首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   11篇
  免费   0篇
  国内免费   4篇
基础科学   5篇
  4篇
综合类   3篇
水产渔业   1篇
畜牧兽医   1篇
园艺   1篇
  2020年   3篇
  2019年   1篇
  2017年   3篇
  2015年   3篇
  2013年   1篇
  2008年   2篇
  2004年   2篇
排序方式: 共有15条查询结果,搜索用时 15 毫秒
1.
为了探索玉米苗期叶片叶绿素含量指标的快速、非破坏性估测方法,该文运用多光谱图像技术对大田玉米苗期叶绿素含量指标进行快速无损的诊断研究。大田试验中,采用2-CCD多光谱图像采集系统获取大田玉米苗期的冠层多光谱图像,并同步采集漫反射灰度板的多光谱图像。为消除光照对图像采集质量的影响,准确将不同光照条件下的玉米冠层图像数据转换为其叶面反射率数据,标定试验中采用一块4个不同灰度级的满足朗伯面条件漫反射灰度板,建立了叶片光谱反射率同图像灰度值之间的线性反演公式,并与大田试验中漫反射灰度板的多光谱图像建立了玉米冠层图像灰度值的校正公式。对玉米苗期冠层多光谱图像进行处理,提取出玉米冠层B、G、R、NIR(中心波长分别为470,550,620,800 nm)4个波段归一化平均灰度值。通过灰度值的校正公式得到校正后的归一化平均灰度值,由线性公式反演出R、G、B、NIR 4个波段的平均反射率值,并计算4种常见光谱植被指数(RNDVI、RNDGI、RRVI和RDVI),采用最小二乘-支持向量回归(LS-SVR)建立植被指数同叶绿素含量指标的拟合模型。结果表明:植被指数RNDVI、RRVI和RDVI和玉米冠层叶绿素含量指标拟合验证集决定系数R2为0.56,达到了较为理想的拟合结果。证明通过漫反射灰度板对玉米冠层多光谱图像建立反射率反演校正模型的方法是可行的,这一方法为快速无损检测玉米苗期叶绿素含量指标提供了支持。  相似文献   
2.
冬小麦苗期叶绿素含量检测光谱学参数寻优   总被引:5,自引:3,他引:2  
光谱分析技术是作物生长检测的主要手段,为了解决大田漫反射采集所造成的光谱基线漂移和偏移问题,研究采集了冬小麦冠层325~1 075 nm范围反射光谱,采用多元散射校正方法对小麦原始光谱进行预处理。采取遗传算法对光谱特征参数寻优并结合相关分析结果,选取486、599、699和762 nm波长处反射率值并组合计算了RVI(ratio vegetation index),DVI(difference vegetation index),NDVI(normalized difference vegetation index)和SAVI(soil-adjusted vegetation index)共12个植被指数,分析了各植被指数与叶绿素含量值之间的相关关系,结果显示:DVI和SAVI可抑制苗期土壤背景干扰并对叶绿素含量响应较为敏感,与叶绿素含量相关性最优的参数分别为DVI(762,599)、SAVI(762,599)、DVI(762,699)和SAVI(762,699),与叶绿素含量的相关系数都达到0.6以上。基于相关性最优光谱植被指数DVI(762,699)和SAVI(762,599)利用最小二乘-支持向量回归建立冬小麦叶绿素含量预测模型,建模集决定系数为0.681,验证集决定系数为0.611。该模型可用于无损检测冬小麦苗期叶绿素含量,以期为后续施肥决策提供支持。  相似文献   
3.
基于正交变换与SPXY样本划分的冬小麦叶绿素诊断   总被引:1,自引:0,他引:1  
冬小麦叶绿素含量的准确预测,可为冬小麦田间精细化管理提供依据。采集冬小麦冠层400~900nm范围反射光谱,经一阶微分预处理后,为了抑制由于连续波长自变量多重共线性对叶绿素含量诊断模型的干扰,利用Gram-Schmidt正交变换算法初步提取叶绿素敏感波长特征参数为848、620、677nm。在定量模型的建立过程中,对比了传统随机样本集划分与以空间中样本间距离远近为指导的SPXY样本集划分方法,并讨论了大田冠层反射光谱对叶绿素浓度诊断的最优精度,研究结果表明,以620nm和677nm两个敏感波长结合SPXY样本划分方法建立的多元线性回归模型预测精度较高,且叶绿素质量浓度为0.3mg/L分辨间隔时,建模决定系数和验证决定系数分别达0.730和0.739,可为无损检测冬小麦拔节期叶绿素含量提供技术支持。  相似文献   
4.
本文以室内暂养7 d的脊尾白虾为试验对象,探讨萘对脊尾白虾存活、免疫和能量分配的影响试验。结果表明,萘的24、48、72、96 h半致死浓度分别为7.97、7.08、6.08、5.30 mg/L,安全浓度为1.67 mg/L。萘对脊尾白虾血清酚氧化酶和超氧化物歧化酶的活性有显著影响,细胞能量分配为(-5 928.00±964.13)mJ/(mg·h湿重)。说明萘对脊尾白虾的免疫能力有着较严重的抑制效应,同时可以降低脊尾白虾的能量代谢。  相似文献   
5.
为了掌握豫北小尾寒羊各体尺与体重间的相关性,以3~24月龄的体重和体尺为材料,从动态上进行相关分析、通径分析和回归分析。结果表明,各体尺与体重间均呈强的正相关(P<0.01),但公、母羊各体尺之间的相关程度存在差异;管围、头长、胸围和胸深对公羊体重直接作用较大,体长、胸围和胸宽对母羊体重的直接作用较大;采用逐步回归建立的二次多项式回归方程为:公羊Y=-39.770+0.004X_3~2-0.026X_4~2+0.382X_6~2+0.077X_4×X_7(R~2=0.99913),母羊Y=-54.166-5.000X_3+23.79X_5+0.085X_2×X_3-0.327X_2×X_5(R~2=0.9954),回归关系均极显著(P<0.01)。豫北小尾寒羊各体尺与体重间的相关性很强并且存在性别差异,故对公羊、母羊分别建立回归方程更具有针对性;采用曲线回归从动态上拟合动物的体重,拟合度更高,更具有实际意义。  相似文献   
6.
农业信息成像感知与深度学习应用研究进展   总被引:10,自引:0,他引:10  
农业信息感知与准确的数据分析是智慧农业定量决策与管理服务的基础。现代农业中彩色、可见光-近红外光谱、3D与热红外等多源和多维度的成像感知手段提供了丰富的数据源,传统研究中围绕颜色、形态、纹理、反射光谱等特征展开分析,由于样本量和特征抽象层级的局限性,对复杂背景变化及未知样本检测时,还存在噪声抑制鲁棒性不足、识别与检测模型精度不高等问题。深度学习(Deep learning,DL)是机器学习的分支之一,结合神经网络通过组合底层特征形成抽象的高层表示属性类别或特征,以发现数据的分布式特征与属性,在图像目标识别与检测中其模型检测精度与泛化能力比传统方法均有所提升。因而,DL技术在农业信息检测中的应用日益增多。为了深入分析应用DL技术驱动智慧农业继续发展的潜力和方向,本文从农业信息成像感知的数据源与DL技术应用相结合的角度出发,分别以植物识别与检测、病虫害诊断与识别、遥感区域分类与监测、果实在体检测与产品分级、动物识别与姿态检测5个研究方向总结概括DL在农业信息检测中最新的应用研究成果,展望需要加强的方面,以提升对应用DL开展农业信息检测过程的理解,促进农业信息感知技术的发展。  相似文献   
7.
翟王启  王星  刘豪杰 《农村电工》2004,12(10):27-27
监测主站实时接受监测终端采集的配电变压器运行信息,同时通过MIS系统采集到电费系统中的用户电能量信息、电能量采集与计费系统中的10kV出线关口表的线路电能量信息,然后进行综合分析,完成对配电网设备运行状态的监测。  相似文献   
8.
CropspecTM是一种基于735 nm 和808 nm的车载式主动作物冠层光谱传感器,能够快速、无损地检测作物氮素营养状态。为了评价其检测精度,针对农大8号和京农科等2种玉米作物品种,使用该检测系统在拔节期采集作物冠层在808nm和735nm波段处的反射率。然后组合计算了DVI735, NDVI735, PVI735和 RDV735 等常规的植被指数,并基于RVI735构造了一种新的植被指数MRVI735。通过分析各植被指数与叶绿素含量指标SPAD值之间的相关关系得出 :对于农大8号,MRVI735、NDVI735和RVI735与叶绿素含量指标的相关性较好,相关系数分别是:-0.7482、-0.6763和-0.6786,达到强相关水平。对于京农科,NDVI735、MRVI735和RVI735与叶绿素含量指标的相关性较好,相关系数分别是:0.7270、0.7252和0.7245,达到强相关水平。对于2个玉米品种,都分别选取了相关系数最好的一个和两个植被指数为参数,分别建立了一元线性回归模型和二元线性回归模型。农大8号的一元模型和二元模型的R2  相似文献   
9.
用于微小型光谱仪的冬小麦抽穗期叶绿素含量诊断模型   总被引:3,自引:3,他引:0  
采用基于微小型光谱学传感器构建的作物冠层反射光谱探测系统,在田间轻量便携式地测量冬小麦抽穗期冠层可见光-近红外反射光谱。首先对冠层反射光谱进行去噪预处理,对原始光谱先一阶微分运算后,采用Bior Nr.Nd双正交小波进行小波包分解和重构以达到数据平滑的目的。对样本点数据利用蒙特卡罗抽样方法进行分析,去除异常样本点值,然后基于Random frog特征变量选取算法进行叶绿素含量敏感波长筛选。分别对原始光谱和经预处理后的光谱数据所选取的敏感波长进行偏最小二乘回归(partial least squares regression,PLSR)建模,建模结果如下:基于原始光谱的敏感波长639、436、459、642、556、653、596、455 nm建立叶绿素含量诊断PLSR模型,建模精度Rc2为0.70,均方根误差为1.398 0,验证精度Rv2为0.10,均方根误差为2.381 0;经过预处理后,基于选取的特征波长719、572、562、605、795、527、705、514 nm建立叶绿素含量诊断PLSR模型,建模精度Rc2为0.69,均方根误差为1.364 8,验证精度Rv2为0.52,均方根误差为1.839 7,估测能力得到了提高。结果表明:基于微小型光谱学传感器构建的作物冠层反射光谱探测系统能够合理地预测冬小麦叶片中的叶绿素含量,可用于田间冬小麦抽穗期的作物营养诊断。  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号