首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 156 毫秒
1.
基于叶片光谱透过特性的植物氮素测定   总被引:4,自引:2,他引:2  
该文通过不同施氮水平下营养液栽培的水稻和黄瓜叶片在300~1100 nm的分光光谱透过率,与其叶绿素含量和含氮量的相关性分析,确定了560、650和720 nm作为特征波长,940 nm作为参比波长可用于植物营养的快速无损诊断。以上述波长的光谱透过率构建的21组光谱特征参数中,(T940-T560)/(T940+T560)、log(T940/T560)和log(T940/T650)与水稻和黄瓜叶片的叶绿素含量和含氮量的相关性较好,且经回归估测检验的相对误差均小于8%。因此,上述光谱特征参数可作为植物氮素营养指标用于植物叶片的叶绿素含量和含氮量的快速无损估测,从而为植物营养无损诊断提供技术支持。  相似文献   

2.
基于高光谱图像的黄瓜叶片叶绿素含量分布检测   总被引:7,自引:3,他引:4  
植物叶片叶绿素含量及分布是植物营养信息表达的重要指标。为了给大棚黄瓜营养元素的控制提供理论依据,该研究利用高光谱图像建立简单实用的光谱值和叶绿素含量关系的模型,从而实时、无损地检测叶片的叶绿素分布。选取黄瓜叶片的高光谱图像数据块中450~850 nm波段作为研究波段。选取8个具有代表性的植被指数,建立特征波长λ下相应的光谱反射值Rλ与黄瓜叶片叶绿素含量之间的关系模型。结果显示,基于最优指数(R695–705)-1-(R750–800)-1的模型可以很好地预测黄瓜叶片叶绿素的含量,校正集和预测集相关系数r分别为0.8410和0.8286,最小均方根误差RMSE分别为0.2045和0.2190 mg/g。最后根据最优模型预测叶片上任意位置叶绿素的含量,并通过伪彩手段描述叶绿素含量的分布。研究结果表明,利用高光谱图像技术分析黄瓜叶片叶绿素含量及其在叶面上的分布是可行的。另外,该研究确定的最优植被指数所包含的695~705和750~800 nm 2个波段可用于搭建更加简便实用的快速检测叶片叶绿素的便携式多光谱设备。  相似文献   

3.
基于高光谱特征和偏最小二乘法的春小麦叶绿素含量估算   总被引:8,自引:4,他引:4  
叶绿素含量是影响作物生长及产量的主要因素。该研究以2017年6月小型试验田获取的抽穗期春小麦叶绿素含量及其对应的光谱反射率为数据源,对红边(627~780 nm)、黄边(566~589 nm)、蓝边(436~495 nm)、绿边(495~566 nm)、吸收谷和反射峰的最大反射率及反射率总和等16个高光谱特征参数与叶绿素含量之间的相关性进行了分析,并结合偏最小二乘回归法(partial least-squares regression,PLSR)对叶绿素含量进行高光谱建模及验证。结果表明:1)对特定的16个光谱特征参数而言,光谱特征参数绿边最大反射率与春小麦叶绿素质量分数之间的决定系数最低(R~20.5);决定系数较高(R~2≥0.5)的光谱特征参数包括蓝边最大反射率、蓝边反射率总和、黄边最大反射率、黄边反射率总和、红边最大反射率、红边反射率总和、绿边反射率总和、820~940 nm反射率总和及最大反射率、500~670 nm归一化吸收深度和560~760 nm归一化吸收深度,其中820~940 nm反射率总和决定系数达到最高(R~2为0.8);2)利用16个特征参量进行PLSR建模后,发现波段范围在820~940 nm的最大反射率及反射率总和所建立的PLSR估算模型为最优模型,其精度参数R~2p=0.8、RMSEp=2.0 mg/g、RPD=3.2。因此,该模型具有极好的预测能力。该研究为相关研究及当地精准农业提供科学支持和应用参考。  相似文献   

4.
库尔勒香梨叶片全钾含量高光谱估算模型研究   总被引:4,自引:1,他引:3  
为实现库尔勒香梨养分状况的无损、实时、快速监测,利用便携式光谱仪(SVC HR-768)测定不同钾肥施用量的20年树龄库尔勒香梨叶片光谱反射率,并结合叶片全钾含量的室内分析,对叶片全钾含量与原始光谱、一阶导数光谱、高光谱参数之间相关性进行分析。结果表明:在425 nm处原始光谱与叶片全钾含量构建的线性模型,调整决定系数R2值达到0.913;在630 nm处一阶微分光谱与全钾含量构建的线性模型,调整决定系数R2值为0.986。叶片全钾含量与高光谱特征变量中绿峰位置变量(Rg)和红谷位置变量(Ro)的相关性极显著,由此构建的线性模型调整决定系数R2值均达到0.96以上。通过模型检验,确定基于630 nm的光谱一阶微分(X630)模型Y=1 136.835X630+50.709为库尔勒香梨叶片全钾含量(Y)的最优估测模型。  相似文献   

5.
玉米拔节期冠层叶绿素含量多光谱图像检测   总被引:2,自引:2,他引:0  
为了探索大田玉米冠层叶片叶绿素指标的快速检测方法。采用自主研发的2-CCD多光谱图像成像系统采集了大田玉米拔节期冠层图像,并同步获取了样本叶绿素含量指标SPAD值。对多光谱图像进行了平滑滤波,并基于HSI颜色空间实现了冠层图像的分割。提取了玉米冠层可见光(blue(B),green(G),red(R);400~700 nm)和近红外(near-infrared,NIR,760~1 000 nm)4个波段平均灰度值并计算了平均灰度值计算比值植被指数(RVI,ratio vegetation index)、归一化植被指数(NDVI,normalized difference vegetation index)、修改型二次土壤调节植被指数(MSAVI2,modified soil-adjusted vegetation index)等8种常见植被指数作为图像检测参数。分析了这12个检测参数与叶绿素指标之间的相关性,讨论了图像检测参数的多种组合,建立了叶绿素指标的多元线性回归分析(MLRA,multiple linear regression analysis)模型。研究结果表明:R、G、B波段的平均灰度值与叶绿素指标成较高负相关,相关系数分别为-0.73,-0.71和-0.71,植被指数中相关性较好的是NDVI、MSAVI2和RVI,相关系数分别为0.83、0.81和-0.81。基于这6个参数组合建立的叶绿素指标估算模型拟合度最好,其建模集决定系数为0.79,验证集决定系数为0.71,研究结果为无损检测玉米拔节期叶绿素含量提供了支持。  相似文献   

6.
邵艳秋  杜昌文  申亚珍  马菲  周健民 《土壤》2015,47(3):596-601
为比较拉曼光谱和红外光谱在溶液和土壤中硝酸盐含量定量分析的适用性,采用两种光谱对溶液和土壤中的NO3–-N含量(0~200 mg/L)进行快速测定。结果表明,溶液中硝酸盐的拉曼特征峰在1 047 cm–1处,该特征峰强度与NO3–-N浓度成正比,对1 035~1 060 cm-1波段拉曼光谱峰面积和NO3–-N含量进行线性回归,决定系数R2为0.995 4;溶液中硝酸盐的中红外衰减全反射光谱特征吸收峰在1 350 cm–1,吸收峰与NO3–-N含量成正比,特征吸收区1 200~1 500 cm–1峰面积与NO3–-N含量的决定系数R2为0.991 1,表明两种光谱都可用于溶液中硝酸盐的测定。对于土壤样品,红外光谱在1 250~1 500 cm–1处有硝酸盐吸收峰,且吸收峰与NO3–-N含量成正比,峰面积与NO3–-N含量之间的决定系数R2为0.968 4;而对于拉曼光谱,硝酸盐的拉曼峰因受较强干扰导致吸收峰不明显,峰面积与NO3–-N含量之间的决定系数R2仅为0.000 9,表明中红外衰减全反射光谱可用于土壤中硝酸盐的测定,而拉曼光谱则很困难。因此,拉曼光谱和中红外衰减全反射光谱都可用于溶液中硝酸盐的测定,且前者灵敏度要高于后者;中红外衰减全反射光谱可用于土壤中硝酸盐的测定,而拉曼光谱难以用于土壤中硝酸盐定量分析,这为硝酸盐的快速测定提供理论依据和技术支持。  相似文献   

7.
基于高光谱的冬油菜叶片磷含量诊断模型   总被引:5,自引:2,他引:3  
为快捷、无损和精准表征冬油菜磷素营养与冠层光谱间的定量关系,该文以连续3a田间试验为基础,探究叶片磷含量的敏感波段范围及光谱变换方式,明确基于高光谱快速诊断的叶片磷含量有效波段,降低光谱分析维度,提高磷素诊断时效性。以2013-2016年田间试验为基础,测定不同生育期油菜叶片磷含量和冠层光谱反射率。此后,对原初光谱(raw hyperspectral reflectance,R)分别进行倒数之对数(inverse-log reflectance,log(1/R))、连续统去除(continuum removal,CR)和一阶微分(first derivative reflectance,FDR)光谱变换,采用Pearson相关分析确定叶片磷含量的敏感波段区域。在此基础上,利用偏最小二乘回归(partial least square,PLS)构建最优预测模型并筛选有效波段。结果表明,油菜叶片磷含量的敏感波段范围为730~1300 nm的近红外区域;基于敏感波段的FDR-PLS模型预测效果显著优于其他光谱变换方式,建模集和验证集决定系数(coefficient of determination,R2)分别为0.822和0.769,均方根误差(root mean square error,RMSE)分别为0.039%和0.048%,相对分析误差(relative percent deviation,RPD)为2.091。根据各波段变量重要性投影(variable importance in projection,VIP)值大小,确定油菜叶片磷含量有效波段分别为753、826、878、995、1 187和1 272 nm。此后,再次构建基于有效波段的油菜叶片磷含量估算模型,R2和RMSE分别为0.678和0.064%,预测精度较为理想。研究结果为无损和精确评估冬油菜磷素营养提供了新的研究思路。  相似文献   

8.
结合SPA和PLS法提高冬小麦冠层全氮高光谱估算的精确度   总被引:3,自引:1,他引:2  
【目的】 冠层高光谱全波段信息可以在小麦拔节期快速无损地估算叶片的氮含量。本研究结合连续投影算法 (SPA) 和偏最小二乘 (PLS) 技术,筛选了冬小麦拔节期冠层光谱对叶片氮含量的敏感特征波段,以期为冬小麦关键生育期氮素含量的遥感估算提供理论依据和技术支持。 【方法】 以陕西关中地区2015—2016年冬小麦小区试验为基础,基于连续投影算法 (SPA) 提取冬小麦叶片全氮含量的冠层光谱敏感波段,并结合偏最小二乘 (PLS) 回归法建立基于敏感特征波段的冬小麦拔节期叶片氮含量估算模型。 【结果】 SPA算法从冬小麦338~2510 nm的冠层光谱中优选出了1985 nm、2474 nm、1751 nm、1916 nm、2507 nm、1955 nm、2465 nm和344 nm共计8个叶片全氮含量的敏感特征波段,波段数目下降了98.9%,有效降低了光谱信息的冗余;基于敏感特征波段构建的叶片氮含量偏最小二乘回归模型的决定系数和均方根误差分别为0.82和0.28,模型验证方程的决定系数和均方根误差分别为0.84和0.21,模型的相对预测偏差大于2,具有较高的精度和良好的预测能力。 【结论】 与常用植被指数的叶片氮含量估算模型相比,连续投影算法 (SPA) 结合偏最小二乘 (PLS) 方法的叶片氮含量估算精度更高,稳定性更强,可以作为冬小麦拔节期叶片氮含量的高光谱估算方法。   相似文献   

9.
以博斯腾湖湖滨绿洲为研究区,对土壤高光谱反射率R进行数学光谱变换,并计算其差值型、比值型、归一化型3种盐分指数,通过显著性检验优选特征波段,结合土壤表层盐分实验数据,构建基于地理加权回归模型的土壤表层盐分含量估算模型。研究结果表明:1)土壤表层盐分含量平均值为7.535 g·kg-1,其光谱变换建模选取的特征波段集中在466~482、1669~1728、1979~2371 nm,其中对数倒数的一阶微分(1/lg R)′相关性较好,相关系数绝对值为0.672;2)构建3种盐分指数优选的特征波段集中在1700~1728、1992~2014、2375~2405 nm,建立的模型决定系数均大于0.870,光谱反射率R的决定系数仅为0.621;3)差值型盐分指数优选特征波段建立的地理加权回归模型为最优模型,建模集与检验集的决定系数R2分别为0.934和0.915,RMSE分别为1.186和0.917。  相似文献   

10.
春玉米磷素营养的光谱响应及诊断   总被引:6,自引:2,他引:6  
通过盆栽试验监测不同磷营养水平春玉米典型生育期叶片光谱变化,并对叶片光谱反射率与叶片磷含量做了相关分析。结果表明,春玉米大喇叭口期是磷素营养的光谱响应敏感期,3507~30.nm和14201~800.nm是磷素营养的光谱敏感波段。该生育期构建的单波段高光谱变量、窄波段光谱变量和宽波段光谱变量与叶片磷含量都存在显著或极显著的回归关系;窄波段光谱变量比值指数R6725/6256和R61745/15856与叶片磷含量的回归关系达到了极显著水平,R625/555达到显著水平。可见光波段光谱变量与磷含量的回归关系优于近红外波段光谱变量与磷含量的回归关系,表明可见光波段叶片光谱反射率可能更适合春玉米磷营养状况的评价。不同波段宽度的光谱变量分析表明,在敏感波段范围内,801~00.nm波段平均的叶片宽波段光谱反射率没有降低对叶片磷含量的估算精度。  相似文献   

11.
基于透射光谱的玉米叶片水分含量快速检测   总被引:2,自引:2,他引:0  
为实现玉米叶片水分含量快速检测,利用近红外光谱仪在300~1 700 nm采用透射法对玉米叶片水分含量进行快速检测。试验利用烘干法对叶片水分梯度进行控制,并测量玉米叶片的透射光谱曲线和含水率。对透射光谱数据采用Savitzky-Golay方法进行平滑预处理,滤除光谱波动噪声干扰。分析了叶片透射光谱与含水率之间的相关关系,通过相关性分析提取敏感波长800、932、1 423 nm;利用主成分分析法提取敏感波长478、748、1058和1 323 nm。综合二者敏感波长最终筛选出水分敏感波长800、1 323、1 058和1 423 nm。利用这4个波长的组合得到比值植被指数、差值植被指数和归一化植被指数等12种植被指数,选取了最优差值植被指数DVI(1423、800)与透射率T1 323和T1 058建立了玉米叶片含水率多元线性回归诊断模型,建模集决定系数Rc2=0.968 8,验证集决定系数Rv2=0.951 9,预测结果方根误差为0.061。结果表明,利用透射光谱技术检测的玉米叶片水分含量具有较高的精度,可为植物叶片水分快速检测仪器开发提供指导。  相似文献   

12.
用高光谱成像技术检测柑橘红蜘蛛为害叶片的色素含量   总被引:3,自引:2,他引:1  
为解决传统理化法检测柑橘树叶片受红蜘蛛为害后色素含量变化时存在的工作量大、效率低等问题,该文研究应用高光谱成像技术检测柑橘红蜘蛛为害叶片色素含量的方法。研究中对比了正常叶片与受害叶片的原始光谱以及原始光谱一阶微分曲线的差异,寻找反映叶片色素含量变化的特征波段;分析了特征波段反射率比值与叶片色素间相关性;采用单变量线性回归法分析了常用植被指数预测叶片色素含量的效果;采用逐步回归分析法建立了叶片色素含量预测模型,并对模型预测效果进行了F检验。结果表明:常用植被指数预测叶片色素含量结果不理想;选取的667/522、667/647和522/647 nm等3个特征波段反射率比值与叶片3种色素含量间具有较高的相关性;用于建立叶片色素含量预测模型的最佳特征波段反射率比值为667/522和667/647 nm,所建立的模型可较好地预测健康及受害叶片的叶绿素a、叶绿素b和类胡萝卜素含量。  相似文献   

13.
基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算   总被引:15,自引:4,他引:11  
为了进一步提高玉米叶绿素含量的高光谱估算精度,该文测定了西北地区玉米乳熟期叶片的光谱反射率及其对应的叶绿素相对含量(soil and plant analyzer development,SPAD)值,分析了一阶微分光谱、高光谱特征参数与 SPAD的相关关系,构建了基于一阶微分光谱、高光谱特征参数和 BP 神经网络的 SPAD 估算模型,并对模型进行验证;再结合主成分回归(principal component regression,PCR)、偏最小二乘回归(partial least squares regression,PLSR)以及传统回归模型与 BP 神经网络模型进行比较。结果表明:SPAD 值与一阶微分光谱在763nm 处具有最大相关系数(R=0.901);以763 nm 处的一阶微分值、蓝边内最大一阶微分为自变量建立的传统回归模型可用于玉米叶片 SPAD 估算;将构建传统回归模型时筛选到的光谱参数作为输入,实测 SPAD 值作为输出,构建 BP 神经网络模型,其建模与验模 R2分别为0.887和0.896,RMSE 为2.782,RE 为4.59%,与其他回归模型相比,BP 神经网络模型预测精度最高,研究表明 BP 神经网络对叶绿素具有较好的预测能力,是估算玉米叶片 SPAD 值的一种实时高效的方法。  相似文献   

14.
为了研究采用荧光光谱技术对生菜农药残留快速无损定性鉴别的可行性,该文通过采集180个生菜样品(3个浓度农药残留生菜,每个浓度农残生菜样本数为60,其中农药与水配比为1:500、1:1000、1:1200,即重度超标、轻微超标、标准农残)的荧光发射光谱,结合Savitzky-Golay(SG)、标准正态变量变换(standard normalized variable,SNV)、标准正态变量变换结合去趋势(standard normalized variable detrending,SNV detrending)、SG与SNV算法组合(SG-SNV)、SG与SNV detrending算法组合(SG-SNV detrending)对提取的荧光光谱进行预处理,基于全光谱、荧光特征峰值、小波特征建立支持向量机(Support Vector Machine, SVM)分类模型。其中,小波特征通过小波变换对原始光谱以及预处理后光谱进行特征选择获取,分别采用 db4、db6、sym5、sym7作为小波基函数。试验结果表明:基于小波特征、荧光特征峰值建立的 SVM 模型预测集识别率要高于基于全光谱建立的 SVM 模型。以 sym5作为小波基函数,基于 SG-SNV detrending预处理光谱选择的小波特征建立的SVM模型取得最优的预测集识别率93.33%,最佳小波分解层数为4。结果表明应用荧光光谱技术对生菜农药残留鉴别是可行的,为生菜农药残留快速、无损检测分析提供了参考。  相似文献   

15.
Previous research showed that the use of plant growth promoting rhizobacteria helped to increase nutrient use efficiency. The individual and combined effects of combined action of humic fertilizer and rhizobacteria Bacillus subtilis No. 2 on the lettuce yield, chlorophyll, total nitrogen and nitrate-(N) contents in lettuce leaves was studied. Traditional biochemical analysis and crop reflectance method were compared. Vegetation Indices and key spectrum characteristics - a median of frequency spectrum and bandwidth of frequency spectrum were used to estimate chlorophyll content in plant leaves.

The synergistic effect of bacteria and humic fertilizer was evidenced by increase in N and chlorophyll contents and in decreased nitrates content in lettuce leaves. Humic fertilizer resulted in decreased nitrates concentration in plants, whereas bacillus (B). subtilis No. 2 increased total N and chlorophyll contents. Results indicated that the application rate of humic fertilizer may be reduced when B. subtilis No. 2 is also applied.  相似文献   


16.
基于三波长漫反射理论的玉米叶绿素含量无损测定   总被引:1,自引:0,他引:1  
传统的叶绿素无损检测方法采用是的光学透射法,它的测量值是一个相对值。植物叶片的厚度显著的影响了测量的准确性。该文利用三波长漫反射的技术设计了一个试验装置。选取了3种玉米品种,郑单-958,浚单-20和豫单-606来验证检测装置的可行性。在玉米叶片漫反射函数值和叶片叶绿素真实值之间建立了回归分析,郑单-958,浚单-20和豫单-606的决定系数R2分别为0.9766,0.9612和0.9409。试验结果证明了三波长漫反射光谱的方法测量玉米整体叶绿素含量的可行性。  相似文献   

17.
柑橘黄龙病被称为柑橘的"癌症",具有极强的传染性,造成柑橘产业巨大的经济损失。为探究病原菌对宿主光合作用进程中对光能吸收、分配和利用的影响,并实现柑橘黄龙病的快速诊断,该研究利用叶绿素荧光成像技术对感染黄龙病不同程度柑橘叶片的叶绿素荧光特性和相应淀粉、蔗糖、葡萄糖和果糖含量进行研究,分析了叶片的叶绿素荧光图像与淀粉、蔗糖、葡萄糖和果糖含量之间的关系,并构建了柑橘黄龙病快速诊断模型。结果表明,染病叶片中的淀粉、蔗糖、葡萄糖和果糖出现异常累积,糖代谢异常与病原菌的侵染有关;宿主的叶绿体光系统Ⅱ(Photosystem Ⅱ, PSⅡ)反应中心遭受破坏,导致最小荧光产量上升,PSⅡ的最大光量子效率下降及PSⅡ中有活性的光反应中心数量减少,染病叶片的光化学反应的能力降低,激发能被转换成不可调制荧光淬灭的比例上升;叶绿素荧光参数能够精确地反演出叶片的淀粉、蔗糖、葡萄糖和果糖含量,两者具有很强的相关性。利用叶绿素荧光参数构建的随机森林模型对柑橘黄龙病诊断的总体识别正确率为97.50%。采用叶绿素荧光成像技术能够实现柑橘黄龙病快速无损检测,可为柑橘黄龙病的早期预警提供新方法。  相似文献   

18.
以“红颜”草莓(Fragaria×ananassa Duch“Benihope”)为试材,于2021年9−11月在人工气候室进行苗期(9~12片真叶,叶长≥5cm)动态高温环境控制实验,日最高温度以32℃为起点,设置日最高气温/日最低气温分别为32℃/22℃、35℃/25℃、38℃/28℃和41℃/31℃共4个水平,持续时间分别为2d、5d、8d和11d,以28℃/18℃为对照(CK)。试验期间空气相对湿度60%~70%,光周期12h/12h(6:00−18:00),光照强度800μmolm−2s−1。测定不同处理下叶片叶绿素含量及高光谱反射率,对原始光谱进行变换,从而细化光谱特征信息。在相关分析的基础上,建立原始和一阶敏感波段植被指数,进而筛选出表征叶绿素含量的光谱特征参数,以期构建叶绿素含量最佳估算模型。结果表明:(1)随着温度的升高和高温持续时间的延长,草莓叶片叶绿素a、叶绿素b和总叶绿素(a+b)含量呈下降趋势。(2)草莓叶片原始光谱在可见光区域均存在绿峰和红谷,除绿峰和红谷外各处理间差异不明显,高温条件下的近红外区域反射率与CK相比出现不同程度的上升。与原始光谱相比,一阶导数光谱曲线震荡更剧烈,且能够显著突出红边参数特征,各处理的红边位置λr稳定在716nm,红边幅值Dr与红边面积Sr差异显著;而在连续统去除光谱中各处理的绿峰(550nm附近)和红谷(675nm附近)被完全突显出来。(3)在光谱反射率与叶绿素含量相关性分析的基础上,选取原始光谱与一阶导数光谱在可见光和近红外波段相关性最强的R747、R800和R'716、R'906为敏感波段组合,构建植被指数。(4)PVI、MSAVI、TSAVI、TSAVI'、DVI'、MSAVI'、PVI'、SAVI'、Dr和Sr指数与叶绿素含量相关性达极显著水平,可作为表征设施草莓叶片叶绿素含量对苗期高温胁迫响应的高光谱特征参数。其中以TSAVI、DVI'和PVI'植被指数建立的逐步回归模型为叶绿素含量最佳估算模型,其决定系数(R2)为0.843,均方根误差(RMSE)为0.379,相对误差(RE)为12.65%。  相似文献   

19.
基于高光谱图像光谱与纹理信息的生菜氮素含量检测   总被引:13,自引:10,他引:3  
高光谱图像包含丰富的光谱与图像信息,该文基于此试图构建生菜氮素检测模型。利用高光谱图像采集系统获取可见-近红外(390~1 050 nm)范围内的生菜叶片高光谱图像,同时利用凯氏定氮法获取对应叶片的氮素值。将光谱反射值较大波长图像与反射值较小波长图像相除并用阈值化法构建掩膜图像,获取感兴趣区域(ROI,region of interest)。由于高光谱数据量大、且数据间冗余性强,因此如何有效的提取一些特征波长十分重要。该文采用主成分分析(PCA,principal component analysis)对原始高光谱图像进行处理,根据前3个主成分图像(PC1、PC2、PC3)在全波长下的权重系数分布图选出662.9、711.7、735.0、934.6 nm 4个特征波长及对应的光谱特征,并且分别提取4个特征波长图像、主成分图像PC1、PC2、PC3在ROI下的基于灰度共生矩阵的纹理特征,最后利用支持向量机回归(SVR,support vector machine regression)分别建立生菜叶片基于特征波长光谱特征、特征波长图像与主成分图像的纹理特征及光谱纹理融合特征与对应氮素值之间的关系模型。结果表明,在校正性能指标决定系数R2C上,基于光谱特征+特征波长图像纹理特征的模型较好,R2C=0.996,校正集均方根误差RMSEC为0.034;在预测性能指标决定系数R2P上,基于光谱特征的模型较好,R2P=0.86,预测集均方根误差RMSEP为0.22。该研究结果可为农作物氮素的快速、无损检测提供一定的参考价值。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号