首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 476 毫秒
1.
4HJL-2型花生捡拾摘果联合收获机的设计与试验   总被引:10,自引:9,他引:1  
目前中国花生在收获后普遍由人工进行捡拾、摘果,收获效率低、劳动强度大、生产成本高等问题突出。为解决此类问题,该文研制了一种4HJL-2型花生捡拾摘果联合收获机。该机主要由链式尼龙弹齿捡拾装置、 输送装置、摘果装置、清选装置、升运集果装置等部分组成,采用背负式结构设计,配套动力为兖州30拖拉机,机组前进速度52 m/min,捡拾输送速度57 m/min,输送装置倾角23°,可一次完成花生捡拾、输送、摘果、清选、集果等作业,减少人工投入。田间试验表明:该机作业性能良好,捡拾率99.1%;损失率3.2%;生产率886 kg/h,均符合花生收获机行业标准(NY/7502-2002),满足实际生产要求。研究结果可为花生收获机械的研究和发展提供借鉴。  相似文献   

2.
先将秧蔓切割再进行收获可较好地实现覆膜种植花生秧蔓饲料化利用。该研究针对割秧后花生植株变短、横向尺寸变小、荚果-秧蔓比增加,原有收获机捡拾装置适应性差的问题,在已有花生捡拾收获技术基础上,对捡拾弹齿间距、弹齿转速、折弯角度、弹齿排数等关键结构和运动参数进行改进,研制了一种适于割秧后收获的弹齿式花生捡拾装置。运用SPSS软件对割秧后花生植株横向尺寸进行统计分析,确定了弹齿间距为7 cm;通过对花生植株低损捡拾和顺畅抛送条件的理论分析,在回转半径为21 cm的条件下,确定捡拾弹齿转速为60 r/min;通过对花生植株被弹齿捡起时的受力情况分析,确定捡拾弹齿折弯角度为102°,并根据铺放厚度,确定捡拾弹齿折弯部分长度为4 cm;建立捡拾弹齿齿尖运动方程,运用Matlab软件对不同排数弹齿齿尖运动轨迹进行分析,确定捡拾弹齿排数为6排。田间试验结果表明,弹齿式花生捡拾装置的平均捡拾率为98.07%,捡拾装置造成的平均落果率为1.23%;满足割秧后花生捡拾收获作业需求。该研究可为割秧后花生以及其他作物捡拾收获机具研发和改进提供借鉴。  相似文献   

3.
残膜捡拾压缩车及其作业工艺设计与试验   总被引:3,自引:3,他引:0  
为解决残膜回收时捡拾率低、机具集膜箱存储量小、机械化作业过程不连续等问题,研制了一种棉田残膜捡拾压缩车,该机主要由清杂机构、捡膜机构、脱膜输送机构、压缩机构等组成,可同时完成残膜杂质分离、残膜捡拾、脱膜输送和压缩作业.通过对样机关键作业部件的设计,确定了清杂辊、捡膜机构和脱膜输送装置的结构及工作参数,并分析了机具作业过程.样机分别在3种残膜分段回收工艺:搂集—捡压、秸秆还田—搂集—捡压、秸秆还田—捡压中进行试验,田间试验表明,机具作业速度在5~7 km/h,清杂辊转速为240 r/min,捡膜机构转速为90 r/min,脱膜辊转速为1000 r/min时,在回收工艺一搂膜距离≤40 m,回收工艺二搂膜距离≤60 m时,膜堆残膜捡拾率大于80%,清杂率大于78%;在回收工艺三中,棉杆残留根茬高度≤80 mm时,未集堆地表残膜捡拾率达到88.21%,机具缠膜率小于2%,机具可一次性捡拾压缩回收8 hm2田间残膜.  相似文献   

4.
为解决中国全喂入花生捡拾收获机作业时因喂入量波动导致作业性能下降甚至出现机械故障,而花生捡拾收获机喂入量相关基础研究又缺失的问题,该文以团队前期所研制的4HLJ-3000型全喂入花生捡拾收获机为研究对象,提出了基于捡拾台动力输入轴扭矩的喂入量监测方法。通过对捡拾台进行动力分析,得出了捡拾台动力输入轴扭矩和喂入量的数学模型。利用捡拾台动力输入轴转速、扭矩和功率等工况数据监测存储分析管理系统进行了扭矩和喂入量的道路监测试验。对试验结果进行了线性函数、幂函数、指数函数和二次函数拟合回归分析,结果表明二次函数模型拟合度较高,其决定系数R2为0.990。对二次函数拟合曲线进行分析,结果表明,当喂入量小于等于3.0 kg/s时,随着喂入量的增加扭矩缓慢增加;当喂入量大于3.0 kg/s时,随着喂入量的增加,扭矩急剧增加,且转速随之降低。模型验证试验的结果表明,所建立的二次函数模型具有较好的准确性,绝对偏差率范围为0.42%~2.43%,平均偏差率为1.40%,且喂入量越大,偏差率越大。对喂入量和扭矩的函数模型进行了田间试验,结果表明,扭矩偏差率范围为1.90%~3.58%,平均偏差率为2.65%。研究结果可为全喂入式花生及其他作物捡拾收获机结构优化设计及喂入量的智能测控提供参考。  相似文献   

5.
随动式残膜回收机清杂系统作业参数优化   总被引:5,自引:5,他引:0  
残膜是一种可循环利用材料,残膜回收过程中只有将残膜和作物秸秆、土壤等杂质分离,才能实现残膜的回收利用,减少残膜污染。针对目前回收残膜含杂率高的问题,该文设计了一种随动式残膜回收机清杂系统。为明确该系统的作业性能,提高残膜回收作业质量,进行了随动式残膜回收机清杂系统作业参数优化。通过对工作原理、工作条件及膜杂分离影响因素的分析,确定以机具前进速度、地膜输送链速度、捡拾滚筒安装位置和二级杂质输送装置转速为试验因素,以残膜捡拾率、膜杂分离率和杂质输送效率为试验指标,根据二次回归正交组合试验设计原理,进行了四因素五水平回归正交组合田间试验设计。利用Design-Expert软件对试验结果进行响应面分析,得到各因素与试验指标之间的数学模型,分析得出影响残膜捡拾率和膜杂分离率的主次因素依次是捡拾滚筒安装位置、机具前进速度、地膜输送链速度和二级杂质输送装置转速;影响杂质输送效率的主次因素依次为二级杂质输送装置转速、捡拾滚筒安装位置、地膜输送链速度和机具前进速度。根据优化目标的重要程度,对回归模型进行多目标优化,得出清杂系统最佳作业参数组合为:机具前进速度1.26 m/s、地膜输送链速度1.55 m/s、捡拾滚筒安装位置-17 mm(即以支架长孔中心与捡拾滚筒中心在竖直方向重合为原点,向机具前进方向调整17 mm)、二级杂质输送装置转速为205 r/min,在最优参数组合下残膜捡拾率为90.19%,膜杂分离率为92.21%,杂质输送效率为89.6%。并通过田间试验验证了最优组合,试验结果显示:残膜捡拾率为91.54%、膜杂分离率为90.37%、杂质输送效率为88.4%,与预测值误差分别为1.50%、2.00%和1.34%,参数优化结果可靠。研究结果可为提升随动式残膜回收机清杂系统作业质量提供参考。  相似文献   

6.
4UZL-1型甘薯联合收获机薯块交接输送机构设计   总被引:1,自引:1,他引:0  
为了解决4UZL-1型甘薯联合收获机作业过程中损失率大、伤薯率高等问题,该研究在分析4UZL-1型甘薯联合收获机整机结构的基础上开展薯块交接输送机构设计。以薯块交接输送过程中伤薯率和损失率为主要评价指标,在单因素试验基础上运用Box-Benhnken试验方法,以挖掘输送机构角度、刮板链输送角度、挖掘输送机构速度、刮板链输送速度为试验因素,对4UZL-1型甘薯联合收获机薯块交接输送机构工作参数进行四因素三水平试验研究,建立了评价指标对各因素的多元回归模型,分析了各因素对作业质量的影响,并得到了最优结构和作业参数。试验结果表明:各因素对损失率从大到小的影响顺序为刮板链输送角度、挖掘输送机构速度、刮板链输送速度、挖掘输送机构角度;各因素对伤薯率从大到小的影响顺序为挖掘输送机构速度、挖掘输送机构角度、刮板链输送速度、刮板链输送角度;当机器前进速度为1 m/s,挖掘输送机构角度为20°、刮板链输送角度为68°、挖掘输送机构速度为1.2 m/s、刮板链输送速度0.67 m/s时,薯块损失率为1.12%、损伤率为0.94%,与预测值相比,误差分别为3.4%和1.1%。研究结果可为甘薯联合收获机的结构完善和作业参数优化提供参考。  相似文献   

7.
CMJY-1500型农田残膜捡拾打包联合作业机设计与试验   总被引:10,自引:8,他引:2  
为降低残膜储运成本,提高机收残膜回收利用率,研究设计了CMJY-1500型农田残膜捡拾打包联合作业机。机具主要由捡拾机构、脱膜机构、打包机构、传动系统、地轮、机架等组成,可同时完成集条残膜的自动捡拾、杂质分离与打包成型作业。根据捡拾机构结构特征与作业原理,建立捡拾机构与物料对象动力学模型,分析获得了核心弹齿最佳空间排布形式与优选安装倾角45°。为降低残膜物料土壤掺杂量,基于残膜与杂质尺寸密度及缠绕特性差异,开发了离心分离与振动分离相结合的多级膜土分离系统,提高了捡拾物料压缩比,减小打包作业压缩阻力。设计了液压驱动式电控打包机构,残膜经打包机构压缩成型,以方包形式卸料,利于装载运输。2015年10月于兵团第六师共青团农场,对残膜捡拾打包机进行了40 hm~2实地田间作业性能测试,试验结果表明:机具残膜捡拾净率达92.8%,打包成捆率高于94%,单包成型耗时58 s,残膜捡拾打包联合作业机作业效果良好的、系统稳定,具有较高的应用推广价值。  相似文献   

8.
水稻秸秆收集与连续打捆复式作业机设计   总被引:1,自引:1,他引:0  
针对单体打捆机捡拾联合收获后田间滞留的水稻"站秆"及"残茬"收净率较低,以及圆捆打捆机绕线卸捆时需停机导致作业效率低等问题,该文将现有水稻联合收获机的脱粒清选和粮箱等装置与圆捆打捆装置置换,在输送槽出口与打捆装置集料口处设置集料装置作为缓存区,采用自动控制技术控制各功能部件连续作业,最终研发出集切割、捡拾、收集、打捆、集捆等功能于一体的田间水稻秸秆收集与连续打捆复式作业机。田间性能试验表明:在作业档的工况条件下,作业速度越快,成捆效率越高,但圆柱规范度程度越差;经测定,整机以中速档(1.1 m/s)连续作业3.4 h后,其成捆率为98%,生产率为0.4 hm2/h,秸秆收净率为95%。该研究为机械化收获后有效提高秸秆利用率以及实现农业生产中农机具的一机多用提供了参考。  相似文献   

9.
残膜回收机逆向膜土分离装置的设计与参数优化   总被引:6,自引:5,他引:1  
针对土壤耕层多年沉积的残膜力学性能差、膜土分离困难、残膜碎片回收率低的问题,设计了一种链齿式残膜回收机。该机具主要工作部件有捡拾装置和膜土分离装置。机具的作业深度为0~150mm,捡拾装置完成起膜并对膜土进行输送,随后通过逆向膜土分离装置进行分离,最终把残膜运送至集膜箱。以捡拾装置角速度、膜土分离装置角速度、膜土分离装置角度为试验因素,以残膜回收率和含土率为响应值对链齿式残膜回收机进行三因素三水平的二次回归正交试验。通过试验得到了各因素的响应面模型,分析了各因素对作业效果的影响并对各因素进行了优化。结果表明,试验因素对残膜回收率的影响显著顺序为:膜土分离装置角度捡拾装置角速度膜土分离装置角速度;试验因素影响含土率的顺序为:膜土分离装置角度膜土分离装置角速度捡拾装置角速度;对优化结果进行试验验证得,捡拾装置角速度42 rad/s、膜土分离装置角速度57rad/s、膜土分离装置角度37°时,此时残膜回收率为81.12%,含土率为34.83%;且各个评价指标的试验值与模型优化值的相对误差均小于5%。该机具利用逆向膜土分离装置可以解决膜土分离困难、残膜碎片回收率低的问题,可为后续残膜回收机膜土分离装置机构的研究和优化提供参考。  相似文献   

10.
棉秆粉碎还田与残膜回收联合作业机研制与试验   总被引:30,自引:24,他引:6  
针对新疆棉区秸秆粉碎还田与残膜回收机联合作业时出现的膜杆不分、残膜回收率低、脱膜效果差以及残膜易缠绕等问题,该文设计了棉秆粉碎还田与残膜回收联合作业机,主要由牵引装置、秸秆粉碎装置、秸秆输送装置、浮动式残膜回收装置、脱膜装置、传动系统、残膜回收箱、机架和地轮等组成,一次作业可实现棉秸秆粉碎还田、膜杆分离和残膜回收。该机将锤片式棉秸秆粉碎装置与刮板式输送装置相结合,用于秸秆粉碎还田和秸秆与待收残膜分离;采用浮动式起膜机构和齿耙式搂膜装置回收残膜,地面仿形效果好,有利于提高残膜回收率;用气力脱膜装置脱膜,提高脱膜可靠性,并防止残膜与收膜装置的缠绕而影响机具正常工作。通过对主要工作部件的设计,确定主要结构和工作参数,并分析了样机的工作过程。田间试验表明,在机具作业速度5~5.5 km/h、秸秆输送链轮转速125 r/min、输送装置倾角40°、残膜输送链轮转速70 r/min和风机转速1 620 r/min时,能达到膜杆分离率97%,残膜回收率88.6%,脱膜率89.4%,能够满足秸秆粉碎还田与残膜回收的技术要求,研究成果有利于解决棉田残膜污染问题。  相似文献   

11.
目前,组培苗移植设备中针对组培苗抓取主要采用尺寸定位方式夹持,夹持手结构复杂,占用空间大,且对幼嫩的组培苗会有一定的损伤,影响后期成活率。为克服以上问题,该研究设计了一基于负压吸附的力定位单株条状组培苗拾取手,并对负压拾取手吸嘴内腔体,吸嘴材料及吸嘴口尺寸进行了设计。该论文对吸嘴内腔体形式采用CFD(computational fluid dynamic)软件进行了仿真分析,并通过拾取对比试验验证,确定吸嘴内腔体采用变形腔体结构为宜;对吸嘴材料及吸嘴口尺寸进行正交试验、单因素试验及交互作用试验,试验结果表明在组培苗吸嘴采用厚度为0.5 mm,内径为6 mm硅胶管,吸嘴口处长圆形半径为0.7 mm,吸嘴口唇高为1.5 mm的组合下,拾取手吸嘴对苗径在1.2~2.0 mm范围内的单株条状组培苗拾取效果稳定。在较优组合条件下,整体性能试验证明组培苗负压拾取手拾取系统吸附成功率可达到98%,能够满足下一步的移植插入作业要求。  相似文献   

12.
棉花精量穴播器取种状态监测系统设计与试验   总被引:3,自引:3,他引:0  
针对棉花精量穴播作业过程中取种、排种不畅造成空穴的问题,该研究开发了一种棉花精量穴播器取种状态监测系统。以齿盘式穴播器为对象,在分析其工作过程的基础上,确定监测点位置。采用激光对射型传感器和霍尔传感器作为信息监测元件,用STM32单片机实现合格穴数和空穴率的计算,通过nRF24L01无线通信模块实现人机交互终端数据交互,并进行室内和田间试验。台架试验表明,在穴播器工作转速30~45 r/min范围内,系统转动圈数监测精度不变,为100%,合格穴数监测精度达到97%以上,空穴数监测精度达到93%以上,监测系统的准确性满足使用要求。田间试验结果表明,光照对监测系统无影响,合格穴数监测精度最低为96.17%,空穴数监测精度最低为93.11%,与台架试验相比,系统精度下降不超过1个百分点。系统监测与人工实测的合格穴数、空穴数的F值0.05,系统监测值与人工实测值差异不显著。该研究提出的齿盘取种性能的监测方法有效可行,开发的取种状态监测系统在田间作业时具有良好的准确性和稳定性,满足棉花精量穴播器取种状态监测的要求,对促进棉花精量穴播作业自动化、智能化具有重要意义。  相似文献   

13.
基于弹齿轨迹的滚筒式牧草捡拾器遗漏率及工作参数优化   总被引:5,自引:5,他引:0  
该文基于弹齿的运动轨迹,建立了遗漏率理论模型并进行了仿真,利用MATLAB编程实现捡拾器凸轮机构的参数化设计。对凸轮轨道为正弦加速度规律运动的捡拾器进行遗漏率理论分析,并利用高速摄像系统进行试验,理论与试验的漏捡区高度线性拟合调整R~2为0.998 8,漏捡区面积线性拟合调整R~2为0.960 4。在捡拾器机器前进速度4~6 km/h,滚筒转速40~90 r/min时,应用遗漏率理论模型进行中心组合响应曲面法分析和目标优化,得到的理论工作参数最佳组合为前进速度4.0 km/h,滚筒转速54.299 r/min,此时,漏捡区高度0.796 cm,漏捡区面积6.369 cm~2。在前进速度4 km/h和滚筒转速55 r/min的条件下进行不同含水率牧草的捡拾试验,遗漏率均低于国家标准要求的25%。该研究为捡拾器设计提供了理论基础,且能更好地指导实际生产。  相似文献   

14.
秸秆捡拾打捆机振动去土作业参数优化   总被引:1,自引:1,他引:0  
为解决秸秆捡拾打捆后含土率高的问题,该文提出通过振动方式去除粘附和夹杂在黄贮秸秆中的土壤,以提高秸秆的后续利用价值。通过试验台设计和高速摄像分析,发现了秸秆振动去土规律;以土壤去除率和秸秆损失率为指标,以摘穗后整株铺放和切碎铺放的秸秆为研究对象,对各参数进行了单因素试验,建立了振动去土试验边界条件;通过三元正交多项式回归试验,在振动频率、振幅和振动时长三因素下,分析了2种秸秆物料的土壤去除率和秸秆损失率的变化规律。获得了黄贮秸秆振动去土的最优组合为:整株铺放秸秆振幅15 mm、振动频率4.5 Hz、振动时长14 s,切碎铺放秸秆振幅20 mm、振动频率4 Hz、振动时长12 s,并通过台架试验进一步验证了最优组合,试验结果与预测值误差较小,参数模型可靠。该研究为改进黄贮秸秆捡拾打捆机的作业机理、优化关键零部件设计、提高综合作业质量,提供了理论基础和试验参考。  相似文献   

15.
基于EDEM软件的指夹式精量排种器排种性能数值模拟与试验   总被引:2,自引:13,他引:2  
为研究玉米籽粒尺寸及工作转速对指夹式精量排种器排种性能的影响,对排种器工作原理进行阐述,建立了指夹夹持动力学模型,分析了充种夹持过程中玉米籽粒尺寸及工作转速对指夹夹持性能的影响。运用EDEM软件进行排种性能虚拟试验,分析了排种过程中造成不同尺寸等级籽粒产生重播、漏播问题的主要原因。仿真结果表明,当工作转速15~45 r/min时,排种器对中型尺寸籽粒的排种性能最优,其合格指数大于84%;对大型尺寸籽粒的排种性能次之;对小型尺寸籽粒的排种性能较差,其合格指数大于80%。随工作转速增加,排种器对各尺寸等级籽粒的排种性能皆呈下降趋势。在相同工况(15~45 r/min)下选取3种相应尺寸等级玉米籽粒,进行台架验证试验。结果表明,台架试验结果与仿真基本相同,合格指数最大误差为7.4%,且排种性能随玉米籽粒尺寸及工作转速的变化规律一致。田间试验表明,排种器对各尺寸等级籽粒的排种性能皆满足精密播种要求。该研究为指夹式精量排种器及其关键部件的优化设计提供了参考。  相似文献   

16.
论水土、水土生态与水土生态保持   总被引:4,自引:7,他引:4  
在论述水土在陆地生态系统中的地位和作用的基础上,提出了水土生态的概念,认为植被与水土不可分割的整体观念是水土生态的重要特征。同时,对水土生态保持的含义作了新的定义,并将水土生态保持划分为四大类型,即生态型、自然型、生产型、建设型。从水土生态的高度,从源头上、要素的联系中去认识和防治水土流失,是一种主动的、有机的、整体的水土保持观念,是水土保持认识观的深化和发展,将使水土生态保持事业进入一个崭新的时代。  相似文献   

17.
我国滑坡、崩塌的区域特征、成因分析及其防御   总被引:2,自引:0,他引:2  
论述了我国滑坡、崩塌的区域分布特征,滑坡和崩塌的危害程度,滑坡和崩塌类型和成因分析,并且提出了灾害的防御措施,以期达到环境保护成为社会发展过程中的一个重要组成部分。  相似文献   

18.
平原地区河道堤防滩地的水土流失,直接淤积河床,影响行洪安全。堤防滩地的水土流失是自然因素和人为因素共同作用的结果,以新修堤防的水土流失最为严重,对其防治须实行工程措施、植物措施和人为预防相结合。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号