首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 203 毫秒
1.
为给小麦田间管理提供基础数据,利用高光谱指数实现了小麦冠层叶面积指数值的估测。在21种高光谱指数中筛选出了与LAI值相关性最强的指数OSAVI,建立了小麦LAI值反演的最小二乘支持向量回归(LS-SVR)模型。分析表明,模型校正集决定系数(C-R2)与预测集决定系数(P-R2)分别达0.851与0.848,可实现小麦LAI值的精确反演,且对LAI值较高与较低的样本均具备良好的预测能力,可有效避免冠层郁闭度等因素对估测结果的影响。利用LS-SVR模型与OMIS影像实现了小麦LAI遥感专题图的制作,其填图结果与地面实测值拟合模型R2达0.774,RMSE仅为0.476,2组数据具有较高的相似度。结果表明:可利用高光谱指数实现小麦冠层LAI值信息的准确获取,且OSAVI系反演建模的优选指数,LS-SVR为建模的优选算法。该研究可为小麦等农作物的长势评估提供参考。  相似文献   

2.
利用无人机多光谱估算小麦叶面积指数和叶绿素含量   总被引:6,自引:4,他引:2  
利用无人机遥感的方式进行农作物长势监测是目前精准农业、智慧农业发展的重要方向,为了探究无人机多光谱反演小麦叶面积指数(Leaf Area Index,LAI)和叶绿素含量的模型估算潜力,该研究在3个飞行高度(30、60、120 m)采集多光谱影像,通过使用全波段差值光谱指数(Difference Spectral Index,DSI)、比值光谱指数(Ratio Spectral Index,RSI)、归一化光谱指数(Normalized Spectral Index,NDSI)和经验植被指数与地面实测数据进行相关性分析,获得不同高度下的光谱指数与LAI和叶绿素含量的关系模型及其决定系数,以决定系数为依据分别构建多元逐步回归、偏最小二乘回归和人工神经网络模型,分析不同飞行高度无人机多光谱反演小麦冠层LAI和叶绿素含量SPAD(Soil and Plant Analyzer Development)值的精度。结果表明:1)30 m高度下,绿-红比值光谱指数与小麦LAI的相关性最高,相关系数为0.84;60 m高度下,红-蓝比值光谱指数与小麦叶绿素含量的相关性最高,相关系数为0.68;2)在60 m高度下,经验植被指数与小麦LAI和叶绿素含量的相关性较好,最大相关系数分别为0.77和0.50;3)利用偏最小二乘回归反演小麦LAI的精度最高,决定系数为0.732,均方根误差为0.055;利用人工神经网络模型反演小麦叶绿素含量的精度最高,决定系数为0.804,均方根误差0.135。该研究成果可为基于无人机平台的高通量作物监测提供理论依据,并为筛选无人机多光谱波段实现作物长势参数快速估测提供应用参考。  相似文献   

3.
  【目的】  叶绿素含量高低反映植被的健康状况与光合能力。研究准确、有效地将冠层影像反演为叶绿素含量的技术参数,以便经济快速、实时地监测作物生长状况。  【方法】  田间试验于2018—2020年在内蒙古阴山北麓马铃薯主产区进行,设置氮肥梯度处理,在马铃薯块茎膨大期和淀粉积累期,测定试验地马铃薯植株SPAD值,通过线性关系将其转化成叶绿素含量。利用无人机为平台搭载S185成像光谱仪获取马铃薯试验区高光谱影像,并从中提取马铃薯冠层光谱反射率。将3年田间试验所获取的125个样本点数据按80%、20%的比例随机划分为训练集与验证集。用训练集数据建立了8个比率、归一化光谱指数,通过波段优化算法建立优化光谱指数和马铃薯关键生育期叶绿素含量的相关性与估测模型,并用验证集数据检验所建立模型的精度,最后利用所构建的估测模型制作马铃薯叶绿素含量分布图。  【结果】  根据训练集数据,马铃薯植株叶绿素含量分布范围在10.58~23.14 mg/g,平均叶绿素含量为19.80 mg/g,变异系数为14.9%;根据验证集数据,马铃薯植株叶绿素含量分布范围在12.80~23.73 mg/g,平均为19.59 mg/g,变异系数为17.0%。基于绿光波段建立的叶绿素光谱指数(CIgreen)和归一化光谱指数550 (ND550)均与马铃薯叶绿素含量具有较好相关性(R2分别为0.48、0.61),但作物种类及生育时期的影响降低了估测的准确性。通过优化波段586、462 nm和586、498 nm计算的优化比率光谱指数(RSI)和优化归一化光谱指数(NDSI)能够明显提高模型准确性,具备良好的线性拟合效果,决定系数R2分别由0.48和0.61提高到0.82和0.83。经验证后,估测模型预测值与实测值接近1∶1线,决定系数R2分别为0.77和0.79,均方根误差RMSE较低。通过反演马铃薯叶绿素含量分布图可知,优化光谱指数(NDSI)模型反演效果较好,叶绿素含量分布范围为18~21 mg/g,与实测值相符合。  【结论】  本研究优化光谱指数RSI和NDSI最佳敏感波段分别为586、462和586、498 nm,此波段范围内RSI和NDSI与马铃薯关键生育期叶绿素含量相关性最优,通过波段优化算法重新构建的优化光谱指数预测模型可靠性及精度显著高于已有光谱指数,决定系数分别为0.82和0.83,且验证效果较好。应用两种光谱指数对研究区高光谱影像进行叶绿素反演估测,生成的田间马铃薯叶绿素含量分布图显示优化光谱指数NDSI估测效果最好,为光谱指数估测马铃薯关键生育期叶绿素含量提供了理论支持。  相似文献   

4.
为了探索玉米苗期叶片叶绿素含量指标的快速、非破坏性估测方法,该文运用多光谱图像技术对大田玉米苗期叶绿素含量指标进行快速无损的诊断研究。大田试验中,采用2-CCD多光谱图像采集系统获取大田玉米苗期的冠层多光谱图像,并同步采集漫反射灰度板的多光谱图像。为消除光照对图像采集质量的影响,准确将不同光照条件下的玉米冠层图像数据转换为其叶面反射率数据,标定试验中采用一块4个不同灰度级的满足朗伯面条件漫反射灰度板,建立了叶片光谱反射率同图像灰度值之间的线性反演公式,并与大田试验中漫反射灰度板的多光谱图像建立了玉米冠层图像灰度值的校正公式。对玉米苗期冠层多光谱图像进行处理,提取出玉米冠层B、G、R、NIR(中心波长分别为470,550,620,800 nm)4个波段归一化平均灰度值。通过灰度值的校正公式得到校正后的归一化平均灰度值,由线性公式反演出R、G、B、NIR 4个波段的平均反射率值,并计算4种常见光谱植被指数(RNDVI、RNDGI、RRVI和RDVI),采用最小二乘-支持向量回归(LS-SVR)建立植被指数同叶绿素含量指标的拟合模型。结果表明:植被指数RNDVI、RRVI和RDVI和玉米冠层叶绿素含量指标拟合验证集决定系数R2为0.56,达到了较为理想的拟合结果。证明通过漫反射灰度板对玉米冠层多光谱图像建立反射率反演校正模型的方法是可行的,这一方法为快速无损检测玉米苗期叶绿素含量指标提供了支持。  相似文献   

5.
利用随机森林法协同SIF和反射率光谱监测小麦条锈病   总被引:4,自引:2,他引:2  
小麦受到条锈病菌侵染后,作物的光合能力及色素含量等均会发生变化,日光诱导叶绿素荧光(solar-induced chlorophyll fluorescence,SIF)对作物光合生理的变化比较敏感,而反射率光谱则受作物生化参数的影响较大,为了提高小麦条锈病的遥感探测精度,该文利用随机森林(random forest,RF)等机器学习算法开展了协同冠层SIF和反射率微分光谱指数的小麦条锈病病情严重度的遥感探测研究。首先利用3FLD(three bands fraunhofer line discrimination)算法提取了冠层SIF数据,然后结合对小麦条锈病病情严重度敏感的11种反射率微分光谱指数分别基于RF和后向传播(back propagation,BP)神经网络算法构建了反射率微分光谱指数与冠层SIF协同的小麦条锈病病情严重度预测模型。研究结果表明:RF算法构建的小麦条锈病病情严重度预测模型优于BP神经网络算法,3个样本组中RF模型病情指数(disease index,DI)估测值与实测值间的决定系数R2平均为0.92,比BP神经网络模型(R2的平均值为0.83)提高了11%,均方根误差(root mean square error,RMSE)平均为0.08,比同组BP神经网络模型(RMSE的平均值为0.12)减少了33%,RF算法更适合于小麦条锈病病情严重度的遥感探测。在反射率微分光谱指数中加入冠层SIF数据后,RF模型和BP神经网络模型精度均有所改善,其中RF模型估测值与实测值间的平均R2提高了4%,平均RMSE减少了22%,BP神经网络模型估测值与实测值间的平均R2提高了14%,平均RMSE减少了28%,综合利用冠层SIF和反射率微分光谱指数能够改善小麦条锈病病情严重度的遥感探测精度。研究结果可为进一步实现作物健康状况大面积高精度遥感监测提供新的思路。  相似文献   

6.
无人机影像反演玉米冠层LAI和叶绿素含量的参数确定   总被引:6,自引:4,他引:2  
小型低空无人机(unmanned aerial vehicle, UAV)机动灵活、操作简便,可以按需获取高空间分辨率影像,是育种玉米长势监测的一种重要技术手段。针对UAV影像反演玉米冠层叶面积指数(LAI, Leaf Area Index)和叶绿素含量的参数确定问题,该研究以DJI S1000+无人机为平台,搭载法国Parrot Sequoia相机,获取海南三亚市崖城玉米育种基地的多光谱影像。基于预处理后的UAV影像,采用重采样的方式获得不同分辨率下(0.1~1 m)的不同植被指数,所构建的植被指数包括归一化植被指数(normalized difference vegetation index,NDVI)、叶绿素指数(grassland chlorophyll index,GCI)、比值植被指数(ratio vegetation index,RVI)、归一化红边红指数(normalized difference rededge-red index,NDIrer)、归一化红边绿指数(normalized difference rededge-green index,NDIreg)和重归一化植被指数(renormalized difference vegetation index,RDVI),通过将不同分辨率下的不同植被指数与地面实测数据进行回归分析,以获得各分辨率下植被指数与冠层LAI和叶绿素含量的关系模型及其决定系数,以决定系数的大小为依据来确定玉米冠层LAI和叶绿素含量反演的最优空间分辨率和最优植被指数。通过试验发现,在分辨率为0.6 m时,NDVI与地面实测LAI之间的决定系数R2为0.80,决定系数达到了最大,利用该分辨率下的NDVI反演得到的LAI验证精度R2达到了0.73;在分辨率为0.1 m时,NDIreg与地面实测叶绿素含量之间的决定系数R2为0.70,决定系数达到了最大,利用该分辨率下的NDIreg反演得到的叶绿素含量验证精度R2达到了0.63。因此得出结论:1)植被指数的选择:① 对于玉米冠层LAI的反演来说,不包含绿波段的植被指数的LAI反演精度较高,这说明绿波段对LAI的变化不敏感;② 对于玉米冠层叶绿素含量反演来说,包含红边波段的植被指数的反演精度较高,因此影像的红边波段对叶绿素含量的变化非常敏感。2)UAV影像空间分辨率的选择:反演LAI的最优分辨率是0.6 m,此时NDVI与实测LAI的决定系数达到最大;反演冠层叶绿素含量的最优分辨率是0.1~0.3 m范围内,此时NDIreg与实测叶绿素含量的决定系数达到最大。该研究可为UAV反演玉米表型参数时的分辨率和植被指数选择提供参考。  相似文献   

7.
白粉病胁迫下小麦冠层叶绿素密度的高光谱估测   总被引:5,自引:2,他引:3  
为了明确病害胁迫下作物生长特征及其危害程度,基于大田小区和盆栽小麦白粉病接种试验,在病害胁迫下不同生育时期测定群体光谱及叶绿素密度。综合分析群体光谱反射率、一阶微分及传统光谱特征参数与冠层叶绿素密度间关系,建立病害叶绿素密度估算模型并检验。结果表明,随病情指数增加,叶绿素含量下降,不同感性品种均如此,对白粉病易感品种的危害较重。病害冠层叶绿素密度与红光600~630nm和红边690~718nm的反射率及红边长波段(718~756nm)的一阶微分间相关性最显著。在传统植被指数中,以SDr/SDb和VOG3为变量的估测模型拟合精度较高,决定系数R2分别为0.752和0.723,模型检验相对误差(RE)最小,RE分别为18.0%和18.6%。利用红边区域(680~760nm)波段差异特性,选取680、718和756nm波段新建红边角度指数(REAI),较传统植被指数的模型拟合精度更高,归一化角度指数NDAI(α,β)和比值角度指数RAI(α,β)的R2分别为0.783和0.776,模型检验误差更小,RE分别为16.8%和17.5%。因此,NDAI(α,β)是估测病害小麦冠层叶绿素密度的可靠指标,对利用该模型监测小麦光合潜力和病害影响评价具有积极意义。  相似文献   

8.
利用高光谱指数进行冬小麦条锈病严重度的反演研究   总被引:5,自引:3,他引:5  
通过选取不同条锈病抗性品种(高抗、高感、中间)进行田间不同梯度(对照、轻度、中度、重度)的接种试验,在接种后每隔7 d左右,同步测定了不同品种、不同处理的冠层光谱、单叶光谱和对应目标的病情指数以及叶面积指数、叶倾角等生物物理参数和叶绿素、SPAD数值等生物化学参数。通过对获取的光谱数据和生物物理参数和生物化学参数进行统计分析。研究结果表明,小麦被条锈病感染以后,叶片叶绿素含量急剧下降,通过研究叶片绿度值(SPAFD)值与叶绿素含量之间的关系,建立了叶片叶绿素含量和叶片SPAD数值之间的线性关系方程。通过在借鉴前人研究结果的基础上,通过筛选光谱指数,在冠层水平上构建作物冠层结构不敏感色素反演指数(CCII=TCARI/OSAVI)来反演全生育期不同处理的SPAD数值,此反演结果受品种类型、冠层结构和土壤背景的影响较小,线性方程的决定系数达到极显著的水平。在单叶水平选取归一化的光化学指数(NPRI)来反演单叶的病情指数(DI),线性方程的决定系数达到极显著的水平。所以该文通过选取适当的高光谱指数进行冬小麦条锈病严重度的反演的理论和方法是可行的。且反演结果受不同品种、不同叶面积指数和土壤背景等的影响均较小。  相似文献   

9.
为了利用冠反射光谱特征监不同筋力小麦品种的生理特征差异,利用不同筋力小麦冠层反射光谱的差异,可对不同小麦品种进行遥感识别与监测。试验以低筋小麦品种扬麦13和高筋小麦品种徐麦31为材料,结合不同生育时期两品种叶面积指数(LAI)、叶绿素含量和叶片氮含量的变化,以及相应的光谱参数,分析不同筋力小麦冠层反射光谱的变化特征。结果表明,在近红外和可见光波段,从拔节期到蜡熟期,扬麦13的冠层光谱反射率均高于徐麦31,在孕穗期两品种的差异最显著;LAI、叶片叶绿素和氮含量均在开花时达最大值,扬麦13的叶绿素含量明显高于徐麦31,而LAI和叶片氮含量则低于徐麦31。比值植被指数(RVI)、归一化植被指数(NDVI)与LAI;红边位置(λr)、红边幅值(Dr)与叶绿素含量,氮素反射指数(NRI)、抗大气植被指数(VARIgreen)与叶片氮含量极显著相关,表明RVI、NDVI可以反演LAI;λr、Dr可以反演叶绿素;NRI、VARIgreen可以反演叶片氮含量的变化。以上光谱参数能反映小麦相关指标的变化情况,不同时期可运用小麦冠层反射光谱进行不同筋力小麦品种识别,孕穗期为最佳识别时期。通过本研究,以期为不同筋力小麦品种的遥感识别提供依据。  相似文献   

10.
基于高光谱的冬小麦氮素营养指数估测   总被引:14,自引:7,他引:7  
为了准确定量诊断氮素状况,为施肥和产量、品质的估测提供参考,该文通过设置不同氮素水平和品种类型的冬小麦田间试验,分析孕穗至灌浆初期不同光谱参数在小麦氮素营养状况监测上的差异,筛选叶片氮素含量和冠层氮素密度反演效果较好的参数,建立其与氮营养指数(NNI,nitrogen nutrition index)的经验模型。研究表明,线性内插法红边位置(REPLI)、修正红边单比指数(mSR705)、比值指数(RI-1dB)、简单比值色素指数(SRPI)、红边指数(VOG)等光谱参数与氮素营养指标具有良好的相关性(r0.85),且不受生育期影响,可用来反演评价冠层氮素营养状况;研究对筛选的光谱参数与各氮素指标进行回归建模,并用独立试验数据对所建模型进行验证,结果显示,REPLI在氮营养指数估测方面表现较好(r=0.93),估测模型精度较高(决定系数R2=0.86,均方根误差RMSE=0.08)。NNI在氮素营养状况诊断方面有一定的优势,通过高光谱反演氮营养指数进行氮素营养状态的定性定量诊断有一定的可行性。  相似文献   

11.
冬小麦苗期叶绿素含量检测光谱学参数寻优   总被引:5,自引:3,他引:2  
光谱分析技术是作物生长检测的主要手段,为了解决大田漫反射采集所造成的光谱基线漂移和偏移问题,研究采集了冬小麦冠层325~1 075 nm范围反射光谱,采用多元散射校正方法对小麦原始光谱进行预处理。采取遗传算法对光谱特征参数寻优并结合相关分析结果,选取486、599、699和762 nm波长处反射率值并组合计算了RVI(ratio vegetation index),DVI(difference vegetation index),NDVI(normalized difference vegetation index)和SAVI(soil-adjusted vegetation index)共12个植被指数,分析了各植被指数与叶绿素含量值之间的相关关系,结果显示:DVI和SAVI可抑制苗期土壤背景干扰并对叶绿素含量响应较为敏感,与叶绿素含量相关性最优的参数分别为DVI(762,599)、SAVI(762,599)、DVI(762,699)和SAVI(762,699),与叶绿素含量的相关系数都达到0.6以上。基于相关性最优光谱植被指数DVI(762,699)和SAVI(762,599)利用最小二乘-支持向量回归建立冬小麦叶绿素含量预测模型,建模集决定系数为0.681,验证集决定系数为0.611。该模型可用于无损检测冬小麦苗期叶绿素含量,以期为后续施肥决策提供支持。  相似文献   

12.
红边位置改进算法的冬小麦叶绿素含量反演   总被引:3,自引:3,他引:0  
植被反射光谱的红边位置对叶绿素含量高度敏感,利用遥感数据建立基于红边位置的作物叶绿素含量反演模型,可实现大范围作物及时的长势监测。该研究以冬小麦为研究对象,在学习6种经典红边位置求解算法的基础上,提出牛顿-切比雪夫插值法和牛顿八点插值法2种改进红边位置求解算法。根据不同算法的红边位置分布特征综合分析了改进算法的优缺点,并在此基础上建立基于红边位置的冬小麦叶绿素含量反演模型。结果表明,与传统算法相比,2种改进算法均显著改善了双峰现象和红边位移,且基于新算法的模型预测值与叶绿素含量实测值的决定系数>0.619,较最大一阶导数法提高了5.024%~10.480%,具有更高的精度。同时,在2种改进算法中,牛顿八点插值法具有更高的稳定性与实用性。研究结果为植被理化参数反演与农业生产应用提供理论与技术支撑。  相似文献   

13.
为研究不同氮磷水平下冬小麦籽粒蛋白质含量高光谱遥感监测模型,提高模型精度,本文通过连续5年定位试验研究不同氮磷耦合水平下,不同生育时期冬小麦冠层光谱反射率、植株氮含量以及成熟期籽粒蛋白质含量,以相关、回归等统计分析方法,建立基于不同生育时期植株氮含量的籽粒蛋白质含量监测模型;然后通过灰色关联度分析,筛选植株氮含量的最佳植被指数,以偏最小二乘回归法,建立基于植被指数的植株氮含量监测模型;最后以植株氮含量为链接点,按照"植被指数—植株氮含量—籽粒蛋白质含量"之间的联系,建立融合植被指数与植株氮含量的冬小麦成熟期籽粒蛋白质含量监测模型。结果表明:在拔节期、孕穗期、抽穗期、灌浆期、成熟期基于植株氮含量建立的成熟期籽粒蛋白质含量监测模型,具有较好的监测精度;拔节期、孕穗期、抽穗期、灌浆期、成熟期分别基于修正叶绿素吸收反射率指数(MCARI_1)、归一化差值叶绿素指数(NDCI)、修正归一化差异指数(mNDVI)、MCARI_1、NDCI植被指数建立植株氮含量监测模型,监测精度(R~2)分别为0.826、0.854、0.867、0.859和0.819;以植株氮含量为链接点,通过"植被指数—植株氮含量—籽粒蛋白质含量"的间接联系,建立基于拔节期、孕穗期、抽穗期、灌浆期、成熟期植被指数且融合植株氮含量的籽粒蛋白质含量监测模型,R~2分别为0.935、0.972、0.990、0.979和0.936;以独立数据对模型进行验证,模型预测值与实测值间相对误差(RE)分别为11.26%、10.74%、8.41%、10.25%和11.36%,均方根误差(RMSE)分别为2.221 g×kg~(-1)、1.825 g×kg~(-1)、1.214 g×kg~(-1)、1.767 g×kg~(-1)和2.137 g×kg~(-1)。说明基于不同生育时期植被指数链接植株氮含量可以对成熟期籽粒蛋白质含量进行有效监测,且模型具有较好的年度间重演性和品种间适应性。  相似文献   

14.
冬小麦冠层光谱因不同株型而异,依不同株型建立模型是提高冬小麦蛋白质预测精度的重要途径之一。该研究利用ASD2500高光谱仪对不同株型冬小麦冠层光谱进行了测定,分析了冬小麦叶片叶绿素含量在冠层垂直方向上的变化及其与籽粒品质指标和冠层光谱特征参量间的相关性。结果表明,冠层叶绿素含量垂直梯度变化因不同生育时期和不同株型而异。同等条件下,其梯度以平展型品种大于直立型品种。并且,当将两种株型品种分别考虑时,第一二叶组之间叶绿素含量的差值(DCC)与小麦籽粒部分品质参数和冠层光谱特征参量具有显著的相关性。通过DCC可以间接地建立籽粒蛋白品质和冠层光谱特征之间的相关模型。通过研究筛选出预测籽粒蛋白质含量(GPC)的最佳时期为灌浆期,最佳光谱特征参量为560 nm的反射峰深度P_Depth560。并且,建立了不同株型品种GPC的预测模型并初步通过验证。  相似文献   

15.
基于高光谱和BP神经网络的玉米叶片SPAD值遥感估算   总被引:15,自引:4,他引:11  
为了进一步提高玉米叶绿素含量的高光谱估算精度,该文测定了西北地区玉米乳熟期叶片的光谱反射率及其对应的叶绿素相对含量(soil and plant analyzer development,SPAD)值,分析了一阶微分光谱、高光谱特征参数与 SPAD的相关关系,构建了基于一阶微分光谱、高光谱特征参数和 BP 神经网络的 SPAD 估算模型,并对模型进行验证;再结合主成分回归(principal component regression,PCR)、偏最小二乘回归(partial least squares regression,PLSR)以及传统回归模型与 BP 神经网络模型进行比较。结果表明:SPAD 值与一阶微分光谱在763nm 处具有最大相关系数(R=0.901);以763 nm 处的一阶微分值、蓝边内最大一阶微分为自变量建立的传统回归模型可用于玉米叶片 SPAD 估算;将构建传统回归模型时筛选到的光谱参数作为输入,实测 SPAD 值作为输出,构建 BP 神经网络模型,其建模与验模 R2分别为0.887和0.896,RMSE 为2.782,RE 为4.59%,与其他回归模型相比,BP 神经网络模型预测精度最高,研究表明 BP 神经网络对叶绿素具有较好的预测能力,是估算玉米叶片 SPAD 值的一种实时高效的方法。  相似文献   

16.
冬小麦叶片氮含量与叶片光合作用和营养状况密切相关,直接影响植株生长发育,而茎秆中的氮含量与茎秆中纤维素、半纤维素和木质素的比例和含量密切相关,直接影响茎秆质量及植株的抗倒伏能力。然而,有关对冬小麦茎秆氮含量估算研究较为有限,限制了从氮含量角度判断茎秆质量及对倒伏的预测能力。为精准估算冬小麦不同器官(叶片、茎秆)氮含量,该研究通过2年田间试验,获取冬小麦4个关键生育期(拔节期、抽穗期、开花期、灌浆期)和3种施氮水平条件下(N1、N2和N3)的冠层光谱反射率、叶片、茎秆氮含量及叶片SPAD (soil and plant analyzer development, SPAD)值。分析了不同生育期和施氮水平条件下高光谱植被指数对叶片和茎秆氮含量的敏感性,并结合5种常用的机器学习算法:随机森林回归(random forest regression,RFR)、支持向量回归(support vector regression,SVR)、偏最小二乘回归(partial least squares regression,PLSR)、高斯过程回归(gaussian process regression,GPR)、深度神经网络回归(deep neural networks,DNN)构建冬小麦叶片和茎秆氮含量估算模型。结果表明:高光谱植被指数对叶片和茎秆氮含量的敏感性受到生育期和施氮水平的影响。在灌浆期,最佳植被指数双峰冠层植被指数 DCNI(double-peak canopy nitrogen index)对叶片氮含量的敏感性最高,R2为0.866。对茎秆氮含量,在抽穗期的敏感性最高,最佳植被指数归一化叶绿素比值指数 NPQI(normalized phaeophytinization index)与氮含量相关系数R2=0.677。施氮水平的提升增加了光谱植被指数对茎秆氮含量的敏感性。结合SPAD值的机器学习算法提升了氮含量的估算精度,对叶片氮含量,在不同生育期和施氮水平条件下估算精度提升了1%~7%,其中在全生育期的归一化均方根误差NRMSE从0.254提升到0.214,抽穗期的NRMSE提升最大,从0.201提升到0.128。对茎秆氮含量,全生育期的NRMSE从0.443提升到0.400,抽穗期的NRMSE提升最大,从0.323提升到0.268。在全生育期,结合SPAD值的DNN模型对叶片(R2=0.782、NRMSE=0.214)和茎秆(R2=0.802、NRMSE=0.400)氮含量的估算精度最佳。研究说明,SPAD值与光谱植被指数结合有利于提升冬小麦不同生育期和施氮水平条件下叶片和茎秆氮含量的估算精度。  相似文献   

17.
高光谱信息量巨大,如何选取最佳组合波段构建高精度光谱模型,是植被参数遥感反演模型研究的重要工作基础。该研究将最佳指数与相关系数通过熵权评价值进行融合,提出最佳指数-相关系数法(optimum index factor and correlation coefficient,OIFC)。基于OIFC法选取了小麦叶片叶绿素含量的最佳组合波段,并利用最佳组合波段的高光谱数据建立小麦叶片叶绿素含量预测模型。结果表明:利用OIFC法所提取的小麦叶绿素最佳组合波段是760、1 860、1 970 nm;对比最佳指数法(optimum index factor,OIF)、最大相关系数法(maximum correlation coefficient,MCC)提取波段以及归一化植被指数(normalized difference vegetation index,NDVI)、土壤调和植被指数(soil-adjusted vegetation index,SAVI)所建立的叶片叶绿素含量高光谱模型,基于OIFC法构建的模型预测值与实测值具有显著的线性关系,决定系数达0.827,且均方根误差最小(RMSE=5.44)。可见,基于OIFC法构建的小麦叶绿素含量模型具有更高的精度,该结果验证了利用OIFC法提取高光谱特征波段的可行性,并且能够获得更高建模精度的特征波段。  相似文献   

18.
番茄叶片叶绿素含量光谱估算模型   总被引:2,自引:0,他引:2  
以番茄品种“金粉2号”为试验材料,在玻璃温室内设置3种土壤水分胁迫水平,以正常灌溉为对照,于2013年3—7月和8—12月两个生长季对番茄进行全生育期持续处理。采用便携式地物光谱仪测定各生育期番茄冠层的光谱反射率,同步测定叶片总叶绿素和叶绿素a含量,并基于3—7月数据计算常见高光谱植被指数,分别建立番茄叶片叶绿素总量和叶绿素a估算模型,用8一12月生长季的试验数据对模拟精度进行检验。结果表明:(1)水分胁迫对番茄叶片总叶绿素、叶绿素a含量和番茄冠层光谱反射率产生明显影响,水分胁迫越严重,叶绿素总量和叶绿素a含量均越低,番茄冠层光谱反射率也越低;(2)随着生育期的推进,番茄总叶绿素和叶绿素a含量均持续增加,而冠层光谱反射率在红光和蓝光波段的反射率逐渐减少;(3)4种估算模型中R670模型的决定系数(R。)最高,效果最佳(P〈0.01),番茄叶片总叶绿素和叶绿素a最佳估算模型分别为:C_chl(a+b)=44.83R670+_670+7.36,C_chl=39.92R_670+5.12,均根方误差分别为0.45、0.42mg·g^-1,表明利用高光谱数据估算番茄叶片的叶绿素含量可行。  相似文献   

19.
基于综合指标的冬小麦长势无人机遥感监测   总被引:10,自引:7,他引:3  
作物长势监测可以及时获取作物的长势信息,该文尝试建立新型长势指标,监测小麦总体长势情况。将反映小麦长势的叶面积指数(leaf area index,LAI)、叶片叶绿素含量、植株氮含量、植株水分含量和生物量5个指标按照均等权重综合成一个指标,综合长势指标(comprehensive growth index,CGI)。利用450~882 nm范围内单波段和任意两个波段构建归一化光谱指数(normalized difference spectral index,NDSI),比值光谱指数(ratio spectral index,RSI)和简单光谱指数(simple spectral index,SSI),计算CGI与光谱指数的相关性,筛选出相关性好的光谱指数,结合偏最小二乘回归(partial least squares regression,PLSR)建立反演模型。以CGI为指标,运用无人机高光谱影像对2015年小麦多生育期的长势监测。结果表明:1)冬小麦各生育期,总体上CGI与光谱指数的决定系数R~2均好于各项单独指标与相应光谱指数的R~2。仅孕穗期CGI和RSI(754,694)的R~2比叶绿素和RSI(486,518)的R~2低,开花期的CGI和R570的R~2比生物量和R834的R~2低以及灌浆期CGI和SSI(582,498)的R~2比植株含水量和SSI(790,862)的R~2低。2)拔节期,孕穗期,开花期,灌浆期和全生育期PLSR模型的建模R~2分别为0.70,0.72,0.78,0.78和0.61。拔节期,孕穗期和开花期的无人机CGI影像验证模型的均方根误差RMSE(root mean square error)分别为0.050,0.032和0.047。CGI与相应光谱指数的R~2高于单独各项指标与相应光谱指数的R~2,光谱指数能够很好反映CGI包含的信息。无人机高光谱影像反演CGI精度较高,能够判断出小麦总体的长势差异,可为监测小麦长势提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号