首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Salinity and sodicity effects on respiration and microbial biomass of soil   总被引:4,自引:2,他引:2  
An understanding of the effects of salinity and sodicity on soil carbon (C) stocks and fluxes is critical in environmental management, as the areal extents of salinity and sodicity are predicted to increase. The effects of salinity and sodicity on the soil microbial biomass (SMB) and soil respiration were assessed over 12weeks under controlled conditions by subjecting disturbed soil samples from a vegetated soil profile to leaching with one of six salt solutions; a combination of low-salinity (0.5dSm−1), mid-salinity (10dSm−1), or high-salinity (30dSm−1), with either low-sodicity (sodium adsorption ratio, SAR, 1), or high-sodicity (SAR 30) to give six treatments: control (low-salinity low-sodicity); low-salinity high-sodicity; mid-salinity low-sodicity; mid-salinity high-sodicity; high-salinity low-sodicity; and high-salinity high-sodicity. Soil respiration rate was highest (56–80mg CO2-C kg−1 soil) in the low-salinity treatments and lowest (1–5mg CO2-C kg−1 soil) in the mid-salinity treatments, while the SMB was highest in the high-salinity treatments (459–565mg kg−1 soil) and lowest in the low-salinity treatments (158–172mg kg−1 soil). This was attributed to increased substrate availability with high salt concentrations through either increased dispersion of soil aggregates or dissolution or hydrolysis of soil organic matter, which may offset some of the stresses placed on the microbial population from high salt concentrations. The apparent disparity in trends in respiration and the SMB may be due to an induced shift in the microbial population, from one dominated by more active microorganisms to one dominated by less active microorganisms.  相似文献   

2.
Excess of exchangeable sodium (Na) in salt-affected soils causes ion toxicity and decrease in nutrient uptake by plants, particularly potassium (K). A number of studies have been conducted to investigate the effect of K-fertilization on plant growth under sodic and saline-sodic conditions but the results are much diverse to process for concrete recommendations. To explore the possible reasons, it was hypothesized that Na applied as NaCl to produce salinity/sodicity in the soil may release non-exchangeable K, minimizing the effect of K-fertilization. Incubation studies were conducted for 2, 4 and 6 days in the light (sandy loam) and heavy (clay loam) textured soils producing two saline/sodic levels, i.e. 20 and 30 sodium adsorption ratio (SAR) along with control (SAR 3). Potassium fertilizer applied was calculated according to 40 (general recommendations based on soil-nutrient status), 80 and 160 kg K ha?1. Interestingly, it was observed that addition of NaCl possibly released non-exchangeable K from the soil minerals and increased the K concentration in soil solution. Total K release was more in heavy textured soil but initial release was more in light textured soil. This release may eliminate the effect of K-fertilization applied under salt stress induced by NaCl. Therefore, it is suggested that while studying Na–K interaction in salt-affected soils, NaCl should be avoided to produce salinity, and naturally occurring saline-sodic soils may be used. Soil Na–K interaction studies including ameliorating effect of K under sodic or saline-sodic conditions should be conducted carefully considering the above-stated argument.  相似文献   

3.
The individual effects of salinity and sodicity on organic matter dynamics are well known but less is known about their interactive effects. We conducted a laboratory incubation experiment to assess soil respiration and dissolved organic matter (DOM) dynamics in response to salinity and sodicity in two soils of different texture. Two non-saline non-sodic soils (a sand and a sandy clay loam) were leached 3–4 times with solutions containing different concentrations of NaCl and CaCl2 to reach almost identical electrical conductivity (EC1:5) in both soils (EC1:5 0.5, 1.3, 2.5 and 4.0 dS m?1 in the sand and EC1:5 0.7, 1.4, 2.5 and 4.0 dS m?1 in the sandy clay loam) combined with two sodium absorption ratios: SAR < 3 and 20. Finely ground wheat straw residue was added (20 g kg?1) as substrate to stimulate microbial activity. Cumulative respiration was more strongly affected by EC than by SAR. It decreased by 8% at EC 1.3 and by 60% at EC 4.0 in the sand, whereas EC had no effect on respiration in the sandy clay loam. The apparent differential sensitivity to EC in the two soils can be explained by their different water content and therefore, different osmotic potential at the same EC. At almost similar osmotic potential: ?2.92 MPa in sand (at EC 1.3) and ?2.76 MPa in the sandy clay loam (at EC 4.0) the relative decrease in respiration was similar (8–9%). Sodicity had little effect on cumulative respiration in the soils, but DOC, DON and specific ultra-violet absorbance (SUVA) were significantly higher at SAR 20 than at SAR < 3 in combination with low EC in both soils (EC 0.5 in the sand and EC 0.7 and 1.4 in the sandy clay loam). Therefore, high SAR in combination with low EC is likely to increase the risk of DOC and DON leaching in the salt-affected soils, which may lead to further soil degradation.  相似文献   

4.
Abstract

Irrigation is becoming a more commonly used practice on glacially derived soils of the Northern Great Plains. Threshold salinity and sodicity water quality criteria for soil‐water compatibility in these sulfatic soils are not well defined. This study was conducted to relate soil salinity and sodicity to clay dispersion and saturated hydraulic conductivity (Ksat) in four representative soils. Soil salinity (EC treatment levels of 0.1 and 0.4 S m‐1) and sodicity (SAR treatment levels of 3, 9, and 15) levels were established to produce a range of conditions similar to those that might be found under irrigation. The response of each soil to changes in salinity and sodicity was unique. In general, as sodicity increased clay dispersion also increase, but the magnitude of the increase varied among the soils. In two of the soils, clay dispersion across a range of sodicity levels was lower under the 0.4 S m‐1 treatment than under the 0.1 S m‐1 treatment and in the other two soils, clay dispersion across a range of sodicity levels was similar between the two salinity treatments. Changes in Ksat were greatest in the finer textured soil (decreasing an order of magnitude across the range of sodicity levels), but was unchanged in the coarse textured soils. Results suggest that these sulfatic soils are more susceptible to sodicity induced deterioration than chloridic soils. These results and earlier field observations suggest that sustainable irrigation may be limited to sites with a water source having a SAR <5 and an EC not exceeding 0.3 S m‐1 for these sulfatic glacially derived soils.  相似文献   

5.
华北地区微咸水应用对土壤水力传导性能的影响   总被引:1,自引:1,他引:0  
由于淡水资源短缺,中国华北地区微咸地下水灌溉面积逐年增多。该文通过室内土柱淋洗试验,研究了灌溉水盐分浓度和钠吸附比(SAR)对华北地区非碱土(可交换钠百分比ESP0)和碱土(ESP30)饱和水力传导性能的影响。灌溉水盐浓度分别为2.5、10和25mmolc/L,SAR分别为0、10和30(mmolc/L)0.5。去离子(盐浓度0)作为对照处理。试验包括2个土壤碱度、9个灌溉水质组合和1个去离子水处理,共20个试验处理。试验结果显示,非碱土和碱土对微咸水应用的反应机理以及反应程度不同。当黏粒弥散程度较弱时,上部土壤的饱和水力传导度显著大于下层土壤;反之,则各层土壤的水力传导度均较小。在试验水质条件下,非碱土的平均饱和水力传导度的变化范围为0.75~13.25cm/h,而碱土的变化范围为0.06~6.50cm/h。碱土的稳定饱和水力传导度随着灌溉水盐浓度的增加或/和SAR的减小而增大,但在非碱土中稳定饱和水力传导度的变化规律与此基本相反。试验结果对合理应用微咸水灌溉非碱土和碱土具有指导意义。  相似文献   

6.
Sodicity and salinity can adversely affect soil structure and are common constraints to plant growth in arid regions. Current remote sensing techniques cannot distinguish between the various classes of salt-affected soils. Field and laboratory measurements of salt-affected soils are time-consuming and expensive. Mapping of the salt-affected soils can be used in soil conservation planning to identify regions with different degrees of limitations. There is a need to use existing field and laboratory measurements to create maps of classes of salt-affected soils. The objectives of this study are to classify salt-affected soils, use existing field data to interpolate and validate geospatial predictions of the classes of salt-affected soils using Geographic Information Systems (GIS), and create maps showing the different classes and distribution of salt-affected soils. The classification framework for salt-affected soils is based on electrical conductivity (ECe), soil pH and the sodium adsorption ratio (SAR), and provides four degrees of limitations to salt-affected soils: slight (normal soils), moderate (saline soils), severe (sodic soils), and extreme (saline-sodic soils). Spatial interpolation of the field data from northwestern Libya was verified by cross-validation, and maps of the salt-affected soils in the region were created. The majority of soils in this region of Libya are normal (slight degree of limitation). Twenty percent of the topsoil is saline-sodic (extreme degree of limitation). Land use recommendations and rehabilitation strategies can be developed from such maps of salt-affected soil classes. The methodology followed in this study can be applied to other arid regions around the world, particularly in developing countries where budgetary constraints limit detailed field and laboratory measurements of sodicity and salinity.  相似文献   

7.
Exchangeable Mg appears to have no specific effect on soil hydraulic conductivity of A and C horizons of a sodic sandy loam soil (montmorillonite and kaolinite clay minerals) leached with solutions which cause clay swelling to be the dominant mechanism reducing conductivity (SAR < 20, electrolyte concentration 10 meq per litre). There is some evidence of a specific effect when these soils are subsequently leached with water which causes clay dispersion to become important. Fresh loess in the A horizon dissolves in percolating rainwater, causing difficulties in the replication of experiments. It seems to give a small degree of ‘self protection’ to soil structure, a property likely to be operating in other soils affected by recent loess deposits.  相似文献   

8.
Osmotic potential (OP) of soil solution may be a more appropriate parameter than electrical conductivity (EC) to evaluate the effect of salts on plant growth and soil biomass.However,this has not been examined in detail with respect to microbial activity and dissolved organic matter in soils with different texture.This study evaluated the effect of salinity and sodicity on respiration and dissolved organic matter dynamics in salt-affected soils with different texture.Four non-saline and non-sodic soils differing in texture (S-4,S-13,S-24 and S-40 with 4%,13%,24% and 40% clay,respectively) were leached using combinations of 1 mol L-1 NaC1 and 1 mol L-1 CaC12 stock solutions,resulting in EC (1:5 soil:water ratio) between 0.4 and 5.0 dS m-1 with two levels of sodicity (sodium absorption ratio (SAR) < 3 (non-sodic) and 20 (sodic),1:5 soil:water ratio).Adjusting the water content to levels optimal for microbial activity,which differed among the soils,resulted in four ranges of OP in all the soils:from-0.06 to--0.24 (controls,without salt added),-0.55 to-0.92,-1.25 to-1.62 and-2.77 to-3.00 Mpa.Finely ground mature wheat straw (20 g kg-1) was added to stimulate microbial activity.At a given EC,cumulative soil respiration was lower in the lighter-textured soils (S-4 and S-13) than in the heavier-textured soils (S-24 and S-40).Cumulative soil respiration decreased with decreasing OP to a similar extent in all the soils,with a greater decrease on Day 40 than on Day 10.Cumulative soil respiration was greater at SAR =20 than at SAR < 3 only at the OP levels between-0.62 and-1.62 MPa on Day 40.In all the soils and at both sampling times,concentrations of dissolved organic C and N were higher at the lowest OP levels (from-2.74 to-3.0 MPa) than in the controls (from-0.06 to-0.24 MPa).Thus,OP is a better parameter than EC to evaluate the effect of salinity on dissolved organic matter and microbial activity in different textured soils.  相似文献   

9.
Abstract

Sodic water and spring water percolated through clay, clay loam, and sandy loam (SL) soils with exchangeable sodium percentages (ESPs) of 0, 10, 30, and 50. Reduction in saturated hydraulic conductivity and water stable aggregates recorded at higher ESPs. At ESP ≈30, application of sodic and spring water to clay soil (C) reduced saturated hydraulic conductivity from 1.2 to 3 mm hr?1, whereas in SL soil, the values were 2.8 and 6.2 mm hr?1, respectively. Results indicated that at any ESP and water source, the highest free swelling obtained was in the C soil. This study has practical importance to the management of irrigation water quality with respect to soil deterioration.  相似文献   

10.
盐化和有机质对土壤结构稳定性及阿特伯格极限的影响   总被引:14,自引:1,他引:14  
对甘肃景电灌区盐化和有机质对土壤团聚体的稳定性、黏粒的分散性及阿特伯格极限进行了调查研究。研究结果表明该灌区盐化土壤中水溶性盐以钠盐为主,土壤具有钠质现象。随含盐量和交换性钠离子百分率(ESP)的增加土壤团聚体的稳定性显著降低,黏粒的分散性显著增加,阿特伯格极限具有降低的趋势,明确地说明盐化和伴随着的钠质化是土壤结构性能退化的主要原因。随有机质含量的增加,土壤团聚体的稳定性显著增加,黏粒的分散性显著降低,阿特伯格极限显著增加,说明增加有机质含量可以显著改善盐化土壤的结构性能。可以根据如下公式利用有机质含量(OM)和ESP预测团聚体的稳定性:WSAR=19.4 0.98OM-1.43 ESP(R2=0.5741,n=67)。团聚体稳定性、黏粒分散性、流限和塑限互相之间显著相关,说明流限和塑限可以作为反映盐化土壤结构状况的指标。  相似文献   

11.
Soil sodicity is an increasing problem in arid‐land irrigated soils that decreases soil permeability and crop production and increases soil erosion. The first step towards the control of sodic soils is the accurate diagnosis of the severity and spatial extent of the problem. Rapid identification and large‐scale mapping of sodium‐affected land will help to improve sodicity management. We evaluated the effectiveness of electromagnetic induction (EM) measurements in identifying, characterizing and mapping the spatial variability of sodicity in five saline‐sodic agricultural fields in Navarre (Spain). Each field was sampled at three 30‐cm soil depth increments at 10–30 sites for a total of 267 soil samples. The number of Geonics‐EM38 measurements in each field varied between 161 and 558, for a total of 1258 ECa (apparent electrical conductivity) readings. Multiple linear regression models established for each field predicted the average profile ECe (electrical conductivity of the saturation extract) and SAR (sodium adsorption ratio of the saturation extract) from ECa. Despite the lack of a direct causal relationship between ECa and SAR, EM measurements can be satisfactorily used for characterizing the spatial distribution of soil sodicity if ECe and SAR are significantly auto‐correlated. These results provide ancillary support for using EM measurements to indirectly characterize the spatial distribution of saline‐sodic soils. More research is needed to elucidate the usefulness of EM measurements in identifying soil sodicity in a wider range of salt and/or sodium‐affected soils.  相似文献   

12.
The effect of total electrolyte concentration (TEC) and sodium adsorption ratio (SAR) of water on ESR‐SAR relationships of clay (Typic Haplustert), clay loam (Vertic Haplustept) and silt loam (Lithic Haplorthent) soils was studied in a laboratory experiment. Twenty four solutions, encompassing four TEC levels viz., 5, 10, 20, and 50 mmolc l—1 and six SAR levels viz., 2.5, 5, 10, 15, 20, and 30 mmol1/2l—1/2 were synthesized to equilibrate the soil samples using pure chloride salts of calcium, magnesium, and sodium at Mg:Ca = 1:2. SAR of equilibrium solution decreased as compared to the equilibrating solution and more so in waters of low salt concentration and high SAR. At low electrolyte concentration, high SAR values were not attained in the equilibrium solution because of addition of calcium and magnesium from the mineral dissolution and from the exchange phase. Irrespective of TEC, exchangeable sodium in all the soils increased by about 4.5 to 5‐fold and irrespective of SAR, it increased by about 1.4‐ to 1.8‐fold. A positive interaction of TEC and SAR influenced the ESP build‐up and CEC played a major role in the visual disparity in sodication of these soils. At higher TEC levels, considerable increase in ESP was observed when it was corrected for anion exclusion and more so in silt loam followed by clay loam and clay soils. The values for Gapons' constant were in the range 0.0110—0.0176, 0.0142—0.0246, and 0.0189—0.0344 mmol—1/2l1/2 in clay, clay loam, and silt loam soils, respectively. Increase in TEC from 5 to 50 mmolc l—1 resulted in 5.84, 8.33, and 9.77 % decrease in Gapons' constant of clay, clay loam, and silt loam soils, respectively. The soils exhibited differential affinity for Ca2+, Mg2+ or Na+ under different quality waters. Regression coefficients of ESR‐SAR relationship were lower for low TEC as compared with high TEC waters. The exchange equilibrium was strongly affected by TEC of the solution phase. Variation in soil pH was gradual with respect to TEC and SAR of equilibrating solution and no sharp change was observed. Soluble salt concentration was doubled upon equilibration with low salt waters at all SAR levels in all the soils. However, the salt concentration remained unchanged upon equilibration with high salt waters. Considering pH 8.5 a boundary between soil salinity and sodicity, ESP values attained at TEC 5 mmolc l—1 were 7.34, 8.02, and 14.32 for clay, clay loam, and silt loam soils, respectively.  相似文献   

13.
Lysimeter experiments were conducted with sandy‐clay‐loam soil to study the efficiency of two amendments in reclaiming saline‐sodic soil using moderately saline and SAR (sodium‐adsorption ratio) irrigation water. Gypsum obtained from industrial phosphate by‐products and reagent grade Ca chloride were applied to packed soil columns and irrigated with moderately saline (ECe = 2.16 dS m–1), moderate‐SAR water (SAR = 4.8). Gypsum was mixed with soil prior to irrigation at application rates of 5, 10, 15, 20, 25, and 32 Mg ha–1, and Ca chloride was dissolved directly in leaching water at application rates of 4.25, 8.5, 12.75, 17.0, and 21.25 Mg ha–1, respectively. The highest application rate in both amendments resulted in 96% reduction of total Na in soil. The hydraulic conductivity (HC) of soils receiving gypsum increased in all treatments. The highest HC value of 6.8 mm h–1 was obtained in the highest application rate (32 Mg ha–1), whereas the lowest value of 5.2 mm h–1 was observed with the control treatment. Both amendments were efficient in reducing soil salinity and sodicity (exchangeable‐sodium percentage, ESP); however, Ca chloride was more effective than gypsum as a reclaiming material. Exchangeable Na and soluble salts were reduced with gypsum application by 82% and 96%, and by 86% and 93% with Ca chloride application, respectively. Exchangeable Ca increased with increasing amendment rate. Results of this study revealed that sodium was removed during cation‐exchange reactions mostly when the SAR of effluent water was at maximum with subsequent passage of 3 to 4 pore volumes. Gypsum efficiently reduced soil ESP, soil EC, leaching water, and costs, therefore, an application rate of 20 Mg ha–1 of gypsum with 3 to 4 pore volumes of leaching water is recommended for reclaiming the studied soil.  相似文献   

14.
Many empirical approaches have been developed to analyze changes in hydraulic conductivity due to concentration and composition of equilibrium solution. However, in swelling soils these approaches fail to perform satisfactorily, mainly due to the complex nature of clay minerals and soil–water interactions. The present study describes the changes in hydraulic conductivity of clay (Typic Haplustert) and clay‐loam (Vertic Haplustept) soils with change in electrolyte concentration (TEC) and sodium‐adsorption ratio (SAR) of equilibrium solution and assesses the suitability of a model developed by Russo and Bresler (1977) to describe the effects of mixed Na‐Ca‐Mg solutions on hydraulic conductivity. Four solutions encompassing two TEC levels viz., 5 and 50 mmolc L–1 and two SAR levels viz., 2.5 and 30 mmol1/2 L–1/2 were synthesized to equilibrate the soil samples using pure chloride salts of Ca, Mg, and Na at Ca : Mg = 2:1. Diluting 50 mmolc L–1 solution to 5 mmolc L–1 reduced saturated hydraulic conductivity of both soils by 66%, and increasing SAR from 2.5 to 30 mmol1/2 L–1/2 decreased saturated hydraulic conductivity by 82% and 79% in clay and clay‐loam soils, respectively. Near saturation, the magnitude of the change in unsaturated hydraulic conductivity due to the change in TEC and SAR was of 103‐ and 102‐fold, and at volumetric water content of 0.20 cm3 cm–3, it was of 1014‐ and 106‐fold in clay and clay‐loam soils, respectively. Differences between experimental and predicted values of saturated hydraulic conductivity ranged between 0.6% and 11% in clay and between 0.06% and 2.1% in clay‐loam soils. Difference between experimental and predicted values of unsaturated hydraulic conductivity widened with drying in both soils. Predicted values were in good agreement with the experimental values of hydraulic conductivity in clay and clay‐loam soils with R2 values of 0.98 and 0.94, respectively. The model can be satisfactorily used to describe salt effects on hydraulic conductivity of swelling soils in arid and semiarid areas, where groundwater quality is poor.  相似文献   

15.
Soil salinity (high levels of water-soluble salt) and sodicity (high levels of exchangeable sodium), called collectively salt-affected soils, affect approximately 932 million ha of land globally. Saline and sodic landscapes are subjected to modified hydrologic processes which can impact upon soil chemistry, carbon and nutrient cycling, and organic matter decomposition. The soil organic carbon (SOC) pool is the largest terrestrial carbon pool, with the level of SOC an important measure of a soil's health. Because the SOC pool is dependent on inputs from vegetation, the effects of salinity and sodicity on plant health adversely impacts upon SOC stocks in salt-affected areas, generally leading to less SOC. Saline and sodic soils are subjected to a number of opposing processes which affect the soil microbial biomass and microbial activity, changing CO2 fluxes and the nature and delivery of nutrients to vegetation. Sodic soils compound SOC loss by increasing dispersion of aggregates, which increases SOC mineralisation, and increasing bulk density which restricts access to substrate for mineralisation. Saline conditions can increase the decomposability of soil organic matter but also restrict access to substrates due to flocculation of aggregates as a result of high concentrations of soluble salts. Saline and sodic soils usually contain carbonates, which complicates the carbon (C) dynamics. This paper reviews soil processes that commonly occur in saline and sodic soils, and their effect on C stocks and fluxes to identify the key issues involved in the decomposition of soil organic matter and soil aggregation processes which need to be addressed to fully understand C dynamics in salt-affected soils.  相似文献   

16.
In salt-affected soils, soil organic carbon (SOC) levels are usually low as a result of poor plant growth; additionally, decomposition of soil organic matter (SOM) may be negatively affected. Soil organic carbon models, such as the Rothamsted Carbon Model (RothC), that are used to estimate carbon dioxide (CO2) emission and SOC stocks at various spatial scales, do not consider the effect of salinity on CO2 emissions and may therefore over-estimate CO2 release from saline soils. Two laboratory incubation experiments were conducted to assess the effect of soil texture on the response of CO2 release to salinity, and to calculate a rate modifier for salinity to be introduced into the RothC model. The soils used were a sandy loam (18.7% clay) and a sandy clay loam (22.5% clay) in one experiment and a loamy sand (6.3% clay) and a clay (42% clay) in another experiment. The water content was adjusted to 75%, 55%, 50% and 45% water holding capacity (WHC) for the loamy sand, sandy loam, sandy clay loam and the clay, respectively to ensure optimal soil moisture for decomposition. Sodium chloride (NaCl) was used to develop a range of salinities: electrical conductivity of the 1:5 soil: water extract (EC1:5) 1, 2, 3, 4 and 5 dS m−1. The soils were amended with 2% (w/w) wheat residues and CO2 emission was measured over 4 months. Carbon dioxide release was also measured from five salt-affected soils from the field for model evaluation. In all soils, cumulative CO2-C g−1 soil significantly decreased with increasing EC1:5 developed by addition of NaCl, but the relative decrease differed among the soils. In the salt-amended soils, the reduction in normalised cumulative respiration (in percentage for the control) at EC1:5 > 1.0 dS m−1 was most pronounced in the loamy sand. This is due to the differential water content of the soils, at the same EC1:5; the salt concentration in the soil solution is higher in the coarser textured soils than in fine textured soils because in the former soils, the water content for optimal decomposition is lower. When salinity was expressed as osmotic potential, the decrease in normalised cumulative respiration with increasing salinity was less than with EC1:5. The osmotic potential of the soil solution is a more appropriate parameter for estimating the salinity effect on microbial activity than the electrical conductivity (EC) because osmotic potential, unlike EC, takes account into salt concentration in the soil solution as a function of the water content. The decrease in particulate organic carbon (POC) was smaller in soils with low osmotic potential whereas total organic carbon, humus-C and charcoal-C did not change over time, and were not significantly affected by salinity. The modelling of cumulative respiration data using a two compartment model showed that the decomposition of labile carbon (C) pool is more sensitive to salinity than that of the slow C pool. The evaluation of RothC, modified to include the decomposition rate modifier for salinity developed from the salt-amended soils, against saline soils from the field, suggested that salinity had a greater effect on cumulative respiration in the salt-amended soils. The results of this study show (i) salinity needs to be taken into account when modelling CO2 release and SOC turnover in salt-affected soils, and (ii) a decomposition rate modifier developed from salt-amended soils may overestimate the effect of salinity on CO2 release.  相似文献   

17.
松嫩平原盐渍土钠吸附比推算土壤碱化度研究   总被引:2,自引:0,他引:2  
Soil exchangeable sodium percentage (ESP) and sodium adsorption ratio (SAR) are commonly used to assess soil sodicity.Correlation between ESP and SAR of saturated pasted extract (SAR e) or of 1:5 (m:m) mixture soil to water (SAR 1:5) has been documented to predict ESP from SAR.However limited studies have been undertaken to model soil ESP based on soil SAR in the Songnen Plain,Northeast China.In this study,117 soil samples were used to predict ESP from SAR e and SAR 1:5 of salt-affected soils in western Songnen Plain.Soil ESP was highly related (r 2 > 0.76,P < 0.001) with SAR e and SAR 1:5.ESP of salt-affected soils in the Songnen Plain could be predicted using a logarithmic regression equations of ESP=10.72 · ln(SAR e) 15.36 and ESP=11.44 · ln(SAR 1:5) + 5.48.  相似文献   

18.
Net carbon dioxide (CO2) emission from soils is controlled by the input rate of organic material and the rate of decomposition which in turn are affected by temperature, moisture and soil factors. While the relationships between CO2 emission and soil factors are well-studied in non-salt-affected soils, little is known about soil properties controlling CO2 emission from salt-affected soils. To close this knowledge gap, non-salt-affected and salt-affected soils (0-0.30 m) were collected from two agricultural regions: in India (irrigation induced salinity) and in Australia (salinity associated with ground water or non-ground water associated salinity). A subset (50 Indian and 70 Australian soils) covering the range of electrical conductivity (EC) and sodium adsorption ratio (SAR) in each region was used in a laboratory incubation experiment. The soils were left unamended or amended with mature wheat residues (2% w/w) and CO2 release was measured over 120 days at constant temperature and soil water content. Residues were added to overcome carbon limitation for soil respiration. For the unamended soils, separation in multidimensional scaling plots was a function of differences in soil texture (clay, sand), SOC pools (particulate organic carbon (POC) and humus-C) and also EC. Cumulative CO2-C emission from unamended and amended soils was related to soil properties by stepwise regression models. Cumulative CO2-C emission was negatively correlated with EC in saline soils (R2 = 0.50, p < 0.05) from both regions. In the unamended non-salt-affected soils, cumulative CO2-C emission was significantly positively related to the content of POC for the Indian soils and negatively related to clay content for the Australian soils. In the wheat residue amended soils, cumulative CO2-C emission had positive relationship with POC and humus-C but a negative correlation with EC for both Indian and Australian soils. SAR was negatively related (β = −0.66, p < 0.05) with cumulative CO2-C emission only for the unamended saline-sodic soils of Australia. Cumulative CO2-C emission was significantly negatively correlated with bulk density in amended soils from both regions. The study showed that in salt-affected soils, EC was the main factor influencing for soil respiration but the content of POC, humus-C and clay were also influential with the magnitude of influence depending on whether the soils were salt affected or not.  相似文献   

19.
Around the world, especially in semi‐arid regions, millions of hectares of irrigated agricultural land are abandoned each year because of the adverse effects of irrigation, mainly secondary salinity and sodicity. Accurate information about the extent, magnitude, and spatial distribution of salinity and sodicity will help create sustainable development of agricultural resources. In Morocco, south of the Mediterranean region, the growth of the vegetation and potential yield are limited by the joint influence of high temperatures and water deficit. Consequently, the overuse of surface and groundwater, coupled with agricultural intensification, generates secondary soils salinity and sodicity. This research focuses on the potential and limits of the advance land imaging (EO‐1 ALI) sensor spectral bands for the discrimination of slight and moderate soil salinity and sodicity in the Tadla's irrigated agricultural perimeter, Morocco. To detect affected soils, empirical relationships (second‐order regression analysis) were calculated between the electrical conductivity (EC) and different spectral salinity indices. To achieve our goal, spectroradiometric measurements (350 to 2500 nm), field observation, and laboratory analysis (EC of a solution extracted from a water‐saturated soil), and soil reaction (pH) were used. The spectroradiometric data were acquired using the ASD (analytical spectral device) above 28 bare soil samples with various degrees of soil salinity and sodicity, as well as unaffected soils. All of the spectroradiometric data were resampled and convolved in the solar‐reflective spectral bands of EO‐1 ALI sensor. The results show that the SWIR region is a good indicator of and is more sensitive to different degrees of slight and moderate soil salinity and sodicity. In general, relatively high salinity soils show higher spectral signatures than do sodic soils and unaffected soils. Also, strongly sodic soils present higher spectral responses than moderately sodic soils. However, in spite of the improvement of EO‐1 ALI spectral bands by comparison to Landsat‐ETM+, this research shows the weakness of multispectral systems for the discrimination of slight and moderate soil salinity and sodicity. Although remote sensing offers good potential for mapping strongly saline soils (dry surface crust), slight and moderately saline and sodic soils are not easily identified, because the optical properties of the soil surfaces (color, brightness, roughness, etc.) could mask the salinity and sodicity effects. Consequently, their spatial distribution will probably be underestimated. According to the laboratory results, the proposed Soils Salinity and Sodicity Indices (SSSI) using EO‐1 ALI 9 and 10 spectral bands offers the most significant correlation (52.91%) with the ground reference (EC). They could help to predict different spatial distribution classes of slight and moderate saline and sodic soils using EO‐1 ALI imagery data.  相似文献   

20.
The large genotypic variation for salt tolerance in rice and wheat is the driving force behind efforts to identify appropriate cultivars for salt‐prone environments where large variations in salinity (electrical conductivity, EC) and sodicity (sodium adsorption ratio, SAR) levels exist. An evaluation of the commonly grown rice and wheat cultivars at different EC/SAR ratios may thus help in coping with the crop failures on salt‐affected soils. Accordingly, we evaluated some salt‐tolerant cultivars of rice and wheat for growth and yield at different soil salinity and sodicity levels in a sandy clay loam soil. Among the cultivars tested, rice ‘SSRI‐8’ produced the highest productive tillers and paddy yield, and wheat cultivar ‘SIS‐32’ produced the highest tillers and grain and straw yields. The high EC/SAR ratios proved more hazardous for rice than for wheat. Irrespective of the varieties tested, the highest levels of EC and SAR (T5 and T6) caused significant reduction in paddy yield, whereas at the lowest levels of EC and SAR (T1 and T2), paddy yield was not affected significantly when compared with the control. However, in case of wheat crop, all the levels [i.e., the lowest (T1 and T2), medium (T3 and T4), and the highest (T5 and T6) of EC and SAR tested] affected wheat yield adversely with significant differences. For both the crops, there were little or no differences in yield between the two ratios tested (i.e., 1:2 and 1:4) at all the levels of EC and SAR.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号