首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
耕地所引起的农业面源污染是三峡库区主要生态环境问题之一。该文设置距离长江干流0~20、20~40、40~60和60~80 km 的缓冲区,对库区耕地源景观划分4个等级,依据耕地面源污染过程,在获取地形、地貌、气象、水文、土壤和植被等方面的主要自然影响因子的基础上,构建影响耕地面源污染的阻力基面,借助最小累计阻力模型测算不同等级源景观阻力面,并通过自然断点法对阻力面进行5个等级的源-汇风险分级(极低风险区、低风险区、中风险区、高风险区和极高风险区),以此识别影响库区耕地面源污染的源-汇风险格局,结果表明:①库区一级源耕地占总耕地面积的50%以上,越向外围延伸耕地分布空间越小,且重庆库区的分布多于湖北库区,旱地的分布多于水田;②在耕地源景观所处的缓冲区范围内,阻力面偏小,并围绕源景观向外呈现不断增大的趋势,且水田源景观阻力面大于旱地源景观;③受空间距离的影响,阻力面的空间特征表现为高值区空间范围明显小于低值区;④库区耕地面源污染源-汇风险格局特征表现为高风险趋势,极高风险区(21706.13 km2)>中风险区(16257.75 km2)>极低风险区(10311.6 km2)>高风险区(7464.65 km2)>低风险区(2221.61 km2);⑤高风险区主要集中于库区平行岭谷区,而低风险区主要分散在距离长江干流偏远的秦巴山区和武陵山区;⑥研究结果有助于从影响面源污染的阻力面角度评价由耕地所产生面源污染的风险程度及等级,为科学防范和治理农业面源污染提供决策依据。  相似文献   

2.
[目的] 对洱海流域上游面源污染“源-汇”风险格局进行研究,为保护洱海生态和快速识别面源污染“源-汇”风险的关键区域提供理论依据。 [方法] 以2005,2010,2015和2020年数据为例,构建阻力基面评价体系,基于最小累积阻力模型建立阻力面,划分面源污染风险等级并探讨洱海流域上游16 a来面源污染的风险等级变化。 [结果] ①阻力因子的空间异质性使阻力基面的分布存在区域性差异,而“源”的分布则影响阻力面的分布,2020年比2005年阻力面值提高了7 485.40。 ②研究区极高风险区面积所占比例达30%,而中风险区以上所占比例超过60%,面源污染风险等级偏高;16 a间,极高风险区面积减少最多,为35.74 km2,而中风险区面积增加最多,为38.69 km2。 ③面源污染风险等级距离“源”越近,风险等级越高,表现为中部高于边界,南部高于北部,而极高风险区是面源污染的关键区域。 ④16 a间中风险区转出面积最多,为80.93 km2。茈碧湖镇、凤羽镇和右所镇三镇交界处以及牛街乡的北部是面源污染风险等级转移的主要区域。 [结论] 关键区域的景观优化、种植业调整等措施对减少氮磷的流失及风险等级格局的改变具有更积极的作用,可进一步改善洱海未来水环境。  相似文献   

3.
“源-汇”景观格局反映了流域土地利用配置与空间要素分布,导控流域能源流动与水沙过程,是影响小流域养分流失的重要因素。为探明景观格局对不同降雨类型下,农业小流域溶解态养分输移的影响,以三峡库区石盘丘小流域的传统农业型集水区与农林复合型集水区为研究对象,监测不同强度侵蚀性次降雨事件中,两个集水区出口断面处径流溶解态氮、磷浓度,利用航测数据结合最小累计阻力模型识别“源-汇”景观空间格局,引用景观空间负荷对比指数(Location-Weighted Landscape Index,LWLI)进一步分析小流域溶解态养分输移对“源—汇”景观格局的响应机制。结果表明:(1) 传统农业型集水区内,“源”“汇”景观面积比为1.8:1,以“源”景观为主,景观垂直分异性明显;农林复合型集水区内“源”“汇”景观比例约1:1,且均衡分布,但高陡坡区域占比高、平均坡度大。(2)两种类型集水区内,溶解态氮、磷流失负荷均表现为暴雨>中雨>大雨,而不同降雨事件中,传统农业型集水区养分输出负荷及其变异系数均高于农林复合型集水区,养分输移波动性强,更易受到降雨强度变化的影响。(3)农业用地在两种集水区内均是主要的养分流失来源,但受坡度限制,其他林地可能是农林复合集水区中重要的养分迁出区域;传统农业型集水区的LWLI高达0.75,表征了该集水区的高氮、磷流失风险;农林复合型集水区LWLI为0.28,养分输出量低,这是合理的景观空间格局与农林复合经营模式共同作用的结果。“源-汇”景观格局对小流域养分流失影响显著,可通过“源—汇”景观空间负荷对比指数对小流域养分流失风险进行判别,并为“源—汇”景观格局优化及小流域面源污染防控提供依据。  相似文献   

4.
农村面源污染是水生态环境的主要问题之一,严重影响水体安全。本研究以环水有机农业为技术手段,从农业空间格局和景观要素之间的耦合作用视角,通过有机农业生态系统的生态功能控制面源污染,以期解决农业面源污染防治的关键问题。首先,在生态格局构建与优化方面,加强景观结构的合理布局,关注景观连接度,加强景观要素异质性,因地制宜构建湿地、生态岛、集水池等,既提高动物多样性,增强生态系统稳定性,减少化学农药投入,又能够实现养分的多级利用,从而阻控氮、磷等营养元素的迁移,延长面源污染的空间迁移路径。其次,增强景观要素的生态功能,提高半自然生境的面积比例,因地制宜构建生态沟渠、前置库等,有效衔接农业面源污染控制技术。再次,统筹合理施肥、堆肥、轮作套作以及生物防治等农艺措施,充分发挥空间格局与景观要素耦合功能。最后,以云南松华坝饮用水源地有机农场与常规农场为例,通过采用上述措施,显著提高了生物多样性,并减少氮流失820~1 093 kg·hm~(-2),减少磷流失273~364 kg·hm~(-2),减少农药流失2.2~2.5 kg·hm~(-2),有效控制了区域面源污染。  相似文献   

5.
户用沼气对三峡库区小流域农业面源污染的削减响应分析   总被引:1,自引:0,他引:1  
通过调查统计与现场采样,分析了三峡库区小流域农业面源污染的压力、状态和响应态势,确定了主要污染物、主要污染源、农业面源污染负荷容量及其削减量。采用清单分析方法,核算了小流域化学肥料施用、有机肥施用、农作物秸秆、畜禽养殖、农村生活污水、生活垃圾和农田土壤侵蚀等7个来源对农业面源污染化学需氧量(COD)、生化需氧量(BOD5)、全氮(TN)、全磷(TP)排放负荷及其贡献。并采用实地监测,分析了小流域水环境质量。王家沟小流域农业面源污染物COD、BOD5、TN、TP的排放量分别为12 100,6 413,1 780,327kg/a,其水质测算浓度分别为22.23,11.44,3.15,0.58mg/L,与实测浓度相差不大,说明大尺度的农业面源污染负荷计算与小尺度的农业面源污染实测是相容的。户用沼气对7个污染源的控制包含直接与间接作用、促进与抑制作用。单口户用沼气池全年可减少COD 230.65kg,BOD5146.87kg,TN 38.00kg,TP 11.84kg的污染物进入水体。王家沟小流域主要污染物是TN、TP、BOD5,主要污染源是畜禽养殖、化肥施用、农作物秸秆。为了使王家沟小流域农业面源污染物达标,在考虑水环境容量的基础上,需要新建户用沼气池32口,最终沼气池入户率将达到49.2%。  相似文献   

6.
景观“源、汇”的动态特性及其量化方法   总被引:4,自引:1,他引:3  
正确理解景观格局与生态过程的关系是景观生态学研究的关键,尽管基于源汇过程的景观空间负荷对比指数较好地将景观格局与生态过程联系起来,但是对于如何定量刻画源汇景观及其动态特性没有提出科学的方法。针对上述不足,深入分析了源、汇景观的动态特性,并从景观阻力与侵蚀力平衡关系的角度提出了定量判断源汇景观格局的方法。这个方法的特点包括:(1)基于土壤侵蚀过程定量判定景观源、汇动态;(2)由于景观源、汇动态定量判定中充分考虑到降雨和土壤的异质性,对环境背景值不同的地区也适用。(3)从距离、相对高度和坡度3个方面建立景观格局动态评价模型即景观空间负荷对比动态指数,该指数很好地将景观格局动态与生态过程联系在一起,使定量研究和预测景观格局与过程的关系成为可能。通过分析景观空间负荷对比动态指数与流域出口处泥沙监测值的相关性,可以揭示某一流域景观格局对土壤侵蚀过程的影响。  相似文献   

7.
流域非点源污染景观源汇格局遥感解析   总被引:6,自引:4,他引:2  
流域非点源污染景观源汇格局解析是流域水质污染物产生、输运机理认知与有效防治措施制定的重要科学理论基础。该文以充分挖掘流域遥感数据多时空尺度的特征与优势为目标,制定了流域非点源污染景观源汇类型界定方案,提出了像元级、亚像元级以及时序更新的流域非点源污染景观源汇格局遥感解析方法。在此基础上,以福建省九龙江流域为例,对不透水面这一典型流域非点源污染"源"景观2010年空间格局进行了信息提取,并对2000、2005年对应信息进行了时序更新与空间特征分析,结果显示2000–2010年间九龙江流域内不透水面覆盖面积增长了33.38%。该研究可为中国流域非点源污染研究、生态管理与建设提供参考。  相似文献   

8.
基于生态化学计量方法识别农业面源污染防控重点区域   总被引:1,自引:0,他引:1  
基于柴河流域汇水区内不同景观单元土壤与径流中氮、磷养分含量,分析了土壤与径流中污染物的生态化学计量特征,并综合评价了面源污染物的"源—流"过程,进而确定汇水区内面源污染防控的重点区域。结果表明:(1)汇水区内的坝平地、大棚种植区和柴河河道的土壤或底泥具有较高的氮磷比,其径流中溶解态氮磷比也较高,而磷矿区和富磷区林地土壤及径流中溶解态氮磷比较低;(2)土壤氮、磷养分与径流中氮、磷污染物之间未发现显著相关性(p0.05);(3)与其他景观类型相比,柴河底泥与大棚种植区的污染物"源"强较高,而大棚种植区和磷矿区污染物的"流"失风险较高,因此,大棚种植区由于其高"源"强和高"流"失性是该汇水区面源污染重点防控区域;(4)单个景观类型下,通过对比"源""流"过程在总流失风险中的比例确定磷矿区的流失、富磷区林地和河道底泥的污染物"源"是各自景观类型下面源污染防控的重点环节;而农业种植区(坡耕地、坝平地和大棚区)需同时在减"源"和控"流"上进行综合防控。  相似文献   

9.
闫思嘉    晁云舒    潘辉    赵佳文    巫丽芸   《水土保持研究》2023,30(4):286-292
[目的]探究雨洪过程中不同降雨重现期下“源—汇”景观的时空动态演变特征,并生成雨洪灾害分布格局,从而为“源—汇”景观单元规划与区域雨洪灾害预防提供科学参考。[方法]以永春县景观因子指标数据为基础,引入可反映格局与过程关系的景观“源—汇”理论,基于最小累积阻力模型从景观因子阻力与径流动力平衡关系的角度重新划分“源”“汇”景观。[结果]永春县初始“源”景观空间分布整体特征为“中部最高、西高东低”,且集中在戴云山脉附近,易成为山体径流的源头。永春县在自然排水状态下,易转化为“源”景观的土地利用类型排序为:草地>耕地>建设用地>林地>未利用地。草地一直具有较强的“源”作用,耕地在降雨重现期大于10年后“源”作用增强,建设用地与林地在降雨重现期小于20年时吸收雨水的能力较好,超过20年后建设用地的“源”作用偏强,林地的“汇”作用偏强,未利用地的“源”作用几乎无变化,其吸收雨水的能力有待后续的验证。当降雨重现期为100年时,永春西北部雨洪灾害风险较大,高风险区多集中在一都镇、桂洋镇、东关镇,需重点防患。[结论]永春县雨洪灾害受到西北部山体径流影响,未来应从降低“源”景观、增...  相似文献   

10.
采用等标污染负荷法,在压力-状态-响应(PSR)概念模型下对环首都圈14县(区)的畜禽养殖、农村生活污水、生活垃圾、种植业污染等进行了面源污染评价,并识别出了其空间分布特征。结果表明,环首都圈农业面源污染主要来自畜禽养殖和农村生活污水,该区域农村面源污染重点控制区为三河市、大厂回族自治区、广阳区、固安县和涿州市。面源污染重点区域的识别能直观反映该区域面源污染的分布总体情况,为有针对性地污染治理提供科学依据。  相似文献   

11.
柴河流域典型景观类型土壤氮磷含量的空间变异特征   总被引:2,自引:1,他引:2  
吴晓妮  付登高  刘兴祝  刘永权  宗德志 《土壤》2016,48(6):1210-1215
为了从流域尺度了解柴河流域土壤氮、磷含量的空间变异特征,在柴河流域选择6个景观类型,并根据每个景观类型内不同土地利用方式及景观位置,共进行了72个样点的表层土壤采集,并对土壤有机质、氮、磷含量进行了测定。结果表明,磷素主要以磷矿区及富磷区林地区域含量较高,其中磷矿区土壤全磷含量平均高达20 g/kg,富磷区林地有效磷含量平均为3 687.7 mg/kg;而氮素则表现为沟渠和柴河河道底泥的含量较高,柴河底泥中全氮及碱解氮含量高达2.99 g/kg和631.8 mg/kg。相同景观类型下不同土地利用方式土壤氮磷含量在富磷区、坡耕地及坝平地均表现出较高的差异。嵌套方差分析表明景观类型及土地利用方式或所处的景观位置对土壤有机质及氮磷含量均具有显著的影响。以上结果表明柴河流域内土壤养分含量空间变异程度较高,不同景观类型和土地利用方式共同决定了土壤氮磷含量的变异。因此,在面源污染输移风险评估及防控时应同时结合景观类型及土地利用类型进行分析,并在此基础上探讨主要影响因素。  相似文献   

12.
基于GIS的伊通河流域农业非点源污染风险评估   总被引:3,自引:0,他引:3  
针对伊通河流域农业活动带来的水体污染及水土流失等环境问题,在分析农业非点源污染影响因子的基础上,选择了土地利用类型、土壤孔隙度、年降水量及氮磷排放量等影响因子,建立了农业非点源污染风险评估指标体系,并应用GIS技术,通过工程图绘制和叠加分析,采用幂法计算各因子权值,确定了风险等级指数,最后划分了农业非点源污染风险分区。研究结果表明:在沿河地区和相对发达的城市周边地区,受水田耕作和畜牧饲养等因素影响,农业非点源污染风险较高;在较偏远地区与林区,农业非点源污染风险相对较低。  相似文献   

13.
植被缓冲带对农业面源污染物的削减效益研究进展   总被引:7,自引:2,他引:5  
农业面源污染对环境安全的影响已超过城市生活污染和工业污染,成为水污染的最主要来源。植被缓冲带能够有效拦截农业面源污染物,减少污染物向水体的排放。通过搜集国内外学者对缓冲带的研究结果,对缓冲带削减农业面源污染物能力、缓冲带最佳宽度等方面的研究进行总结分析。结果表明:(1)5 m草本缓冲带对污染物的拦截作用最好,当缓冲带宽度超过5 m时,推荐使用灌草缓冲带,而乔灌草缓冲带需要超过30 m才能发挥作用;(2)当缓冲带宽度相同时,悬浮物和磷素相较于氮素更容易被拦截,悬浮物及磷素去除的缓冲带最佳宽度推荐为15 m(削减率70%以上),但去除氮素的最佳宽度推荐为30 m(削减率为80%);(3)植被缓冲带拦截污染物受缓冲带宽度、坡度及植被类型等因素影响,但缓冲带宽度与削减率之间的关系并不总是呈正比例,当缓冲带宽度增加到一定大小时,缓冲带对污染物的削减率将不再有明显改变;缓冲带坡度与削减率之间也并不总呈反比例,轻微的坡度能够促进径流下渗作用从而增加缓冲带的削减率。  相似文献   

14.
农田排水沟渠系统对磷面源污染的控制   总被引:3,自引:1,他引:2  
排水沟渠是农业区重要的水利工程,其排水功能更是农业安全生产的重要保障,然而农田排水沟渠的生态功能未得到足够重视。随着农业面源污染研究的深入,农田排水沟渠在控制磷面源污染上的作用日益引起人们的关注。针对农业面源磷污染控制问题,简要归纳总结了农田沟渠系统对磷面源污染的迁移转化机理及影响因素,并在此基础上,探讨了排水沟渠控制磷污染的措施,以期为农业面源污染控制和管理提供参考。  相似文献   

15.
刘巧芹  秦岭  吴克宁  马建辉  郭爱请 《土壤》2014,46(2):379-385
利用景观格局和空间分析方法,以SPOT卫星影像为主要信息源,分析了北京大兴区农村土地利用格局及土地整治方向。结果表明:①该区后备耕地资源贫乏,土地破碎严重,不同地类镶嵌且分散分布,同类土地集聚度较低;②村庄用地总面积大,人均用地极高,斑块数量多,分布均匀,整理潜力和难度大;③设施农用地、园地和设施耕地等集约利用程度较高的农用地比例很大,但规模化程度较低;④畜禽养殖用地离村庄用地和道路太近,且用于消纳畜禽废弃物的农用地不足,防疫和污染风险较高;上述问题表明该区亟需开展土地综合整治,优化用地结构和空间布局。  相似文献   

16.
通过对西苕溪流域不同用地类型的子流域出口设置监测点并进行定期水质监测,探讨该流域非点源氮污染特征及其区域性差异。不同月份的监测结果表明,总氮(TN)、溶解性总氮(DTN)、硝态氮(NO3--N)浓度在12月最高,7月次之,4月最低;铵态氮(NH4+-N)浓度在7月最高,12月次之,4月最低。典型子流域日监测数据表明:林地子流域水质监测点测得的氮明显低于耕地,降雨期林地子流域出口的氮浓度增加,耕地子流域降低,干旱期则相反。研究表明流域非点源氮污染主要受农业耕地用地类型的控制,降雨径流是西苕溪流域非点源氮输出的主要驱动因素,用地类型、不同形态氮的理化性质差异导致流域非点源氮呈现明显的季节、空间分布特征。  相似文献   

17.
广东省土壤磷素流失和控制对策   总被引:2,自引:0,他引:2       下载免费PDF全文
土壤磷素的农业非点源污染是导致水体污染的最主要的原因之一。通过分析广东省的土壤磷素状况,发现由于近20a来的高强度施肥造成了磷在土壤中大量积累,使土壤磷素的流失风险和数量都大大增加,给水环境造成了严重的威胁。为了应对土壤磷素流失给环境带来的影响,根据广东省自身的情况,提出了相应的控制措施和治理对策。  相似文献   

18.
植被缓冲带在水源地面源污染治理中的作用   总被引:1,自引:0,他引:1  
王荣嘉  张建锋 《土壤通报》2022,53(4):981-988
在山地丘陵区遭遇高强度降雨时,常常发生水土流失;水流携带泥沙下泄,过量施入农田的肥料、农药等化学物质随之进入河流、水库、湖泊等地表水和地下水水体,进而造成水体富营养化等面源污染,危害水源地安全。为梳理植被缓冲带能够控制水土流失、阻控污染物移动、解决水源地面源污染问题,明确该项技术措施减少和治理水源地面源污染的机制,为水源地面源污染防治和水环境改善提供参考。在概括介绍植被缓冲带的类型、功能的基础上,对该项技术措施减少和治理水源地面源污染的机制进行讨论。植被缓冲带治理水源地面源污染的机制主要有:①植物在生长过程中自身对氮磷等物质的吸收;②利用植被固结土壤,减少水土流失;③植被覆盖、拦蓄能够延长径流在地面的停留时间而增加水分入渗、减少氮磷等物质随地表径流流失;④植物根系参与土壤中多种物理、化学和生物过程,加速碳、氮、磷等物质的形态转化。针对水源地面源污染特点和植被缓冲带的建设技术及其应用要点,提出相关建议,并对今后该技术的发展进行了展望。  相似文献   

19.

Purpose  

Accumulated soil phosphorus (P) in agricultural lands due to long-term organic manure and mineral phosphate fertilizer input is considered one of the main non-point pollution sources to surrounding surface water bodies. A chronosequence of soils is a potent instrument for pedological investigation and allows assessment of the effect of duration of agricultural cultivation on the environmental risk to water bodies of P loss from soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号