无损检测提供参考。  相似文献   

6.
基于高光谱的油麦菜叶片水分CARS-ABC-SVR预测模型   总被引:8,自引:7,他引:1  
为了实现油麦菜生长期间更合理的灌水管理,研究一种基于高光谱技术的精确、快速、有效检测油麦菜叶片水分的新方法。以5种不同水分胁迫水平的油麦菜为研究对象,通过高光谱成像系统获取高光谱图像并利用干燥法测量叶片含水率。采用多项式平滑(Savitzky-Golay,SG)结合标准变量变换(standard normalized variable,SNV)对高光谱数据去噪平滑。利用竞争性自适应加权算法(competitive adaptive reweighted sampling,CARS)进行特征波长选择,并与逐步回归分析(stepwise regression,SR)及连续投影算法(successive projections algorithm,SPA)进行比较,利用支持向量回归机(support vector regression,SVR)分别建立油麦菜叶片全光谱数据、3种特征光谱数据与干基含水率的关系模型。结果表明,基于竞争性自适应加权算法波长选择的支持向量回归模型(CARS-SVR)效果最佳,但预测精度尚不够理想,故引入人工蜂群算法(artificial bee colony,ABC)优化模型的参数惩罚因子和核参数。最终,经人工蜂群算法优化后的模型(CARS-ABC-SVR)的预测集决定系数R2和均方根误差RMSE分别为0.9214和2.95%。因此,利用高光谱技术结合CARS-ABC-SVR模型预测油麦菜叶片水分含量是可行的。  相似文献   

7.
水稻叶片氮素及籽粒蛋白质含量的高光谱估测模型   总被引:4,自引:0,他引:4  
研究水稻叶片氮素和籽粒蛋白质含量的高光谱快速、无损监测方法,对于水稻营养诊断、籽粒品质监测及氮肥高效利用具有重要意义。本文通过水稻盆栽试验,测定水稻叶片氮素、籽粒蛋白质含量和冠层光谱,采用不同的光谱建模方法来提高氮素、籽粒蛋白质含量的估测精度。先用主成分分析(PCA)方法进行特征波段的提取,再用多元线性回归(MLR)、人工神经网络(ANN)和偏最小二乘回归(PLSR)进行建模。结果表明,水稻叶片氮素和籽粒蛋白质含量与特征光谱存在很好的模型关系,3种模型预测的决定系数(R2p)均在0.847以上,并以PLSR模型的预测效果为最好,可以实现水稻氮素营养和籽粒品质的高光谱估测。  相似文献   

8.
基于高光谱的冬油菜叶片磷含量诊断模型   总被引:5,自引:2,他引:3  
为快捷、无损和精准表征冬油菜磷素营养与冠层光谱间的定量关系,该文以连续3a田间试验为基础,探究叶片磷含量的敏感波段范围及光谱变换方式,明确基于高光谱快速诊断的叶片磷含量有效波段,降低光谱分析维度,提高磷素诊断时效性。以2013-2016年田间试验为基础,测定不同生育期油菜叶片磷含量和冠层光谱反射率。此后,对原初光谱(raw hyperspectral reflectance,R)分别进行倒数之对数(inverse-log reflectance,log(1/R))、连续统去除(continuum removal,CR)和一阶微分(first derivative reflectance,FDR)光谱变换,采用Pearson相关分析确定叶片磷含量的敏感波段区域。在此基础上,利用偏最小二乘回归(partial least square,PLS)构建最优预测模型并筛选有效波段。结果表明,油菜叶片磷含量的敏感波段范围为730~1300 nm的近红外区域;基于敏感波段的FDR-PLS模型预测效果显著优于其他光谱变换方式,建模集和验证集决定系数(coefficient of determination,R2)分别为0.822和0.769,均方根误差(root mean square error,RMSE)分别为0.039%和0.048%,相对分析误差(relative percent deviation,RPD)为2.091。根据各波段变量重要性投影(variable importance in projection,VIP)值大小,确定油菜叶片磷含量有效波段分别为753、826、878、995、1 187和1 272 nm。此后,再次构建基于有效波段的油菜叶片磷含量估算模型,R2和RMSE分别为0.678和0.064%,预测精度较为理想。研究结果为无损和精确评估冬油菜磷素营养提供了新的研究思路。  相似文献   

9.
高光谱图像检测马铃薯植株叶绿素含量垂直分布   总被引:11,自引:6,他引:5  
为了检测马铃薯作物叶绿素含量,该文按照叶片垂直分布位置采集马铃薯叶片样本的成像高光谱数据,提取并计算了400个划分区域的平均光谱,使用手持式SPAD-502叶绿素仪测定了相应位置的SPAD(soil plant analysis development)值。采用标准正态变量校正(standard normal variate,SNV)方法对光谱数据进行预处理,分析了开花期植株自下而上垂直叶位间光谱和叶绿素分布关系,其光谱反射率在382~700 nm区间随叶位的升高反射率增加(上中下),在700~1 019 nm范围下叶位反射率高于上部和中部叶位(下上中),且SPAD均值依次为36.41、43.11、47.04。分别采用相关系数分析法和随机蛙跳(random frog,RF)算法筛选叶绿素含量敏感波长,并建立偏最小二乘回归(partial least squares regression,PLSR)模型。结果如下:基于相关系数分析法筛选的12个敏感波长主要位于530~550和706~708nm范围,建模精度RC2为0.7 588,验证精度RV2为0.5 773;基于random frog算法筛选的11个敏感波长(554.62、560.26、575.04、576.35、595.09、604.7、649.44、731.8、752.78、786.38、789.97 nm),建模精度RC2为0.8 423,验证精度RV2为0.7 676。选取RF-PLS模型计算马铃薯叶片每个像素点的叶绿素含量,绘制不同叶位马铃薯叶片叶绿素含量可视化分布图,结果可反映马铃薯在开花期植株上叶片叶绿素动态响应关系,实现了不同叶位马铃薯叶片叶绿素含量无损检测以及分布可视化表达。  相似文献   

10.
  【目的】  作物叶片颜色反映土壤养分的供应状况。研究作物叶片氮素相关的特征光谱信息与土壤无机氮含量的关系,以建立基于叶片光谱信息的土壤无机氮含量诊断模型,实现利用高光谱技术对作物和土壤进行实时监测。  【方法】  在两年(2017—2018) 的玉米 (郑单958) 田间试验中,设置6个施氮水平,施氮量分别为0、60、120、180、240、300 kg/hm2。在玉米的拔节期、大喇叭口期、开花吐丝期、灌浆期测定叶片高光谱反射率,对植株和土壤样品进行采集,分析土壤无机氮含量的变化,明确叶片光谱反射率与土壤无机氮含量的关系,利用光谱参数和偏最小二乘回归法 (partial least squares regression,PLSR) 建立诊断模型并进行模型精度的评价。  【结果】  施氮处理土壤无机氮含量显著高于不施氮处理,随着生育期的推移,土壤无机氮含量呈递减趋势,追肥可显著提高土壤无机氮含量。拔节期和开花吐丝期叶片光谱反射率与土壤无机氮含量在可见光波段呈负相关关系,在近红外波段呈正相关关系;大喇叭口期两者在可见光波段呈负相关关系,灌浆期两者无明显相关关系。在光谱参数模型中,4个生育期土壤无机氮含量预测的最佳光谱指数分别为RVI-2、RSI (534,726)、RSI (567,519) 和RVI-2,其回归模型验证集的R2分别为0.642、0.749、0.696、0.540。在PLSR预测模型中,利用PLSR建立的诊断模型验证集的R2分别为0.876、0.838、0.765、0.595,RPD (ratio of percent deviation) 分别为2.140、2.077、2.002、1.369。  【结论】  基于叶片光谱反射率建立的PLSR估算模型,在玉米的拔节期、大喇叭口期、开花吐丝期均能很好地预测土壤无机氮含量。因此,利用叶片光谱特征诊断土壤无机氮含量具有一定的可行性。  相似文献   

11.
基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算   总被引:15,自引:4,他引:11  
为了进一步提高玉米叶绿素含量的高光谱估算精度,该文测定了西北地区玉米乳熟期叶片的光谱反射率及其对应的叶绿素相对含量(soil and plant analyzer development,SPAD)值,分析了一阶微分光谱、高光谱特征参数与 SPAD的相关关系,构建了基于一阶微分光谱、高光谱特征参数和 BP 神经网络的 SPAD 估算模型,并对模型进行验证;再结合主成分回归(principal component regression,PCR)、偏最小二乘回归(partial least squares regression,PLSR)以及传统回归模型与 BP 神经网络模型进行比较。结果表明:SPAD 值与一阶微分光谱在763nm 处具有最大相关系数(R=0.901);以763 nm 处的一阶微分值、蓝边内最大一阶微分为自变量建立的传统回归模型可用于玉米叶片 SPAD 估算;将构建传统回归模型时筛选到的光谱参数作为输入,实测 SPAD 值作为输出,构建 BP 神经网络模型,其建模与验模 R2分别为0.887和0.896,RMSE 为2.782,RE 为4.59%,与其他回归模型相比,BP 神经网络模型预测精度最高,研究表明 BP 神经网络对叶绿素具有较好的预测能力,是估算玉米叶片 SPAD 值的一种实时高效的方法。  相似文献   

12.
基于光谱特征分析的苹果树叶片营养素预测模型构建   总被引:5,自引:3,他引:2  
该文旨在利用光谱分析技术建立高精度苹果叶片营养素预测模型,为苹果树的精细管理提供技术支持。在苹果树年度生长周期的坐果期、生理落果期和果实成熟期等重要物候期,采集了180个果树叶片样本并测量了果树叶片在可见光和近红外波段的反射光谱,同时在实验室采用化学方法获取了果树叶片的氮素以及叶绿素含量。对于聚类后样本,分别分析了果树叶片反射光谱以及经小波滤波后的反射光谱与叶绿素以及氮素之间的相关关系,而后利用偏最小二乘和支持向量机(SVM,support vector machine)方法分别建立了果树叶片叶绿素和氮素含量的回归模型。研究发现,随着生长阶段的推进,在可见光处的反射率逐渐升高,在近红外处的反射率逐渐降低,且基于小波滤波反射光谱的营养素SVM回归模型精度最高:建立的叶绿素回归模型,其测定系数R2达到0.9920,均方根误差 RMSE为0.0039,验证精度R2达到0.9036,RMSE为0.1979;建立的氮素回归模型,其测定R2和验证R2也达到0.74以上,模型的回归RMSE为0.0554,验证RMSE为0.1215。结果表明,采用支持向量机回归模型可以精确估计果树叶片叶绿素含量,对氮素含量的估计精度也达到了实用化水平。  相似文献   

13.
基于无人机影像的冠层光谱和结构特征监测甜菜长势   总被引:2,自引:1,他引:1  
甜菜是中国北方地区重要的经济作物。快速、准确、高通量的获取甜菜的地上部和块根鲜质量、块根含糖率、叶绿素含量对甜菜生产具有重要意义。该研究采用无人机搭载数码和多光谱相机,获取甜菜叶丛快速生长期、块根及糖分增长期和糖分积累期的数码影像和多光谱影像,提取了冠层的结构特征和光谱特征。选择随机森林回归(Random Forest Regression,RFR)和偏最小二乘回归(Partial Least Squares Regression,PLSR)2种建模方法基于获取的冠层特征,构建甜菜全生育期的地上部和块根鲜质量、块根含糖率和SPAD(Soil and Plant Analyzer Development)值估算模型。研究结果表明,随机森林回归模型和偏最小二乘回归模型对地上部和块根鲜质量、含糖率都做出较好的预测,R2范围分别为0.9~0.94、0.88~0.9,rRMSE范围分别为7.6%~17%、8.8%~20%。对SPAD值的预测均较弱,R2分别为0.66和0.67。为了减小输入变量集的大小以及去掉对预测不敏感的变量,该研究采用置换重要性(Permutation Importance,PIMP)来筛选冠层光谱特征和结构特征中对预测有重要影响的变量。结果表明基于筛选出的重要性特征构建的随机森林回归模型和偏最小二乘回归模型对地上部和块根鲜质量、含糖率都做出较好的预测,R2范围分别为0.89~0.94、0.74~0.91,rRMSE范围分别为7.3%~19%、7.6%~19%。对SPAD值的预测均较弱,R2分别为0.65和0.68。进一步表明随机森林回归模型在精度上略好于偏最小二乘回归模型。同时基于PIMP筛选变量的方法在保持原有精度的同时能实现降低数据收集复杂性的目的。研究结果为基于无人机遥感技术快速、准确监测甜菜长势和估测块根类作物的根部活性物质提供了参考。  相似文献   

14.
柑橘黄龙病(Huanglongbing, HLB)是柑橘生产中的毁灭性病害,柑橘植株遭到黄龙病菌侵染后光合能力发生变化而后表现出相应的黄化症状。及早实现HLB的原位快速诊断是防控HLB的重要手段。为探究黄龙病菌侵染柑橘叶片的光合响应机制并实现HLB的原位诊断,该研究分析了健康(Healthy)、未显症HLB(asymptomatic HLB, aHLB)、显症HLB(symptomatic HLB, sHLB)以及黄斑病(Macular,症状与黄龙病相似)柑橘叶片的光合参数与光合色素含量差异。利用光谱技术与日光诱导叶绿素荧光(Sun-induced Chlorophyll Fluorescence, SIF)技术分析了4种类型柑橘叶片的反射率光谱与SIF光谱差异。采用竞争自适应重加权采样(Competitive Adaptive Reweighted Sampling, CARS)算法结合反射率光谱筛选出特征波段,采用SIF光谱的峰值位置(687和741 nm)构建了上行(Upward, Up)和下行(Downward, Dw)SIF产量指数(Up687, Up741, Dw687, Dw741, Up687/741, Dw687/741)。进一步分别利用特征波段的反射率和SIF产量指数,结合K最邻近(K-nearest Neighbor, KNN)分类算法构建了柑橘黄龙病的诊断模型。结果表明,黄龙病菌的侵染使柑橘叶片的光合作用明显减弱,在未显症时期已经表现出来,证明了SIF技术在诊断早期HLB的优势。基于特征波段反射率的KNN模型对未显症HLB和显症HLB的诊断精度为72.7%和75.6%,健康叶片和黄斑病叶片分别为82.2%和64.1%,而基于687和741 nm波长处的上行比值SIF产量指数Up687/741构建的KNN模型对未显症HLB和显症HLB的诊断精度为84.8%和91.1%,健康和黄斑病叶片分别为88.9%和82.1%,均优于反射率光谱模型。结果证明了SIF技术用于诊断柑橘HLB的潜力,为实现柑橘HLB的田间原位、快速、早期诊断提供了可能。  相似文献   

15.
柑橘黄龙病被称为柑橘的"癌症",具有极强的传染性,造成柑橘产业巨大的经济损失。为探究病原菌对宿主光合作用进程中对光能吸收、分配和利用的影响,并实现柑橘黄龙病的快速诊断,该研究利用叶绿素荧光成像技术对感染黄龙病不同程度柑橘叶片的叶绿素荧光特性和相应淀粉、蔗糖、葡萄糖和果糖含量进行研究,分析了叶片的叶绿素荧光图像与淀粉、蔗糖、葡萄糖和果糖含量之间的关系,并构建了柑橘黄龙病快速诊断模型。结果表明,染病叶片中的淀粉、蔗糖、葡萄糖和果糖出现异常累积,糖代谢异常与病原菌的侵染有关;宿主的叶绿体光系统Ⅱ(Photosystem Ⅱ, PSⅡ)反应中心遭受破坏,导致最小荧光产量上升,PSⅡ的最大光量子效率下降及PSⅡ中有活性的光反应中心数量减少,染病叶片的光化学反应的能力降低,激发能被转换成不可调制荧光淬灭的比例上升;叶绿素荧光参数能够精确地反演出叶片的淀粉、蔗糖、葡萄糖和果糖含量,两者具有很强的相关性。利用叶绿素荧光参数构建的随机森林模型对柑橘黄龙病诊断的总体识别正确率为97.50%。采用叶绿素荧光成像技术能够实现柑橘黄龙病快速无损检测,可为柑橘黄龙病的早期预警提供新方法。  相似文献   

16.
基于红边参数的植被叶绿素含量高光谱估算模型   总被引:11,自引:2,他引:9  
利用ASD便携式野外光谱仪和SPAD-502叶绿素计实测了落叶阔叶树法国梧桐、毛白杨叶片的高光谱反射率与叶片绿度,并对原始光谱反射率及一阶导数光谱与叶片绿度进行了相关分析,建立了基于红边位置、峰度系数、偏度系数的叶片叶绿素含量的高光谱估算模型,最后采用红边位置、峰度、偏度作为BP人工神经网络的输入变量进行了叶绿素含量的估算。结果表明:基于红边位置的法国梧桐、毛白杨叶绿素估算模型的决定系数达到0.7366、0.7289;基于峰度、偏度建立的估算模型可以有效提高估算精度,模型的决定系数均达0.8341以上;法国梧桐和毛白杨人工神经网络模型的确定系数决定系数分别达到0.9574和0.9523。与单变量模型相比人工神经网络模型反演精度明显提高,是一种良好的植被叶绿素含量高光谱反演模式。  相似文献   

17.
基于反射光谱预处理的苹果叶片叶绿素含量预测   总被引:9,自引:8,他引:1  
以苹果叶片叶绿素含量为研究对象,定量研究了光谱数据预处理方法对光谱特征提取及叶绿素含量预测模型的影响。首先,比较了苹果叶片原始反射率光谱、小波包去噪反射率光谱、反射率一阶差分光谱、先小波包去噪后一阶差分光谱、先一阶差分后小波包去噪光谱这5种光谱的波段间相关系数以及光谱与叶绿素含量间的相关系数,建立了叶绿素含量预测逐步回归模型并对建模结果进行了比较分析。结果表明单纯3层sym8小波包去噪可使光谱曲线平滑,但不会明显提高模型精度;一阶差分虽然放大了局部噪声,但是消除了基线漂移影响,可提高模型精度;先差分后小波包去噪比先小波包去噪后差分具有更高的峰值信号噪声比,更低的均方误差与最大误差,建模结果也显示出同样的结果。因此,先差分后小波包去噪算法可认为是一种有效的苹果叶片叶绿素含量预测光谱预处理方法。利用这一方法建立了苹果叶片叶绿素含量预测模型,获得了较高的预测精度。该研究可用于对苹果树营养状态的评价并指导按需施肥。  相似文献   

18.
基于高光谱特征和偏最小二乘法的春小麦叶绿素含量估算   总被引:8,自引:4,他引:4  
叶绿素含量是影响作物生长及产量的主要因素。该研究以2017年6月小型试验田获取的抽穗期春小麦叶绿素含量及其对应的光谱反射率为数据源,对红边(627~780 nm)、黄边(566~589 nm)、蓝边(436~495 nm)、绿边(495~566 nm)、吸收谷和反射峰的最大反射率及反射率总和等16个高光谱特征参数与叶绿素含量之间的相关性进行了分析,并结合偏最小二乘回归法(partial least-squares regression,PLSR)对叶绿素含量进行高光谱建模及验证。结果表明:1)对特定的16个光谱特征参数而言,光谱特征参数绿边最大反射率与春小麦叶绿素质量分数之间的决定系数最低(R~20.5);决定系数较高(R~2≥0.5)的光谱特征参数包括蓝边最大反射率、蓝边反射率总和、黄边最大反射率、黄边反射率总和、红边最大反射率、红边反射率总和、绿边反射率总和、820~940 nm反射率总和及最大反射率、500~670 nm归一化吸收深度和560~760 nm归一化吸收深度,其中820~940 nm反射率总和决定系数达到最高(R~2为0.8);2)利用16个特征参量进行PLSR建模后,发现波段范围在820~940 nm的最大反射率及反射率总和所建立的PLSR估算模型为最优模型,其精度参数R~2p=0.8、RMSEp=2.0 mg/g、RPD=3.2。因此,该模型具有极好的预测能力。该研究为相关研究及当地精准农业提供科学支持和应用参考。  相似文献   

19.
滩涂土壤有机质含量的反射光谱估算   总被引:5,自引:0,他引:5  
Rapid determination of soil organic matter (SOM) using regression models based on soil reflectance spectral data serves an important function in precision agriculture. “deviation of arch”(DOA)-based regression and partial least squares regression (PLSR) are two popular modeling approaches to predict SOM. However, few studies have explored the accuracy of the DOA-based regression and PLSR models. Therefore, the DOA-based regression and PLSR were applied to the visible near-infrared (VNIR) spectra to estimate SOM content in the case of various dataset divisions. A two-fold cross-validation scheme was adopted and repeated 10 000 times for rigorous evaluation of the DOA-based models in comparison with the widely used PLSR model. Soil samples were collected for SOM analysis in the coastal area of northern Jiangsu Province, China. The results indicated that both modelling methods provided reasonable estimates of SOM, with PLSR outperforming DOA-based regression in general. However, the performance of PLSR for the validation dataset decreased more noticeably. Among the four DOA-based models, the linear model of the DOA provided the best estimation of SOM and a cutoff of SOM content (19.76 g kg-1), and the performance for calibration and validation datasets was consistent. As the SOM content exceeded 19.76 g kg-1, SOM became more effective in masking the spectral features of other soil properties to a certain extent. This work confirmed that reflectance spectroscopy combined with PLSR could serve as a non-destructive and cost-efficient way for rapid determination of SOM when hyperspectral data were available. The DOA-based model, which requires only 3 bands in the visible spectra, also provided SOM estimation with acceptable accuracy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号