首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 468 毫秒
1.
翻译调节肿瘤蛋白(translationally controlled tumor protein,TCTP)是一个在物种间高度保守、广谱表达和多功能的蛋白质,具有调节细胞骨架的动态变化和调节细胞的生长与增殖的作用;能够激活干细胞标记基因Oct4和Nanog的转录;调节细胞凋亡、肿瘤逆转、细胞分化、炎症反应和保护细胞免受多种应激的损伤等.本文综述了TCTP的结构、表达调控、生物学功能等研究进展.  相似文献   

2.
翻译控制肿瘤蛋白(translationally controlled tumor protein,TCTP)分布于真核细胞中,参与包括有丝分裂、DNA损伤修复和植物抵御病原物侵染等多种生物进程。索马甜类蛋白(thaumatin-like protein,TLP)是一类植物中的病程相关蛋白,参与多种植物响应病原物侵染的过程。本实验室前期研究证明Ta TCTP参与小麦(Triticum aestivum)抵御小麦叶锈菌侵染(Puccinia triticina)的防卫反应。本研究关注小麦Ta TCTP和Ta TLP之间的相互作用,分别构建了用于酵母双杂交(yeast two-hybrid)和双分子荧光互补(Bi-molecular fluorescence complementation,Bi FC)实验的载体。通过酵母双杂交实验,发现同时携带表达TCTP和TLP载体的酵母AH109可以在SD-Leu/-Trp/-His和SD-Leu/-Trp/-His/-Ade培养基上生长,并可检测到报告基因α-半乳糖苷酶基因(α-galactosidase gene,MEL1)活性,表明Ta TCTP和Ta TLP可发生物理互作。通过Bi FC实验,发现共同转化表达TCTP和TLP载体的烟草(Nicotiana benthamiana)下表皮细胞的细胞质中可观察到强烈的黄色荧光,表明Ta TCTP和Ta TLP可在细胞质中发生相互作用。本研究为深入研究TCTP在小麦抵抗小麦叶锈菌侵染中的作用机制奠定基础。  相似文献   

3.
调控植物花发育的miRNAs的研究进展   总被引:1,自引:0,他引:1  
花发育是高等植物生长发育过程中的重要事件,可剖分为开花诱导、花的起始和花器官发育3个阶段,是由多种基因参与的十分复杂的调控过程。20年来,人们应用克隆、诱变和突变体等研究技术从模式植物中分离和鉴定了大量调控花发育的功能基因或调控因子,其中,microRNA(miRNA)是本世纪初才发现的一类新的调控因子。miRNA是生物体内长度约为21个核苷酸的非编码小RNA,通过与靶mRNA的互补配对而在转录后水平上对基因的表达进行负调控,导致mRNA的降解或翻译抑制。大量研究证实miRNA在花发育中起着重要的作用。文章重点综述了植物miRNA的作用机制、其功能研究方法及7个miRNA家族在花发育中的生物功能,并对其未来的发展方向进行了展望。  相似文献   

4.
  【目的】  丛枝菌根真菌(AMF)可以显著提高植物对逆境胁迫的抵抗能力,本文综述了国内外针对代表性组学技术(转录组学、蛋白质组学和代谢组学)在AMF提高植物抗逆领域(干旱、温度、盐碱、重金属)的研究进展,分析了在逆境胁迫下,植物–菌根共生体在分子层面上的应答调控机理,为深入理解AMF提高植物耐逆的分子机理提供一定的科学依据。  主要进展  植物主要通过根系与AMF建立共生关系,进而从土壤中吸收更多的水分和营养物质,提高植物对非生物胁迫的抵抗能力。菌根植物在转录、翻译以及表观遗传层面应答非生物胁迫。AMF在不同程度上上调或下调某些与非生物胁迫相关基因的转录或蛋白的翻译及降解,从而提高植物对非生物胁迫的抵抗能力,维持植物的生长发育,提高其对水分和营养物质的吸收和利用效率。通过转录组学、蛋白质组学和代谢组学分析关键基因、蛋白及代谢物的变化,为深入挖掘AMF提高植物抗逆机理提供理论依据。  研究展望  揭示丛枝菌根共生体抗逆机理的组学技术研究仍处于起步阶段,单一组学的应用限制了信息表达的完整性和深层次网络调控机理的精确性。随着测序技术和手段在速度、精度等方面的提高以及生物信息学的更新发展,AMF提高植物抗逆性组学的研究将朝着多组学结合的方向发展,使研究者能够从多角度全面探究植物相关研究的分子机理,这有助于更全面地理解植物相关生命活动的分子调控规律。  相似文献   

5.
植物基因的表达调控是一个复杂且精准的网络系统,一般包括转录水平和翻译水平二个层次。转录水平的调控发生在基因表达的初期,是许多基因表达调控的主要方式。在此调控过程中,被称为转录因子的蛋白质特异结合到靶基因的顺式作用元件上,控制着一系列相关基因的表达,在植物生长发育、物种起源和逆境胁迫应答过程中起着非常重要的作用,是生物遗传多样性的重要遗传基础。由于转录因子的重要作用,人们对其作用机理的理解也日渐深入。根据近期的研究进展,本文就转录因子在植物驯化、生物和非生物逆境胁迫方面的工作进行概括梳理,希望读者对此领域有一个比较深入和系统的认识,同时也能为挖掘具有关键功能的转录因子,提高重要农作物的遗传改良效率提供借鉴。  相似文献   

6.
贾兰兰  王依依  华跃进  徐虹 《核农学报》2020,34(6):1205-1212
瓣状核酸内切酶(FEN1)是结构特异性5'核酸酶超家族成员,以参与冈崎片段成熟、DNA重组、细胞凋亡DNA片段化和长片段碱基切除修复(LP-BER)而闻名,在生物体的多种代谢途径中发挥作用,对维持不同物种基因组的稳定性发挥着十分重要的作用。FEN1的功能或表达异常会导致生物体内的多个生命过程发生紊乱,如突变率增加、微卫星序列不稳定、DNA降解等,对生物体造成严重危害。因此,FEN1在生物体内的表达必须受到严格、精确、及时的调控。研究表明,翻译后修饰对FEN1蛋白的活性强弱、细胞定位及功能稳定性发挥着重要的调控作用。本文对关于FEN1翻译后修饰调控的相关研究进展进行总结,系统归纳翻译后修饰对FEN1功能的调控和影响,为后续开展FEN1程序性调控研究提供了参考。  相似文献   

7.
miRNA(microRNA)是一类长度在19~24nt的小分子RNA,参与动植物生长发育过程中的基因转录后表达调控。miPEP(microRNA-encoded peptide)是由miRNA初始转录物(primary miRNA,pri-miRNA)翻译生成的短肽。植物中的miPEP通常促进对应pri-miRNA的表达,从而增强miRNA对靶基因表达的调控。本文从miPEP的形成、生物学功能和调控机理三个方面对植物miPEP研究进展进行综述,同时也针对miPEP研究领域一些关注的问题进行讨论。  相似文献   

8.
植物非生物逆境相关锌指蛋白基因的研究进展   总被引:3,自引:0,他引:3  
向建华  李灵之  陈信波 《核农学报》2012,26(4):666-672,716
植物能够适应多种逆境主要是通过改变其基因表达和代谢途径来实现的,因此研究这些基因表达和功能对提高植物耐逆性具有重要意义。锌指蛋白是一类具有手指状结构域的转录因子,这种结构域由锌离子与多个半胱氨酸和(或)组氨酸组成,锌离子在稳定其结构和发挥调控功能方面具有关键作用。植物锌指蛋白在植物耐逆性方面具有重要作用。本文综述了近几年来从拟南芥(Arabidopsis thaliana)、水稻(Oryza sativa)、小麦(Triticum aestivum)、番茄(Solanum lycopersicum)等植物中克隆的与非生物逆境相关锌指蛋白基因的研究成果,重点阐述了其基因表达部位、受逆境诱导情况及转基因植株的耐逆性等。目前的研究结果表明锌指蛋白能够调控耐逆相关基因的表达,在植物逆境代谢中发挥重要作用,因此可以利用锌指蛋白基因进行作物耐逆性的遗传改良,提高作物的耐逆能力。  相似文献   

9.
非生物胁迫下植物水通道蛋白的应答与调控   总被引:1,自引:0,他引:1  
【目的】水分不仅是细胞中各类生命物质合成的必需底物,而且也参与植物体内的养分代谢和渗透平衡的调节。植物中水分的跨膜转运主要是由水通道蛋白(AQPs)所介导的,因此,无论是在植物整体水平还是细胞水平上,水分的吸收以及跨细胞膜系统的转运对于植物的生长发育都是至关重要的。近年来,水通道蛋白作为调节水分的吸收与转运的关键,已成为植物营养与分子生物学特别关注和研究的热点之一。本文从水通道蛋白的种类结构,底物特异性,基因表达特征和调控机制四个方面对水通道蛋白转运水分的机理和转运水分过程中对胁迫的响应机制进行了详细阐述;从水通道蛋白的水分运输和渗透调节功能及其养分运输功能两方面说明了水通道蛋白在植物生长过程中的生理作用;阐述了光照、干旱和低温与水通道蛋白功能之间的关系,明确了水通道蛋白通过表达量的增加或者降低来响应相应环境条件的变化。【主要机理】水通道蛋白通过保持一定结构及对底物运输的特异性来实现对水分的高效运输,通过调整基因的表达量和翻译后修饰等过程实现对水分的高效转运;同时,水通道蛋白可以通过水分的运输实现植物渗透平衡的调节,对部分小分子养分的吸收等功能更是实现了对植物生理和养分吸收的调节;另外,水通道蛋白不仅可以提高植物的抗旱、抗盐能力,对低温胁迫也有一定的响应,还可以与多类逆境胁迫蛋白发生相互作用,共同调节植物的水分和渗透平衡,提高植物应对逆境胁迫的能力,表明植物水通道蛋白对非生物胁迫下的应答机制有待于进一步探索,为植物水通道蛋白的应用研究提供科学的理论支持与材料支撑。  相似文献   

10.
F-box蛋白家族在植物抗逆响应中的作用机制   总被引:1,自引:0,他引:1  
SCF复合体泛素连接酶E3介导的泛素化蛋白降解是翻译后水平上对生命进程进行调控的一个重要方式。它的关键组分F-box蛋白负责识别被降解的靶底物蛋白。植物F-box基因家族成员众多,极具多样性。F-box蛋白N端常含F-box基序,C端常为蛋白互作保守结构域,该结构具多样性,可识别不同底物,是F-box蛋白分类的依据。研究表明,F-box蛋白参与调控植物的许多生命进程,包括抗逆反应。本文就近年来F-box蛋白在植物抗逆反应中的作用机制进行总结。F-box蛋白大多以SCF复合体泛素连接酶E3介导的泛素化蛋白降解目标蛋白的方式调控抗逆反应,也有不依赖形成SCF复合体的方式行使功能,不少F-box蛋白参与了植物激素信号传导,通过调控转录因子活性而改变下游基因的表达,由此影响了植物的抗逆反应。基因表达谱的生物信息学预测表明,大多数F-box基因参与了植物抗逆反应,目前只有其中一小部分已报道了其抗逆调节功能。在此综述了这些F-box蛋白在植物抗逆胁迫中的研究进展。在干旱和盐碱胁迫反应中,F-box基因常通过影响植物激素脱落酸、乙烯等植物激素信号传导而调控抗逆。由于干旱和盐碱胁迫具协同性,不少F-box基因同时参与抗旱和抗盐碱胁迫,但调节方式有所不同,一些F-box基因对抗干旱和盐碱的反应具协同性,从总体上调控植物的渗透胁迫和离子毒害反应;而另一些F-box基因对干旱和盐胁迫反应的调节作用相反,它们可能在植物抗逆的精细调节中起作用。在低温胁迫反应中,F-box蛋白可调节植物抗低温的CBF信号途径。在生物胁迫反应中,F-box基因常通过影响植物激素茉莉酸和水杨酸途径来调控抗病,病原菌也以攻击植物SCF复合体使植物致病。此外,植物激素信号途径之间相互作用,共同影响抗逆反应。  相似文献   

11.
为研究百香果低温胁迫响应机制,以紫果百香果(Passiflora edulia Sims)为试验材料在0℃下低温胁迫处理,以常温处理为对照组(CK),采用Illumina HiSeq测序平台进行转录组测序,并对茉莉酸代谢相关基因进行挖掘。结果显示,共获得百香果转录组数据45.30 Gb,组装得到39 521条Unigene和5 311 个差异基因;GO分类显示注释的Unigene分为细胞组件、分子功能及生物过程三大类,其中差异基因数量最多为生物过程大类的代谢过程,包括甾醇生物合成、类黄酮糖脂化、酪氨酸代谢、L-苯丙氨酸生物合成、软木脂生物合成、芥子油苷代谢及长链脂肪-酰基辅酶A代谢等。KEGG途径富集分析结果显示,核糖体途径、淀粉与蔗糖代谢途径、植物激素信号转导途径及植物与病原体互作途径为百香果响应低温胁迫的重要代谢途径。实时定量PCR(qRT-PCR)分析表明,百香果低温胁迫后其茉莉酸代谢途径相关基因AOCAOSJAR1、MYC2、PYLJAZ均上调表达,该结果与测序获得FPKM值变化趋势较为相似,说明测序结果较为准确。但低温胁迫后,COI1的表达水平呈下调趋势。研究发现,在百香果中茉莉酸对低温胁迫的响应机制大体上与模式植物一致,关于COI1和MYC2等基因的调控方式还有待进一步功能验证。本研究结果为进一步明确百香果抗寒机制提供了科学参考。  相似文献   

12.
隶属于AP2/ERF超家族的乙烯响应因子(ERF)是植物抵御盐胁迫过程中的一类重要基因,为了减轻盐渍土地对小麦产量的负面影响,本研究从小麦全基因组中分离了AP2/ERF超家族,根据聚类结果和结构特征从中鉴定出96个ERF家族成员,在A、B、D基因组中共有229个拷贝序列;通过聚类分析和转录组数据分析筛选出13个与已克隆耐盐ERF基因相似性高或受NaCl诱导的TaERF成员,随后利用小麦抗感材料验证13个TaERF成员在受250 mmol·L-1 NaCl处理后的表达水平变化情况,结果显示,TaERF27、TaERF35、TaERF55和TaERF64在耐盐材料CH7034中受NaCl胁迫后显著上调,而在盐敏感品种SY95-71中无明显变化,推测其可能为盐胁迫响应基因;组织特异表达和启动子调控元件分析结果显示这4个基因在CH7034苗期根和叶中均具有较高的表达水平,并且每个基因起始密码子前 2 000 bp区域内包含脱落酸、水杨酸和茉莉酸等多种植物激素响应元件,推测它们可能参与植物多种非生物胁迫信号转导通路。本研究结果有助于理解植株应对非生物胁迫的分子机制,并为小麦品种耐盐性改良提供了参考基因。  相似文献   

13.
韩妙华  滕瑞敏  李辉  刘昊  林士佳  庄静 《核农学报》2020,34(12):2647-2657
干旱应答元件结合蛋白(DREB)类转录因子在植物逆境信号转导途径中具有重要的调控作用。为了解AP2/ERF转录因子在茶树逆境胁迫的分子调控机理,本研究从茶树龙井43叶片的cDNA中克隆得到一个编码CsDREB-A2转录因子的基因;对CsDREB-A2基因及其编码蛋白序列特征进行分析,并利用实时荧光定量PCR法检测该基因在茶树不同非生物胁迫处理下的表达水平。结果表明,CsDREB-A2基因开放阅读框为1 056 bp,编码351个氨基酸,其编码氨基酸序列具有AP2保守结构域,包含典型的YRG元件和WLG基序。AP2结构域第14、第19位氨基酸分别为缬氨酸和谷氨酸。拟南芥AP2/ERF家族转录因子的进化分析表明,该转录因子属于DREB亚族的A2组。CsDREB-A2相对分子质量为39 080 Da,理论等电点为5.32,属于亲水性蛋白,主要由α-螺旋和随机卷曲组成,无序化特征明显且存在一个LM无序区域;可能定位于细胞核,不存在信号肽和跨膜结构,属于非分泌蛋白。CsDREB-A2基因在高温(38℃)和干旱(200 g·L-1 PEG)胁迫下均能快速诱导表达,并显著高于对照,分别在处理4、2 h达到最大值,为对照的20.70和42.90倍,植物在渗透胁迫下,可能通过ABA信号途径调节该基因对干旱的耐受性。高盐(200 mmol·L-1 NaCl)胁迫下CsDREB-A2基因的表达受抑制,推测其可能存在负调控结构域降低该基因在盐胁迫下的表达量。本试验结果为研究DREB类转录因子在茶树抗逆胁迫的分子调控机制提供了一定的理论参考。  相似文献   

14.
Na+/H+逆向转运蛋白(SOS1)是植物耐盐的关键因子之一,在植物响应非生物胁迫过程中发挥着重要作用。为解析印度南瓜SOS1基因的序列特征和功能,利用生物信息学和分子生物学方法对其进行研究。结果表明,克隆获得印度南瓜SOS1基因cDNA全长序列,命名为CmaSOS1,GenBank登录号:NW_019272028。序列分析表明,CmaSOS1基因的cDNA全长3 940 bp,包含一个3 429 bp的开放阅读框架,编码1 142个氨基酸。CmaSOS1基因含有23个外显子和22个内含子,全长46 314 bp。CmaSOS1蛋白的分子量为126.7 kDa,理论等电点为5.92,包含12个跨膜结构区域,具有一个Na_H_Exchanger superfamily结构域和一个CAP_ED superfamily结构域;CmaSOS1蛋白属于疏水性稳定蛋白,二级结构元件多为无规卷曲和α-螺旋。CmaSOS1蛋白与葫芦科的中国南瓜、西葫芦、甜瓜、黄瓜和苦瓜Na+/H+逆向转运蛋白的同源性较高,序列一致性分别为98%、98%、90%、89%和89%。实时荧光定量PCR分析表明,CmaSOS1基因在印度南瓜的根和叶中表达量较高,在茎、花、果实中的表达量较低;该基因受NaCl和聚乙二醇(PEG)诱导后均呈上调表达,推测CmaSOS1基因可能在印度南瓜抵御盐分胁迫和干旱胁迫过程中发挥重要作用。本研究为进一步揭示CmSOS1在非生物胁迫下的功能奠定了基础。  相似文献   

15.
环境胁迫对植物的生长发育造成重大影响,因此,提高植物的抗逆性是农业面临的重要问题。自然界中存在多种抗逆基因,如抗盐基因、抗旱基因、抗寒基因等。利用植物基因工程和分子生物学技术提高植物对逆境的适应性及其抗逆分子机制的研究已成为当今热点。WRKY转录因子是一类参与多种胁迫反应的诱导型转录因子,本文综述了WRKY转录因子家族的结构特点、WRKY转录因子在非生物胁迫(高温、低温、干旱、盐)、外源物质(激素及O3)处理及生物胁迫下的表达模式。各种胁迫下的表达谱均呈现不同特点,这些差异表达可能与它们所行使的不同生物学功能有关。  相似文献   

16.
为研究马铃薯蔗糖非发酵-1-型相关蛋白激酶-1基因StSnRK1对于调控植物耐盐性的促进作用,以过表达StSnRK1的烟草株系及野生型为试验材料,研究盐胁迫下StSnRK1对植株生长的影响。耐盐性鉴定结果表明,过表达StSnRK1基因显著提高烟草植株的耐盐性。实时荧光定量PCR(RT-qPCR)分析显示,StSnRK1基因显著上调脯氨酸生物合成相关基因(吡咯琳-5-羧酸合酶NtP5CS)、胚胎发育后期丰富蛋白基因(NtLEA5)和活性氧清除系统相关基因(超氧化物歧化酶NtSOD和过氧化物酶NtPOD)。同时,转基因烟草植株的SOD活性、POD活性和脯氨酸含量显著高于野生型烟草植株,丙二醛(MDA)含量和过氧化氢(H2O2)含量显著低于野生型植株。由此可见,StSnRK1基因在改良植物耐盐性方面具有重要作用,为耐盐马铃薯生物技术育种提供了理论基础。  相似文献   

17.
聂显光  王琳 《核农学报》2021,35(5):1221-1230
为了探究植物组合内各种植物对双酚A(bisphenol A, BPA)的生理生化响应机制,及植物组合较单一植物在植物修复双酚A中的优势,本试验以湿地植物芦苇(Phragmites australis)、香蒲(Typha orientalis)和荻(Triarrhena sacchariflora)为材料,研究了3种植物及其组合对BPA的生理响应。结果表明,在一定BPA浓度下,部分植物组合可以显著提高植物鲜重、干重、光合色素含量、抗氧化酶活性[超氧化物歧化酶(SOD)、过氧化氢酶(CAT)、过氧化物酶(POD)]、抗氧化非酶物质、渗透胁迫物质;显著降低活性氧积累量和质膜过氧化水平。其中,芦苇和香蒲的植物组合对BPA胁迫的耐受能力增加最为明显,干重最高达到同一处理下单一植物的1.09和1.23倍,总叶绿素含量达到1.15和1.13倍, CAT达到1.30和1.17倍,脯氨酸(Pro)含量达到1.09和1.16倍,H2O2含量达到0.82和0.91倍,丙二醛(MDA)含量达到0.87和0.88倍。本研究为揭示植物组合较单一植物在植物修复BPA中优势的生理调控机制提供了参考依据。  相似文献   

18.
抗坏血酸过氧化物酶(APX)是植物体叶绿体清除H2O2的关键酶。为了探究芸薹属作物中APX家族基因的序列特点和表达模式,本研究利用生物信息学方法,从大白菜、甘蓝和欧洲油菜中分别鉴定出10、9和22条APX 家族基因,对这41个成员序列特点、染色体分布、CDS保守域、蛋白保守结构域、蛋白三级结构和系统进化关系等进行预测分析,并通过基因表达数据库分析这些基因在高温、干旱和生物胁迫等逆境条件下的表达模式。结果表明,APX在进化树上可分为8个亚族,分散在不同的染色体上;这些APX基因拥有相对稳定的CDS保守结构域、蛋白保守结构域和三级结构,都具有过氧化物酶功能域,在peroxidase功能域的后端均含有一个螺旋结构状的保守域Motif6。APX基因的Ka/Ks值均小于1,表明APX家族基因整体上正在经历纯化选择。大部分APX1和APX2基因在受到高温胁迫时表达上调,其中BrAPX2a在大白菜的胚和胚乳中强烈响应高温胁迫,但在大白菜其他部位表达微弱,存在一定的表达组织特异性。APX3、APX4等基因对干旱和高温胁迫响应不明显;甘蓝3个APX1基因在白粉虱为害胁迫时表达上调。本研究结果为芸薹属作物APX家族成员的克隆、表达与功能研究提供了一定参考。  相似文献   

19.
在谷子基因组中鉴定出一个CIPK(Seita.5G145900,命名为SiCIPK19)基因。为揭示SiCIPK19对逆境胁迫的响应,对其基因结构、蛋白特征、功能、进化等性状进行了系统的分析和预测,并用实时定量PCR(RT-qPCR)检测了其在谷子苗期不同逆境及关键生育期干旱胁迫下的表达。结果表明,SiCIPK19基因位于谷子5号染色体,基因组序列长1 353 bp,编码450个氨基酸,基因无可变剪切,且不含内含子。功能域分析和多序列比对发现,SiCIPK19蛋白具有非常保守的序列结构,与其他植物CIPK蛋白也非常相似。RT-qPCR分析表明,SiCIPK19基因被聚乙二醇6000(PEG 6000)、ABA、高盐和低温胁迫强烈诱导。此外,SiCIPK19基因在谷子拔节期、抽穗期和灌浆期干旱条件下参与了对干旱胁迫的响应,推测该基因参与谷子对非生物逆境的应答,尤其在抽穗期和灌浆期干旱胁迫应答中发挥重要作用。本研究结果为进一步分析CIPK基因逆境应答机制,以及利用基因工程方法改善谷子抗逆性和提高产量提供了理论支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号