首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
《Geoderma》2006,130(1-2):1-13
Dilution of high-sodicity soil water by low-sodicity rainfall or irrigation water can cause declining soil hydraulic conductivity (K) by inducing swelling, aggregate slaking and clay particle dispersion. Investigations of sodicity-induced reduction in K are generally restricted to repacked laboratory cores of air-dried and sieved soil that are saturated and equilibrated with sodic solution before tests are conducted. This approach may not yield a complete picture of sodicity effects in the field, however, because of loss of antecedent soil structure, small sample size, detachment of the sample from the soil profile, reliance on chemical equilibrium, and differing time scales between laboratory and field processes. The objectives of this study were to: (i) compare the electrical conductivity (EC), exchangeable sodium percentage (ESP), and sodium adsorption ratio (SAR) in laboratory cores of intact field soil that had, or had not, undergone prior saturation and equilibration with sodic solution; (ii) compare the pressure infiltrometer (PI) field method with the intact laboratory soil core (SC) method for assessing sodicity effects on saturated soil hydraulic conductivity; and (iii) characterize hydraulic conductivity reduction in a salt-affected sandy loam soil and a salt-affected clay soil in Sicily as a result of diluting high-sodicity soil water with low-sodicity water.In terms of EC, ESP and SAR, quasi-equilibrium between soil and infiltrating solution was attainable in 0.08 m diameter by 0.05 m long laboratory cores of intact clay soil, regardless of whether or not the cores were previously saturated and equilibrated with solutions of SAR=0 or 30. In the sandy loam soil, the PI and SC methods produced statistically equivalent linear reductions in K as a result of diluting increasingly sodic soil water (SAR=0, 10, 20, 30) with deionised water. In the clay soil, the PI method produced no significant correlation between initial soil water SAR and K reduction, while the SC method produced a significant log-linear decline in K with increasing soil water SAR. Sodicity-induced reductions in K ranged from 3–8% (initial soil water SAR=0) to 85–94% (initial soil water SAR=30) in the sandy loam, and from 9–13% (initial soil water SAR=0) to 42–98% (initial soil water SAR=30) in the clay. The reductions in K were caused by aggregate slaking and partial blocking of soil pores by dispersed clay particles, as evidenced by the appearance of suspended clay in the SC effluent during infiltration of deionised water. As a result, maintenance of K in these two salt-affected soils will likely require procedures to prevent or control the build-up of sodicity.  相似文献   

2.
Many empirical approaches have been developed to analyze changes in hydraulic conductivity due to concentration and composition of equilibrium solution. However, in swelling soils these approaches fail to perform satisfactorily, mainly due to the complex nature of clay minerals and soil–water interactions. The present study describes the changes in hydraulic conductivity of clay (Typic Haplustert) and clay‐loam (Vertic Haplustept) soils with change in electrolyte concentration (TEC) and sodium‐adsorption ratio (SAR) of equilibrium solution and assesses the suitability of a model developed by Russo and Bresler (1977) to describe the effects of mixed Na‐Ca‐Mg solutions on hydraulic conductivity. Four solutions encompassing two TEC levels viz., 5 and 50 mmolc L–1 and two SAR levels viz., 2.5 and 30 mmol1/2 L–1/2 were synthesized to equilibrate the soil samples using pure chloride salts of Ca, Mg, and Na at Ca : Mg = 2:1. Diluting 50 mmolc L–1 solution to 5 mmolc L–1 reduced saturated hydraulic conductivity of both soils by 66%, and increasing SAR from 2.5 to 30 mmol1/2 L–1/2 decreased saturated hydraulic conductivity by 82% and 79% in clay and clay‐loam soils, respectively. Near saturation, the magnitude of the change in unsaturated hydraulic conductivity due to the change in TEC and SAR was of 103‐ and 102‐fold, and at volumetric water content of 0.20 cm3 cm–3, it was of 1014‐ and 106‐fold in clay and clay‐loam soils, respectively. Differences between experimental and predicted values of saturated hydraulic conductivity ranged between 0.6% and 11% in clay and between 0.06% and 2.1% in clay‐loam soils. Difference between experimental and predicted values of unsaturated hydraulic conductivity widened with drying in both soils. Predicted values were in good agreement with the experimental values of hydraulic conductivity in clay and clay‐loam soils with R2 values of 0.98 and 0.94, respectively. The model can be satisfactorily used to describe salt effects on hydraulic conductivity of swelling soils in arid and semiarid areas, where groundwater quality is poor.  相似文献   

3.
浑水土壤入渗具有复杂的上边界变化过程,其上边界导水能力的变化规律是研究浑水土壤入渗特性的重要基础。为研究浑水入渗形成致密层过程中导水率的变化情况,该研究进行了17组(9组正交试验处理,8组用于模型验证)浑水饱和土柱入渗试验,通过对试验结果进行多元回归构建多因素(浑水含沙率、黏粒含量及入渗时间)影响下砂土导水率动态模型;并结合浑水饱和土柱入渗特性进行合理假设,分别建立浑水砂壤土和粉壤土饱和土柱导水率动态模型并进行验证。结果表明:浑水含沙率、黏粒含量及入渗时间对砂土导水率影响极显著(P<0.01),入渗时间为砂土影响导水率变化的主要因素,其次为含沙率和黏粒含量;建立的砂土导水率动态模型决定系数为0.853,均方根误差为0.004 cm/min,表明该模型可客观反映各因素与导水率之间的关系;模型验证试验结果中均方根误差小于0.01 cm/min,相对误差绝对值均值小于7%,说明该导水率动态模型可靠性较高;砂壤土和粉壤土导水率动态模型决定系数分别为0.912和0.930,均方根误差分别为2×10-3和5×10-5 cm/min;模型验证中均方根...  相似文献   

4.
HyeMin Kim  P.P. Motavalli 《Geoderma》2010,160(2):244-251
Soil compaction decreases soil pores are important for root growth as well as infiltration of water and nutrients. A study was conducted to evaluate the effects of soil compaction on macropore parameters measured using X-ray computed tomography (CT). Macropore parameters included number of pores, number of macropores (> 1000 μm diam.), number of coarse mesopores (200 to 1000 μm diam.), porosity, macroporosity, coarse mesoporosity, area of largest pore, pore circularity, and fractal dimension of macroporosity. A field experiment was conducted on Mexico silt loam (fine, smectitic, mesic Vertic Epiaqualfs) with field treatments including four replicates of uniformly Compacted (C) and Non-Compacted (NC) plots arranged in a randomized complete block design. Soil cores (76.2 mm diam. by 76.2 mm long) were removed from three selected depths (0 to 10 cm, 10 to 20 cm, and 20 to 30 cm). Cores were scanned using a medical X-ray CT scanner with four scans taken in each sample at 15 mm spacing starting at 25 mm from the core surface. Images were analyzed using Image-J software. The C treatment was found to increase bulk density by 8% (1.34 to 1.45 g cm−3) and decrease saturated hydraulic conductivity by 69% (47.1 to 14.6 cm hr− 1). CT-measured number of pores decreased by 71%, number of macropores by 69%, and coarse mesopores by 75% with the C treatment used in the study. Compaction was also found to significantly decrease CT-measured porosity and macroporosity by 64%. Differences between treatments for the parameters were most pronounced in the upper 10 cm; differences between treatments were not significant below 20 cm. A regression equation with CT-measured macroporosity, area of largest pore and porosity explained most of the variability in saturated hydraulic conductivity (R2 = 0.79). Efforts should be made to minimize soil compaction due to its harmful effects on soil pores and subsequent challenges for plant root growth and enhanced runoff of water and nutrients.  相似文献   

5.
As metropolitan areas expand, the municipal and industrial uses of freshwater increase. Therefore, water resources for irrigation become limited and wastewater reuse for irrigation becomes a good alternative. For this purpose, the effects of suspended solids in wastewater on the soil physical properties, i.e., saturated hydraulic conductivity, Ks, have to be considered. The objectives of this research were to study the effects of applying freshwater and differently treated wastewater on Ks in the surface and subsurface layers of sandy‐loam, loam, and clay‐loam soils. This effect was studied by investigating the ratio of Ks for wastewater to Ks for fresh water in soil surface as Kr1 and in soil subsurface as Kr2. The results showed that the application of freshwater did not reduce the Kr1 considerably. However, the reduction in Kr1 mainly occurred in soil depth of 0–50 mm due to the application of wastewater. This effect is more pronounced in clay‐loam soil than in loam and sandy‐loam soils. It is concluded that application of wastewater with TSS (total suspended solid) of ≥ 40 mg L–1 resulted in Kr1 reduction of >50% in different soil textures. However, the Kr2 reduction at soil depth of 100–300 mm is not considerable by application of wastewater for different soil textures. Further, it is concluded that less purified wastewater can be used in light‐texture soils resulting in less reduction in Kr1. Empirical models were developed for predicting the value of Kr1 as a function of amounts of wastewater application and TSS for different soil textures that can be used in management of wastewater application for preventing deterioration of soil hydraulic conductivity.  相似文献   

6.
A laboratory column experiment was conducted to investigate the effects of 400°C biochar at application rate of 15 g kg?1 (21.9 t ha?1) with different particle sizes (<0.5 mm (S1), 0.5–1 mm (S2) and 1–2 mm (S3)) and application depths (0–2 cm depth (D0), 4–6 cm depth (D5) and 8–10 cm depth (D10)) on hydro-physical properties of sandy loam soil. The results indicated that applying biochar decreased the waterfront and saturated hydraulic conductivity of sandy loam soil. The cumulative evaporation was the highest and amounted to 40.9 mm in the non-treated soil, but it recorded the lowest amount of 32.2–35.5 mm in the biochar-treated soil. Applying biochar caused significant increases in the amount of conserved and retained water with the highest amount of water conserved in soil treated with S2 biochar at D5. Moreover, the cumulative water infiltration through the soil was significantly reduced by S1 and S2 biochars at D0. The values of saturated hydraulic conductivity for biochar treatments were significantly lower than those for the control, with the lowest values for S1 at D0 and D5. These results suggest positive improvement for the hydro-properties of coarse-textured soils following biochar addition, especially with finer particles of biochar.  相似文献   

7.
Abstract

A long‐term field experiment utilizing five different cropping systems was established on a Boralf soil in 1968 in the Peace River region of Alberta, Canada. The cropping systems consisted of: continuous barley (CB), barley/forage (Bf) (3 y of barley followed by 3 y of forage), forage/barley (Fb) (3 y of forage followed by 3 y of barley), continuous grass (CG) as bromegrass and continuous legume (CL) as red clover. The saturated conductivity (Ksat) was improved by growing forage crops as the CG and CL cropping systems had a higher Ksat (1.20×10‐2 and 1.57×10‐2 cm h‐1) than the Fb, Bf, and CB cropping systems (4.41×10‐3, 5.01×10‐3 and 4.50×10‐4 cm hr‐1, respectively) for the 15–30 cm depth. At the 30–45 cm depth the CL cropping system Ksat was a hundred fold greater, at 10‐2 compared to 10‐4 cm hr‐1. The infiltration and the depth of accumulated water over time also reflected forage production cropping practices as the CG and CL cropping systems had the highest infiltration rates at 30 min of 9.7 and 9.4 mm hr‐1 while the Fb, Bf, and CB cropping systems had infiltration rates of 4.8, 7.1 and 8.3 mm hr‐1. The ratio of the infiltration rate at the beginning versus the end of the infiltration period (30 to 480 min) of 4.0, 5.6, 6.4, 6.4, and 7.0 although not significant indicated decreasing structural stability in the order of: CG > CL > Bf > Fb > CB cropping systems, respectively. It was observed that differences in soil water properties due to cropping history were reflected.  相似文献   

8.
Measurements are reported of soil organic carbon content, dry bulk density, water retention characteristics, and saturated hydraulic conductivity of a sandy loam soil with two different crop rotations and two levels of fertilization. The water retention characteristics were fitted to the van Genuchten equation. Values of unsaturated hydraulic conductivity were estimated by calculation. It was found that crop rotation has much larger effects on these soil physical properties than fertilization. Water retention and hydraulic conductivity are greater when mustard, and clover with grass are included in the crop rotation, but only at water contents greater than 0,10 and 0, 13 kg kg?1respectívely.  相似文献   

9.
Conversion of natural forest to intensive cultivation makes to soil susceptible to flooding, declining fertility and loss of organic matter (OM) and reduced water movement into and within the soil. We studied infiltration rates and related soil penetrating indicators of forested and cultivated soils in humid tropical coastal plain sands in Southern Nigeria. Results showed that mean-weight diameter (MWD) and water stability of aggregates were higher in forested than cultivated soils. Stable aggregates > 1.00 mm were 16.5% and 31.1% respectively, for cultivated and forested soils at 0–15 cm depth, indicating formation of more macro-aggregates in forested soil. Soil disturbance through cultivation decreased hydraulic conductivity and increased bulk density of the soil. Infiltration rate attained after 2 hours was higher in forested soil. Temporary infiltration rate of 178 mm hr?1 at initial time in cultivated soil was followed by very low infiltration rate of 7 mm hr?1 after 2 hours. Soil organic matter (SOM), saturated hydraulic conductivity, MWD and total sand correlated positively with infiltration rates are r = 0.76, 0.61, 0.57 and 0.51 respectively. Changes in these parameters are dependent on surface soil disturbance by cultivation. Cultivation of forest decreased infiltration rates and water transmission properties of the soil.  相似文献   

10.
In a laboratory experiment pyrites at the rate equivalent to 75% of gypsum requirement was surface applied and mixed with a sodic black clay soil (Vertisol) at 15, 30, 45 and 60% soil moisture content. The soil samples were then incubated for 60, 120, 240 and 360 hours. A separate set of similarly treated soil packed in permeameters was used to estimate saturated hydraulic conductivity. After incubation, FeS2 was oxidised, soil pH and percentage of exchangeable sodium (ESP) decreased and water soluble sulphate and calcium increased with soil moisture content up to 45% and with time of incubation up to 120 hours. The surface application of pyrites proved superior as compared to mixed with soil. Leaching of the soil following incubation with three pore volumes of demineralised water removed most of the water soluble sodium and thus improved the effectiveness of the pyrites in lowering down the soil ESP. The saturated hydraulic conductivity also increased as a result of improved physico-chemical properties of the soil.  相似文献   

11.
Lysimeter experiments were conducted with sandy‐clay‐loam soil to study the efficiency of two amendments in reclaiming saline‐sodic soil using moderately saline and SAR (sodium‐adsorption ratio) irrigation water. Gypsum obtained from industrial phosphate by‐products and reagent grade Ca chloride were applied to packed soil columns and irrigated with moderately saline (ECe = 2.16 dS m–1), moderate‐SAR water (SAR = 4.8). Gypsum was mixed with soil prior to irrigation at application rates of 5, 10, 15, 20, 25, and 32 Mg ha–1, and Ca chloride was dissolved directly in leaching water at application rates of 4.25, 8.5, 12.75, 17.0, and 21.25 Mg ha–1, respectively. The highest application rate in both amendments resulted in 96% reduction of total Na in soil. The hydraulic conductivity (HC) of soils receiving gypsum increased in all treatments. The highest HC value of 6.8 mm h–1 was obtained in the highest application rate (32 Mg ha–1), whereas the lowest value of 5.2 mm h–1 was observed with the control treatment. Both amendments were efficient in reducing soil salinity and sodicity (exchangeable‐sodium percentage, ESP); however, Ca chloride was more effective than gypsum as a reclaiming material. Exchangeable Na and soluble salts were reduced with gypsum application by 82% and 96%, and by 86% and 93% with Ca chloride application, respectively. Exchangeable Ca increased with increasing amendment rate. Results of this study revealed that sodium was removed during cation‐exchange reactions mostly when the SAR of effluent water was at maximum with subsequent passage of 3 to 4 pore volumes. Gypsum efficiently reduced soil ESP, soil EC, leaching water, and costs, therefore, an application rate of 20 Mg ha–1 of gypsum with 3 to 4 pore volumes of leaching water is recommended for reclaiming the studied soil.  相似文献   

12.
土壤饱和导水率是计算土壤剖面水通量以及设计灌溉和排水系统的重要参数,其测量准确与否直接影响各类水文和水动力学模型的预测精度。然而,现有土壤饱和导水率测定方法费时费力,给土壤水动力学研究工作带来了诸多不便。为此,该研究提出了一种基于线性源入流法与手机图像处理相结合的土壤饱和导水率快速测量方法。该方法首先利用手机拍照获取图像记录充分供水条件下线性水流在土壤表面扩散的过程,图像经处理后计算出土壤表面湿润面积及其随时间的变化关系,然后根据线性源入流法估算的土壤稳态入渗率来测得土壤饱和导水率,并与传统的定水头标准法测得的饱和导水率进行对比。结果表明:图像经畸变校正与二值化处理之后计算出栓皮栎林区土壤、油松林区土壤和砂壤土表面湿润面积与时间具有较好的幂指数关系,决定系数R2分别为0.994、0.995和0.998;在此基础上,采用线性源入流法测量栓皮栎林区土壤、油松林区土壤和砂壤土的稳态入渗率(即土壤饱和导水率)分别为23.40±1.21、23.86±1.83和22.99±2.26 mm/h,同时使用定水头标准法测量三种土样得到的饱和导水率分别为24.41±1.53、24.26±0.37和23.81±0.10 mm/h,与定水头标准法相比,该研究提出的土壤饱和导水率测量方法的相对误差分别为4.14%、1.64%和3.42%。可见,该研究提出的测定方法较为合理、简便、准确,可为获取土壤饱和导水率提供一种新的测量手段,后续研究会将该方法用于野外环境下土壤饱和导水率的原位测定,并验证该方法的准确性。  相似文献   

13.
The effects of wheat, potato, sunflower, and rape residues and calcite were evaluated in soil that received sodic water. These materials were added to a sandy‐loam soil at a rate of 5%, after which the treated soils were incubated for 1 month at field‐capacity moisture and a temperature of 25°C–30°C. Column leaching experiments using treated soils were then conducted under saturated conditions using water with three sodium‐adsorption ratios (SAR) (0, 10, 40) with a constant ionic strength (50 mmol L–1). The results indicated that the application of plant residues to soils caused an increase in cation‐exchange capacity and exchangeable cations. Leaching experiments indicated that the addition of plant amendments led to increased Na+ leaching and decrease in exchangeable‐sodium percentage (ESP). The ESP of the control soil, after leaching with solutions with an SAR of 10 and 40, increased significantly, but the level of sodification in soils treated with plant residue was lower. Such decreases of soil ESP were greatly affected by the type of plant residues, with the order of: potato‐treated soil > sunflower‐treated soil > rape‐treated soil > wheat‐treated soil > calcite‐treated soil > control soil.  相似文献   

14.
《Soil & Tillage Research》2007,92(1-2):82-88
Soil management practices are needed in the subarctic that stabilize the soil against the forces of wind and water as well as conserve soil water for crop production. There is a paucity of information, however, regarding the long-term effects of conservation tillage on soil hydraulic properties in subarctic Alaska. The objective of this study was therefore to characterize infiltration, water retention, and saturated hydraulic conductivity of a soil 20 years after establishing tillage and straw management treatments in interior Alaska. The strip plot experimental design, established on a silt loam and maintained in continuous barley (Hordeum vulgare L.), included tillage as the main treatment and straw management as the secondary treatment. Tillage treatments included no tillage, autumn chisel plow, spring disk, and intensive tillage (autumn and spring disk) while straw treatments included retaining or removing stubble and loose straw from the soil surface after harvest. Soil properties were measured after sowing in spring 2004; saturated hydraulic conductivity was measured by the falling-head method, infiltration was measured using a double-ring infiltrometer, and water retention was assessed by measuring the temporal variation in in-situ soil water content. No tillage resulted in greater saturated hydraulic conductivity and generally retained more water against gravitational and matric forces than other tillage treatments. Infiltration was greater in autumn chisel plow than other tillage treatments and was presumably suppressed in no tillage by an organic layer overlying mineral soil. Infiltration was also enhanced by retaining straw on rather than removing straw from the soil surface after harvest. No tillage is not yet a sustainable management practice in this region due to lack of weed control strategies. In addition, the formation of an organic layer in no tillage has important ramifications for the soil hydrological and thermal environment. Therefore, minimum tillage (i.e., autumn chisel plow or spring disk) appears to be a viable management option for maximizing infiltration in interior Alaska.  相似文献   

15.
土石混合介质导气率变化特征试验   总被引:2,自引:1,他引:1       下载免费PDF全文
土壤中碎石的存在改变了土壤结构和孔隙分布,进而影响土壤通气性能。该文通过对碎石单粒径土石混合介质导气率变化特征研究,旨在探讨单粒径土石混合介质导气内在机理,为进一步研究复杂的野外土石混合介质的导气特性提供基础。为了研究土石混合介质中碎石对导气率的影响,该文通过试验研究,分析土壤颗粒小于2mm的样本(砂土、砂壤土、黏壤土)、碎石质量分数(10%、20%、30%、40%、50%)和碎石粒径(2~3、>3~5mm)对土石混合介质导气率的影响。结果表明:在土壤颗粒小于2mm的样本条件下,土壤导气率呈砂土>砂壤土>黏壤土;在相同碎石质量分数的土石混合介质中导气率呈砂壤土>砂土>黏壤土;碎石的存在改善黏壤土的导气性能,使黏壤土碎石混合介质的导气率大于黏壤土的导气率;降低了砂壤土和砂土的导气性能,且砂土的降低幅度远大于砂壤土;在砂壤土中碎石粒径2~3mm的导气率大于>3~5mm的导气率;在砂土中碎石质量分数30%之内,碎石粒径>3~5mm的导气率稍大于2~3mm的导气率,在40%则相反,但两种粒径下混合介质导气率差异不是很明显。  相似文献   

16.
The effect of soil ESP on soil moisture retention and volume change of montmorillonitic type clay soil (vertisol) in the 10–58 ESP range showed increase in moisture retention with soil ESP in 10-bar suction range. Soil moisture suction (h) – water content (θ)relationship of the form h = ho(θ/θs)?b, where ‘ho’is air entry suction and ‘b’ is a constant, was obtained at all ESP levels. Soil bulk density at low moisture contents increased considerably with soil ESP due to dispersion and decreased linearly with increase in soil water content because of mineral swelling. The soil water diffusivity and conductivity in the 0.15–0.35 g/g moisture content range followed an exponential increase with soil moisture content recording a sharp decrease at soil ESP 10. The effect of high exchangeable sodium, however, was mitigated, to a large extent, by the increase in electrolyte concentration of permeating water to 5 mmhos/cm or greater. Decrease in water transmission parameters ascribed to exchangeable Na+ in the drier moisture regime was accounted for by dispersion of soil particles at low ESP. Whereas adsorbed Na+ – induced swelling was regarded as the major factor modifying soil water relations at relatively high ESP under wet moisture regime. Soil ESP of 10 may be treated as critical for swelling clay soil from soil and water – management view point.  相似文献   

17.
小碎石与细土混合介质的导水特性   总被引:4,自引:1,他引:3  
王慧芳  邵明安  王明玉 《土壤学报》2010,47(6):1086-1093
含碎石土壤的导水性质研究有利于这种多孔介质水分运动的模拟。本文采用室内定水头法和离心机法分别测定两种质地土壤(壤土、黏壤土)和三种岩性小粒径(2~10 mm)碎石构成的土石混合介质的饱和导水率和水分特征曲线,采用van Genuchten-Mualem模型计算各土石介质的非饱和导水率,分析碎石对土壤导水能力的影响。试验结果显示,风化程度低的碎石对黏壤土具有明显的增大饱和导水率的作用,且碎石含量愈高,增加的效果愈明显;而风化程度高的碎石对土壤结构无明显的改善作用,且对黏壤土具有减小饱和导水率的作用。风化程度低碎石介质的非饱和导水率随土壤水吸力的增加呈现了先大于土壤和土石介质的后迅速减小到低于土壤和土石介质的变化过程。风化程度低的河卵石和风化程度高的粉泥页岩碎屑分别构成的土石介质的非饱和导水率较土壤的低,而风化程度中等的片麻状花岗岩碎块构成的土石介质的非饱和导水率较土壤的高。近饱和状态下,碎石含量高的土石介质的非饱和导水率也相应的高,而较大的土壤水吸力下,土石介质的非饱和导水率呈现随碎石含量的增大而减小变化趋势。试验结论可为含碎石土壤水分平衡研究提供参考。  相似文献   

18.
《Soil Use and Management》2018,34(3):370-379
The unsaturated soil hydraulic conductivity accounting for film flow is important for understanding soil hydrological and biological processes, especially in arid and semi‐arid regions. Recently, a theoretically based hydraulic conductivity model was developed to describe the hydraulic conductivity as a function of water content. We have used this model to compare seven soil water retention functions commonly used for predicting soil hydraulic conductivity due to film flow. A total of 30 soils, varying in basic properties, were selected from the Unsaturated Soil Hydraulic Database to evaluate the seven functions. The Webb method was applied to identify the critical soil matric potential (h c) below which thin film flow controls water movement. Soil hydraulic conductivity measurements at matric potential below h c were then used for curve fitting according to the seven functions. Slight differences were observed among the functions in predicting soil hydraulic conductivity due to film flow. Six of the seven functions in combination with the hydraulic conductivity model described the hydraulic conductivity due to film flow well, according to the terms of the coefficient of efficiency. The relatively poor performance of the one exception was due to the fact that the linear shape of the function made it less flexible at low matric potentials. In addition, the effect of textural class on its performance was substantial, showing a poorer fit for the sand soil compared with the loam and clay soils. These findings have important applications related to soil and water resources conservation especially in arid and semi‐arid regions.  相似文献   

19.
We studied few soil physical indicators after eighth cropping cycle of rice-wheat. The experiment was laid out in split-split plot design with two tillage (rice: puddling vs. non-puddling; wheat: conventional tillage vs. no-tillage), three water management (rice: submergence vs. drainage; wheat: five/three/two irrigations) and nine nutrient (N) management treatments (inorganic vs. integrated nutrient management). The bulk density (t m?3) in non-puddled soil (1.33) was significantly less than puddled soil (1.59); while mean weight diameter (0.55 mm) and saturated hydraulic conductivity (0.43 cm h?1) were higher in the former treatment. Irrigation after 3-days of drainage was found to enhance soil aggregation (0.54 mm) and moisture retention (71.6%) during rice. No-tillage in wheat had overall positive impact. Organic sources of nutrients increased soil water retention (biofertilizer for rice), water conductivity and aggregate stability (combined organics for rice and wheat). Interactions between (tillage × N), (water × N), (tillage × water) revealed crop-wise variations. The saturated hydraulic conductivity and soil aggregation for rice; and bulk density, water retention and saturated hydraulic conductivity for wheat were identified as sensitive soil physical indicators. We suggest an effective combination of no tillage and intermittent irrigation with integrated nutrient management for sustaining soil physical quality in rice-wheat rotation.  相似文献   

20.
应用土壤质地预测干旱区葡萄园土壤饱和导水率空间分布   总被引:7,自引:4,他引:3  
田间表层土壤饱和导水率的空间变异性是影响灌溉水分入渗和土壤水分再分布的主要因素之一,研究土壤饱和导水率的空间变化规律,有助于定量估计土壤水分的空间分布和设计农田的精准灌溉管理制度。为了探究应用其他土壤性质如质地、容重、有机质预测土壤饱和导水率空间分布的可行性,试验在7.6 hm2的葡萄园内,采用均匀网格25 m×25 m与随机取样相结合的方式,测定了表层(0~10 cm)土壤饱和导水率、粘粒、粉粒、砂粒、容重和有机质含量,借助经典统计学和地统计学,分析了表层土壤饱和导水率的空间分布规律、与土壤属性的空间相关性,并对普通克里格法、回归法和回归克里格法预测土壤饱和导水率空间分布的结果进行了对比。结果表明:1)土壤饱和导水率具有较强的变异性,平均值为1.64 cm/d,变异系数为1.17;2)表层土壤饱和导水率60%的空间变化是由随机性或小于取样尺度的空间变异造成;3)土壤饱和导水率与粘粒、粉粒、砂粒和有机质含量具有一定空间相关性,而与土壤容重几乎没有空间相关性;4)在中值区以土壤属性辅助的回归克里格法对土壤饱和导水率的预测精度较好,在低值和高值区其与普通克里格法表现类似。研究结果将为更好地描述土壤饱和导水率空间变异结构及更准确地预测其空间分布提供参考。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号