首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 140 毫秒
1.
不同施氮情况下小麦玉米间作土壤硝态氮的动态变化   总被引:8,自引:2,他引:6  
本文主要研究了0、210、420和630kg/hm2(NO、N1、N2和N3)4种不同施氮量对小麦玉米间作土壤硝态氮(NO-3-N)含量动态变化的影响。结果表明,0~200cm土层硝态氮的含量整体表现为N3>N2>N1>N0。各生育时期低氮水平下0~60cm土层,中、高氮水平下的0~80cm土层土壤硝态氮含量变化显著。0~60cm土层土壤硝态氮累积量随作物生育时期的变化呈“双峰”曲线,峰值分别出现在小麦挑旗期和玉米大喇叭口期,而60~200cm土层土壤硝态氮累积量的变化呈“单峰”曲线,峰值出现在玉米大喇叭口期。N0处理硝态氮累积量各生育时期变化差异较小。小麦与玉米共生期内0~200cm土层硝态氮含量表现为玉米带>小麦带,差异最大的时期为小麦灌浆期和玉米大喇叭口期。土壤硝态氮向深层的运移量随施氮量增加而增加,与N0相比,施氮后100~200cm土层硝态氮累积量小麦带增加了1053~6253kg/hm2,玉米带增加了1791~7039kg/hm2。优化氮肥施用比例,适当降低小麦播前施氮量可减小土壤硝态氮深层淋溶的风险。  相似文献   

2.
为了提高氮肥增产效益,减少对环境的污染,通过田间试验研究了施氮量对春玉米产量、氮肥效率及土壤矿质氮的影响。结果表明,施氮量较低时,春玉米籽粒产量随施氮量增加显著增加,当施氮量高于180 kg·hm-2时,产量保持不变或有减少趋势。氮肥农学利用率、氮素吸收效率、氮素偏生产力和氮收获指数均随着施氮量增加显著降低,氮肥表观利用率和氮肥生理利用率均先增加后降低。从苗期到收获期,施氮处理0~60 cm土层硝态氮含量呈现"上升—下降—上升—下降—稳定"的变化趋势,而60~120 cm土层硝态氮在春玉米生长后期有增加的趋势。随着土层加深,土壤硝态氮含量呈波浪式下降,施氮量240 kg·hm-2和300 kg·hm-2处理在60~100 cm土层硝态氮含量均显著高于其他处理。随着施氮量增加,0~120 cm土层硝态氮累积量显著增加,当施氮量超过240kg·hm-2时,土层中累积的硝态氮存在着较大的淋溶风险。综合考虑产量、氮肥效率和环境效应,179~209 kg N·hm-2是本试验条件下春玉米的合理施氮量。  相似文献   

3.
在田间条件下研究了施氮量对春玉米产量、氮肥利用率和土壤硝态氮时空分布的影响,旨在为冀西北春玉米氮肥优化管理提供理论依据。研究结果表明,春玉米产量随施氮量的增加而提高,当施氮量高于225 kg/hm2时,春玉米产量和氮肥利用率显著降低。从春玉米播种前到收获后,不施氮处理0-90 cm各土层硝态氮含量不断降低,施氮处理0-30 cm和30-60 cm土层硝态氮含量呈先上升后迅速下降并保持稳定的趋势,而60-90 cm土层硝态氮在春玉米生长后期有增加的趋势;春玉米收获后随着土层深度的增加,硝态氮呈波浪式下降,施氮量300,375 kg/hm2处理60-90,120-150,150-180 cm土层硝态氮含量显著高于其它处理。随着施氮量的增加,春玉米0-90,90-180,0-180 cm土层硝态氮累积量均呈增加趋势,高施氮量土层累积的硝态氮存在着更大的淋溶风险。因此,综合分析氮肥用量对春玉米产量、氮肥利用率的影响,并考虑土壤硝态氮时空分布下的环境风险,合理的施氮量应控制在195~225 kg/hm2之间。  相似文献   

4.
施肥与灌水对硝态氮在土壤中残留的影响   总被引:34,自引:1,他引:34  
通过田间试验研究不同施氮量与灌水量对春玉米和冬小麦田土壤中硝态氮分布与累积的影响,结果表明,春玉米收获后0~2 m土壤中累积硝态氮185.7~748.0 kg/hm2,其中1 m以上占57.9%~70.1%。由于施用氮肥而增加的硝态氮占施N量的1.8%(N 112.5 kg/hm2),50.7%(N 225 kg/hm2),56.7%(N 337.5 kg/hm2)和77.0%(N450 kg/hm2)。不施N和施N 112.5 kg/hm2时春玉米田土壤剖面没有明显累积峰;施N等于或高于225 kg/hm2时在60~80 cm土层有明显累积峰,施氮量高的峰值较高;施N 450 kg/hm2时在120~140 cm深度出现另一个累积高峰。冬小麦收获后土壤0~2 m硝态氮累积量为74.9~328.8 kg/hm2,其中1m以上占67.8%~90.7%。由于施用氮肥而增加的硝态氮占施N量的19.5%(N 112.5 kg/hm2),35.6%(N 225 kg/hm2),58.9%(N 337.5 kg/hm2)和56.4%(N 450 kg/hm2)。冬小麦田收获后土壤深层(1~2 m)没有明显的硝态氮累积,即使施氮量高达450 kg/hm2时也只在表层40 cm以上累积较多。不论是春玉米还是冬小麦,当生育期施氮量大于225 kg/hm2时0~2 m土层均有明显的硝态氮累积,施氮量高的累积量较高。施氮量是造成土壤中硝酸盐累积的主要因素,灌水量对春玉米田硝态氮的向下迁移有显著影响。  相似文献   

5.
【目的】明确玉米条带不同追施氮量对间作作物产量、 吸氮量和土壤硝态氮动态变化的影响,并阐明间作系统不同施氮量的后茬农学效应和环境效应。【方法】玉米和大豆播种时均施用相同的基肥(其中氮肥用量为N 45 kg/hm2),根据大喇叭口期玉米条带追施氮量的不同(N 0、 75、 180 kg/hm2)设置三个处理(N0、 N75、 N180),并且大豆生育期间均不追施氮肥,然后实时监测玉米和大豆各个关键生育期的生物量和土壤硝态氮动态变化,并对比分析各处理的后茬冬小麦产量和土壤硝态氮残留量。【结果】随着玉米条带追施氮量的增加,玉米条带生物量、 产量和吸氮量均无显著变化,而且玉米追施氮量的多少对大豆生物量、 产量和吸氮量没有明显影响。间作种植系统土壤硝态氮含量受到追施氮量的影响,氮肥追施后,020 cm土壤硝态氮含量显著上升,但2040 cm土壤硝态氮含量变化不大。追施氮量越多,玉米条带和大豆条带的土壤硝态氮含量也越高,作物收获后土壤硝态氮残留量也越高,玉米条带追施N 180 kg/hm2的间作系统作物收获后土壤硝态氮含量高出其他两个处理12%~25%。此外,后茬作物冬小麦产量、 吸氮量并未随着前茬间作系统施氮量的增加而增加,但小麦收获后的0100 cm土壤硝态氮残留却随着前茬间作系统施氮量的增加而增大,相对仅施用基肥而不追施氮肥的间作系统,前茬间作系统追施氮肥导致后茬小麦收获后土壤(0100 cm)硝态氮残留量增加了22.38%~70.18%。【结论】针对玉米与大豆间作种植模式,只施用玉米基肥(其中氮肥用量为N 45 kg/hm2)而不追肥,或者在施用基肥的基础上,仅在玉米条带上追施少量氮肥(N 75 kg/hm2),不会影响间作体系产量,还可降低后茬小麦0100 cm土壤中的硝态氮残留。  相似文献   

6.
【目的】以秸秆还田定位试验为平台,探讨玉米秸秆还田配施氮肥对冬小麦产量、土壤硝态氮积累、氮素表观盈余和氮肥利用率的影响规律,明确砂姜黑土玉米秸秆全量还田条件下冬小麦生长季的最佳施氮量。【方法】试验以秸秆处理为主区,设秸秆还田和秸秆移除2个水平;施氮量为副区,设6个水平,分别为0、162.0、202.5、243.0、283.5、324.0 kg/hm2。测定了冬小麦播种前、拔节期、成熟期地上部植株含氮量,土壤0—20、20—40和40—60 cm硝态氮含量,小麦产量以及籽粒氮含量,计算了冬小麦生育期土壤的氮素表观盈余,小麦基施和追施氮肥的利用效率以及不同阶段的氮素盈余。【结果】玉米秸秆还田后小麦增产365 844 kg/hm2,增产率为4.2%9.3%,尤其以配施243.0 kg/hm2的增幅最高,产量达9858 kg/hm2。小麦整个生育期,秸秆还田显著增加了0—60 cm土层的土壤硝态氮累积量,而秸秆移除条件下,土壤硝态氮累积量与氮肥施用量相关,高量氮肥增加了硝态氮累积量,N施用量高于243.0 kg/hm2时,硝态氮累积量较小麦播种前增加19.8%28.6%。施氮均显著增加了植株氮素积累量;小麦播种到拔节期,植株的氮素积累量随基肥比例的增加而增加。小麦生育期不施氮处理表现为氮素亏缺,施氮处理显著增加了0—60 cm土层的土壤氮素盈余量,且随基肥、追肥量的增加而增加,盈余值每增加100.0kg/hm2,秸秆还田配施氮肥和单施氮肥的土壤剖面硝态氮积累量就会分别增加74.2和91.4 kg/hm2。秸秆还田配施氮肥提高了氮肥农学效率、植株地上部氮肥吸收利用率、籽粒氮肥吸收利用率,特别是在高氮肥时,基肥和拔节肥的利用率显著高于单施氮肥。在施氮处理间、相同氮肥施用下秸秆还田和移除处理间氮素收获指数均无显著差异。氮肥表观回收率随施氮量的增加而降低,基肥表观回收率显著高于拔节肥表观回收率。【结论】秸秆还田和施氮水平对小麦植株氮素的吸收转运没有显著影响,但可提高基施和追施氮肥的利用率,可增加土壤0—60 cm土层中硝态氮的含量。综合各项指标,冬小麦生长季玉米秸秆全量还田适宜的氮肥配施量为202.5 243.0 kg/hm2。  相似文献   

7.
  【目的】  合理施氮是粮食高产、稳产的重要保证。研究不同施氮水平下作物产量的可持续指数以及土壤硝态氮年际迁移特征,对指导黄淮海地区冬小麦–玉米轮作体系下农田氮肥的合理施用具有重要意义。  【方法】  长期定位试验始建于2006年,设置10个施氮水平:0、60、120、180、240、300、360、420、500和600 kg/hm2。测定冬小麦和夏玉米产量及土壤剖面 (0—200 cm) 硝态氮含量的年际变化特征。  【结果】  施氮水平显著影响冬小麦–夏玉米轮作体系下作物产量,施肥年限以及施肥年限与施肥量间的交互作用对小麦、玉米产量也存在极显著影响。施N 0~240 kg/hm2的处理,小麦、玉米产量随施氮量的增加逐渐增加;施N 300~600 kg/hm2的处理作物产量基本稳定,处理间差异不显著 (P > 0.05)。施氮能显著提高冬小麦产量的可持续性指数 (P < 0.05),但对夏玉米产量的可持续指数影响较小。随着施氮量增加,土壤硝态氮含量呈现逐渐增加的趋势,且施N量低于300 kg/hm2时,0—200 cm土层硝态氮含量均处于较低水平,施氮量超过300 kg/hm2后,土壤硝态氮含量显著增加。另外,随着试验年限的延长,土壤硝态氮累积峰逐渐下移,2008、2011和2017年土壤硝态氮含量峰值分别在40—60 cm、80—120 cm和80—160 cm。  【结论】  黄淮海盐化潮土区,冬小麦–夏玉米轮作制度下氮合理用量在冬小麦上的阈值为240 kg/hm2、在夏玉米上的阈值为180 kg/hm2,在此氮肥用量下,长期施肥既可保证作物 (小麦、玉米) 稳产,又不会显著增加土壤硝态氮残留及向下迁移。  相似文献   

8.
【目的】我国北方农业生产中氮肥过量施用现象较普遍,冬小麦?夏玉米轮作体系是当地主要种植方式。研究轮作体系氮肥减施对玉米产量、氮肥利用率、根系形态及根际中无机氮特征的影响,为集约化农业生产体系中氮肥合理施用提供支持。【方法】选择河北衡水潮土试验点冬小麦?夏玉米轮作体系,连续开展了三年田间试验,小麦收获后免耕播种夏玉米。冬小麦季设置N 0、180、225、300 kg/hm2四个氮肥用量处理,其夏玉米季相应氮肥用量依次设置为N 0、144、180和240 kg/hm2,为不施氮肥、减施40%、减施25%和习惯施氮量处理。分别在玉米生育期的苗期、大喇叭口期、灌浆期及收获期在处理小区随机选植株5株,测定玉米籽粒产量、地上部氮含量、氮累积量及根际土壤中无机氮等指标,利用WinRHIZO根系分析系统分析获取根长、直径等数据。【结果】与N240 处理相比,N144、N180处理连续三年的玉米籽粒产量、地上部含氮量与氮累积量、根系长度与直径、根际土壤硝态氮与铵态氮含量均未受到明显影响,而氮肥利用率显著提高,农田氮素表观损失降低。三季N0、N144和N180处理的夏玉米籽粒产量、非根际土壤硝态氮和铵态氮含量出现下降。除2008年大喇叭口期之外,三季玉米所有生育时期中,施用氮肥处理的夏玉米根际土壤硝态氮含量明显低于非根际土壤。2008年玉米抽雄期,根际土壤中铵态氮含量显著高于非根际土壤,而在收获期,根际土壤铵态氮含量比非根际土壤明显降低。同一生育期,氮肥减施未明显降低根际土壤铵态氮含量。2008和2009年两季玉米籽粒产量均与大喇叭口期以后地上部氮累积量呈显著正相关,而2010年只与苗期和成熟期显著相关。2009年玉米根际硝态氮含量均与玉米产量呈正相关,生育后期呈极显著正相关关系,而除大喇叭口期非根际土壤硝态氮含量与玉米籽粒产量不相关外,其他生育期的非根际土壤硝态氮含量均与籽粒产量显著相关。【结论】在华北小麦–玉米轮作种植体系下,在土壤肥力水平较高地区,连续三年减氮 25% 甚至 40%,未显著改变夏玉米根系形态及根际无机氮供应水平,氮肥利用率显著提高,但非根际无机氮供应水平和籽粒产量有下降趋势。因此,在河北高肥力地区小麦?玉米轮作下短期减少氮肥用量可行,持续减施还需进一步研究。  相似文献   

9.
  【目的】  当前华北平原冬小麦–夏玉米生产中,存在氮肥投入量大、氮肥利用效率低等问题,在滴灌水肥一体化条件下研究施氮量对冬小麦–夏玉米周年产量、氮素利用效率和土壤全氮含量、硝态氮残留的影响,以期为该地区小麦–玉米节肥、高产高效的栽培模式提供理论依据。  【方法】  于2018—2020年在青岛农业大学胶州现代农业示范园开展小麦、玉米滴灌施肥田间试验。设冬小麦/夏玉米生长季不施氮(N0)和施氮 150/150 kg/hm2 (N1)、210/225 kg/hm2 (N2) 和270/300 kg/hm2 (N3) 4个水平,以传统施肥方式和常规施氮量240/240 kg/hm2为对照(CK)。分析冬小麦和夏玉米产量、氮素吸收量和土壤氮素残留量。  【结果】  N2处理冬小麦、夏玉米产量最高,与N3处理无显著差异,但显著高于N0、N1和CK处理;N3处理冬小麦、夏玉米的干物质积累量、氮素吸收量最高,与N2处理差异较小,而显著高于N0、N1和CK处理。冬小麦、夏玉米氮肥偏生产力随着施氮量的提高而降低;冬小麦季氮素利用效率随着施氮量的提高而降低;夏玉米季,N2、N1和N0处理的氮素利用效率显著高于N3和CK处理,且N0、N1和N2处理间无显著差异;冬小麦、夏玉米氮肥农学利用率均随着施氮量的提高而降低,N2施氮水平下,氮素利用效率和氮肥农学利用率均表现较优。随着施氮量的增加,0—100 cm土层土壤全氮含量和硝态氮含量呈增加的趋势,全氮积累主要集中在0—40 cm土层,N3、N2和CK处理0—100 cm土层土壤全氮含量与N0和N1处理之间的差异随着轮作年数的增加而逐渐增大,N2处理较N3和CK处理有效抑制了硝态氮在表层土壤的积累和向深层土壤的迁移,降低了硝态氮淋失风险。  【结论】  冬小麦季施氮210 kg/hm2和夏玉米季施氮225 kg/hm2 (N2)可实现周年作物增产高效,提高氮素利用效率,显著降低硝态氮向深层土壤迁移,降低硝态氮淋失风险,是滴灌水肥一体化下华北平原麦玉周年轮作适宜的施氮量。  相似文献   

10.
施氮量对间作玉米土壤硝态氮累积量及氮肥利用率的影响   总被引:1,自引:0,他引:1  
马忠明  孙景玲 《核农学报》2012,26(9):1305-1310
通过田间定位试验,监测了不施氮和不同施氮水平(分别为210、420和630kg.hm-2)下间作玉米各关键生育时期0~200cm土层硝态氮累积量的动态变化、玉米产量及其构成,计算分析了间作玉米的氮肥利用率。研究结果表明,间作玉米0~200cm土层土壤硝态氮累积量总体表现为0~60cm土层>60~200cm土层。0~60cm土层土壤硝态氮累积量呈"M"形变化,即玉米播种前和玉米大喇叭口期出现高峰,小麦播种前、玉米拔节期和玉米收获后出现低谷。60~120cm和120~200cm土层土壤硝态氮累积量呈倒"V"形变化,总体在玉米大喇叭口期前后出现高峰值,210~630kg.hm-2施氮处理下120~200cm土层的硝态氮累积量较不施氮处理分别高出149.1%、115.6%和126.3%。随着施氮量的增加,间作玉米穗长、穗粒数、穗重呈增大趋势,秃顶呈降低趋势,增产幅度依次减小,氮肥利用率依次降低。  相似文献   

11.
【目的】黄淮海平原高产麦田水肥资源的大量投入带来了水肥利用率低、氮素损失量大等一系列问题,本文研究了滴灌施肥对黄淮海平原冬小麦大田氮素利用和损失的影响,以期为小麦高产高效施肥提供新的技术手段。【方法】以尿素、NH4H2PO4和KCl混合的水溶性肥料为材料,在山东桓台进行冬小麦主要生育期测墒补灌并随水施肥的田间试验,设置4个施氮量处理,即N0(不施肥)、N1(94.5 kg/hm2)、N2(189 kg/hm2)和N3(270 kg/hm2),分析了大田土壤NO-3-N空间分布、剖面累积及氮素的平衡。【结果】1)滴灌施肥24 h后,随施氮量的增加,在滴头周围水平方向上土壤NO-3-N从在湿润土体边缘聚集逐渐变化为在滴头下方聚集,当施氮量为189 kg/hm2时,滴灌施肥后滴头下方和湿润土体边缘的NO-3-N含量差异不显著,在滴头周围水平方向上均匀性最好;NO-3-N在滴头下方土壤内随水运移深度主要在60 cm以上,滴灌施肥后滴头下方垂直方向上NO-3-N没有在湿润体边缘聚集。2)冬小麦收获后,0—100 cm土壤剖面NO-3-N累积量随施氮量的增加而逐渐增加,且施氮量超过N 189kg/hm2后,土壤剖面NO-3-N累积量的增加幅度加大,0—40 cm土层的NO-3-N增加量显著高于其他土层,N0、N1、N2和N3处理0—40 cm土层NO-3-N累积量所占比例分别为66%、72%、72%和71%。3)随着施氮量的增加,冬小麦吸氮量和籽粒产量先增加后下降,而0—100 cm土层氮素残留量、表观损失量不断增加,滴灌施肥条件下氮素表观损失量较低,N1、N2和N3的表观损失率分别为20%、17%和16%。【结论】滴灌施肥措施下,合理的灌溉量可以调节滴灌施肥后硝态氮主要向下运移至作物根区范围,集中在作物根系最密集的0—40 cm范围内,肥液浓度对硝态氮运移深度影响不大。施入适宜量氮肥有利于提高滴头下方湿润体内水平方向上NO-3-N分布的均匀度,从而促进作物对氮素的吸收。施氮量为189 kg/hm2的N2处理获得了最高的籽粒产量和氮肥利用效率,播前和收获后根区土壤NO-3-N累积量基本达到平衡,是试验筛选出的最佳滴灌施氮模式。  相似文献   

12.
以宁麦9号为材料,研究施氮量及氮肥基追比例对稻茬小麦土壤硝态氮含量、根系生长、植株氮素积累量、产量和氮素利用效率的影响。结果表明,拔节前0-60cm土层硝态氮含量随基施氮量的增加而显著增加,随生育进程的推进各处理硝态氮显著向下层土壤淋洗;拔节期追施氮肥显著提高了孕穗期0-40cm土层硝态氮含量,且随追施氮量的增加而显著增加,N300和N3/7处理硝态氮显著向40-60cm土层淋洗。根系主要生长于0-20cm土层,拔节前各土层根长密度均随基施氮量的增加而增加,拔节后则随施氮量增加和适当的追肥比例而增加。各施氮处理均以拔节至开花期为小麦氮素积累高峰期。适宜增加施氮量并适当提高追肥比例,有利于提高产量、植株氮素积累量和氮素利用效率。因此,在小麦生产中,适当降低施氮量并提高拔节期追肥比例有利于促进小麦根系生长和植株氮素积累,进而提高小麦产量并减少硝态氮淋洗损失。  相似文献   

13.
【目的】带状种植是四川小麦的典型种植方式,主要分布在丘陵旱地,与玉米构成小麦/玉米复合种植系统。本文通过两年大田试验研究了不同氮肥用量和生育期分配比例对四川丘陵旱地带状种植小麦氮素吸收累积、 分配与转运的影响,以及氮素利用效率和土壤氮残留问题,筛选适合于该地区带状种植小麦的适宜氮肥用量和分配比例,为生产应用提供理论和技术依据。【方法】试验在四川省仁寿县进行,试验材料为四川主推品种川麦42,带状种植(即2 m为一带,种5行小麦,行距20 cm,小麦幅宽80 cm,预留行1.2 m),2BSF-4-5A型谷物播种机播种,密度150104 plant/hm2。试验采用二因素裂区设计,施氮量为主区,设N 90(N1)、 135(N2)、 180(N3)、 225(N4) kg/hm2 4个水平;生育期分配比例为裂区,设基肥一次性施入(R1)、 底肥:苗肥=7:3(R2)、 底肥:拔节肥=7:3(R3)和底肥:苗肥:拔节肥:孕穗肥=5:1:2:2(R4)4个水平,并以不施肥(CK)为对照。【结果】 1)施用氮肥后收获期地上部植株总吸氮量显著提高,开花期植株各营养器官氮素积累量、 成熟期叶和茎鞘中氮素残留量以及转运氮的贡献率均随施氮量的增加而增加,而花后氮素同化量及其对籽粒氮的贡献率随施氮量增加呈先增后降的趋势,在施氮量为N 135 kg/hm2时达最大。底肥:拔节肥=7:3的施氮方式有利于提高花后氮素同化量及其对籽粒氮贡献率,而底肥:苗肥:拔节肥:孕穗肥=5:1:2:2的施氮方式有效地促进了花前贮存氮素向籽粒转移,同时也增加了成熟期氮素在营养器官中的残留,降低了氮素在籽粒中的分配比例;2)氮利用效率和植株氮生产力均随施氮量的增加而降低,土壤中残留的全氮、 NO-3-N及NH+4-N含量则随施氮量的增加而增加;在施氮量较高(N 180~225 kg/hm2)的条件下,底肥一次施极大地增加了土壤中氮的残留,且随施氮量增加,拔节期一次性追肥土壤中氮残留也增加,氮肥分次追施和加大分配比例能够有效降低土壤中的氮素残留; 3)在四川丘陵旱地套作条件下,施氮量和籽粒产量的关系可用二次曲线方程来拟合,平均每生产100 kg籽粒需N 3.6 kg;施氮量为180 kg/hm2、 分配比例为底肥:拔节肥=7:3时籽粒产量最高,可达4800 kg/hm2(第二年4706 kg/hm2),较CK增产27.6%(第二年增产25.6%)。【结论】综合考虑小麦籽粒产量、 氮吸收利用特性以及土壤中残留氮量,在保证获得较高小麦产量(4650 kg/hm2以上)的前提下,应适当减少氮肥用量,采取氮肥后移及分次施用的方式。本试验条件下带状种植小麦推荐的氮肥用量为N 135~180 kg/hm2,分配比例为底肥:拔节肥=7:3。  相似文献   

14.
【目的】研究等氮量投入条件下,长期使用不同有机物料替代无机肥的适宜比例对玉米氮养分累积、运移和氮肥利用效率和产量的影响,可以为吉林黑土区春玉米高效施肥,维持并提高土壤肥力提供理论依据。【方法】以国家(公主岭)黑土肥力与肥料效益长期定位试验为研究平台,玉米品种郑单958为供试作物,设5个不同处理,即:不施肥(CK)、氮肥(N)、氮磷钾化肥(NPK)、粪肥+NPK(MNPK)、秸秆还田+NPK(SNPK)。在玉米苗期、拔节期、大喇叭口期、抽丝期、灌浆期和成熟期采集地上部植株样品,分析玉米植株不同部位的氮含量和累积量以及运移比例,计算氮肥利用效率。【结果】在玉米各生育时期,MNPK处理氮素累积量均高于NPK和SNPK处理;拔节期至大喇叭口期氮素累积量为19.67~86.44 kg/hm2,其中MNPK氮素累积量达到86.44 kg/hm2,为氮素累积量增加最多、吸收速率最快的时期;在成熟期,MNPK、NPK、SNPK、N和CK处理植株氮素总累积量分别达到286.2、276.2、249.4、151.7和63.6 kg/hm2,SNPK处理氮素累积量略低于NPK处理,MNPK显著高于NPK和SNPK(P0.05)。MNPK、SNPK、NPK和N处理中,叶和茎鞘总氮素转移量分别为99.0、79.7、87.2和41.8 kg/hm2,总的转移氮素对籽粒的贡献率分别为51.0%、47.7%、47.2%和43.4%,以MNPK处理的总氮素转移量和转移氮素对籽粒贡献率最高,与其他处理差异显著。在各处理中,MNPK、NPK和SNPK三个处理的氮肥偏生产力(PFP)均大于60kg/kg,以MNPK最高,达到65.4 kg/kg。与化肥NPK处理比较,SNPK氮素偏生产力和收获指数差异不显著。MNPK处理土壤无机氮的含量在玉米整个生育期一直高于化肥NPK处理,并在玉米大喇叭口期达到最高,达到60.83 mg/kg,并与其他处理差异显著。【结论】长期有机无机配合施用,不仅能有效调节氮素积累和转运,还能提高氮肥利用效率。在适宜氮用量为165 kg/hm2时,以农家肥氮替代70%,或秸秆氮替代30%化肥氮素,既减少化肥氮投入,又增加了土壤供氮能力,因此,有机肥氮替代部分化肥氮是吉林省黑土区春玉米氮素管理的有效途径之一。  相似文献   

15.
以中等肥力土垫旱耕人为土为供试土壤,在冬小麦(Triticum aestivum)不同生育期采集0-100 cm土层土壤样品,研究不同施肥及杂草处理对半湿润农田生态系统土壤NO3--N动态变化的影响。结果表明,1)土壤剖面NO3--N含量随施氮量增加而显著增加,0-100 cm土层NO3--N累积量与施氮量线性相关;在越冬期、返青期和拔节期,相关系数r分别为0.995、0.971和0.949。2)冬小麦生长过程中,土体NO3--N含量先降低后回升,在拔节期最低;成熟期土壤有机氮矿化产生的NO3--N是收获后土壤剖面残留NO3--N的主要贡献者。3)在越冬期、返青期、拔节期和成熟期,施磷(PN135)与不施磷(P0N135)处理相比,施磷可显著减少土体NO3--N累积量,减少量分别为N 61.4、26.9、36.6和5.5 kg/hm2;磷肥对减少土壤NO3--N残留累积量的影响以越冬期表现最为显著,成熟期表现不显著。4)在施磷的基础上,不同杂草处理土壤剖面NO3--N累积量在每公顷施氮45 kg(PN45)及施氮90 kg (PN90)时存在一定差异,但不显著;而在每公顷施氮180 kg(即PN180)的高氮处理下,差异显著。每公顷施氮135 kg(PN135),的中氮处理,在越冬期清除杂草后土壤剖面中NO3--N累积量在拔节期显著高于其它杂草处理。  相似文献   

16.
  【目的】  研究不同施氮量下马铃薯的干物质积累、产量、氮肥吸收利用,结合土壤中无机氮在不同土层含量的变化,确定马铃薯产量和氮效率最优、环境风险最低的氮肥施用水平。  【方法】  试验于2018—2019年在南方典型红壤区旱地进行,供试品种荷兰15号为特早熟型马铃薯。设置N 0、60、120、150、180、210、240 kg/hm2,共7个氮肥水平。于成熟期,调查块茎产量和总干物质积累量测定氮素含量,同时取0—20、20—40、40—60 cm土层样品,分析铵态氮与硝态氮含量。  【结果】  施氮量显著影响红壤旱地马铃薯产量、干物质积累与氮肥吸收利用。马铃薯块茎产量随施氮量增加先增加后降低,均以施N 180 kg/hm2处理最高,达26250 kg/hm2 (2018年) 和27915 kg/hm2 (2019年);秸秆氮素积累量随施氮量的增加显著增加,而块茎氮素积累量随施氮量增加先增加后降低,以施N 180 kg/hm2处理最高,为97.65 kg/hm2 (2018年) 和101.09 kg/hm2 (2019年)。氮素收获指数以N150 kg/hm2处理最高,而氮肥农学利用率和氮素回收率均以N180 kg/hm2处理最高,氮肥偏生产力则随施氮量的增加而显著降低。施氮显著提高土壤中的无机氮含量,不同施氮量对无机氮的含量和分布影响不同。施N 150 kg/hm2和N 180 kg/hm2处理增加的铵态氮主要分布在0—20 cm土层,且施N 180 kg/hm2处理的铵态氮含量显著高于施N150 kg/hm2处理,施N 150 kg/hm2处理又显著高于其他处理;而N 210 kg/hm2和N 240 kg/hm2处理增加的铵态氮主要分布在20—60 cm 土层,其铵态氮含量显著高于其他处理;在施N 0—180 kg/hm2范围内对土层中的硝态氮含量影响较小,施N 210 kg/hm2和N 240 kg/hm2处理显著增加了20—60 cm土层硝态氮含量。从无机氮总量看,施N 180 kg/hm2处理可显著增加0—20 cm土层的无机氮总量,而施N 210 kg/hm2处理和N 240 kg/hm2处理则显著提高了20—60 cm土层的无机氮含量。  【结论】  极早熟型马铃薯适宜的氮肥用量范围较窄,过低或者过高施氮都会显著降低其经济产量、氮素收获指数和农学效率。在红壤条件下,施N 180 kg/hm2可以显著增加0—20 cm土层中的铵态氮和无机氮含量,而不会增加20 cm以下土层的无机氮含量,超过此用氮量,则会显著增加土壤无机氮的向下迁移。因此,红壤旱地极早熟型马铃薯品种的适宜施氮水平为N 180 kg/hm2。  相似文献   

17.
【目的】根区局部灌溉(PRI)是一种节水灌溉方法,包括分根区交替灌溉(AI)和固定部分根区灌溉或称部分根区干燥灌溉(PRD),其中PRD技术是在作物生育时期一半根区总不灌水,另一半根区充分灌水,AI技术则是在作物生育期内根据生育时期和土壤水分情况交替对根系两侧进行灌水。本文研究在不同施肥条件下,拔节前期至抽雄期不同时段采用PRI对玉米生理指标、 干物质积累和水分利用效率(WUE)的影响,以期为玉米合理灌溉和施肥提供依据。【方法】采用盆栽方法,设3种灌溉方式为常规灌溉(每次对盆内全部土壤均匀灌水)、 分根区交替灌溉(每次交替对盆内1/2区域土壤灌水)和固定部分根区灌溉(每次固定对盆内1/2区域土壤灌水);2种灌水量为正常灌水(70%~80%f,f为田间持水量)和轻度亏水(60%~70%f); 2种施肥处理为100%化肥氮、 80%化肥氮+20%有机氮。在拔节期至抽雄期进行12 d、 24 d和36 d根区局部控水灌溉处理。分别测定玉米的光合速率、 气孔导度、 叶绿素、 类胡萝卜素、 可溶性糖和脯氨酸含量,总干物质量、 耗水量和水分利用效率。【结果】不同灌溉方式、 灌水水平和有机无机氮比例处理对拔节中期、 拔节末期和抽雄期玉米光合速率、 气孔导度、 类胡萝卜素含量、 叶绿素含量和可溶性糖含量的影响不显著,灌水量对抽雄期脯氨酸含量的影响也不显著,表明控水持续时间长短,根区局部灌溉、 轻度亏水和有机无机氮配施不会显著影响玉米生理指标。与常规灌溉相比,拔节前期至抽雄期3个控水时段根区局部灌溉对玉米总干物质量和水分利用效率的影响虽不显著,但是显著降低了玉米耗水量,在正常灌水量和单施化肥氮条件下,拔节末期控水24 d和抽雄期控水36 d,根区局部灌溉可分别提高水分利用率24.4%和16.3%。此外,轻度亏水、 有机无机氮肥配施(80%化肥氮+20%有机氮)对玉米生理指标、 总干物质量和水分利用率的影响也不显著。【结论】在正常灌水量和单施化肥氮条件下,在拔节期至抽雄期进行根区局部灌溉可显著降低玉米耗水量,而对玉米生理指标和总干物质量无明显影响,因而显著提高玉米水分利用效率。  相似文献   

18.
施氮量和蚕豆/玉米间作对土壤无机氮时空分布的影响   总被引:4,自引:2,他引:2  
在田间条件下于2006—2007年研究了不同氮水平下(N 0、75、150、225、300 kg/hm2)蚕豆/玉米间作体系与其相应单作体系土壤无机氮的时空分布规律,旨在为河西走廊灌区蚕豆/玉米间作体系的氮素管理提供理论依据。用土钻法采集土壤剖面样品,CaCl2浸提,流动分析仪测定土壤无机氮的方法研究了施氮量和蚕豆/玉米种间相互作用对土壤无机氮时间和空间变化特点。结果表明:灌漠土无机氮以NO3--N为主。蚕豆和玉米无机氮含量在蚕豆收获前种植方式间均无显著性差异,蚕豆收获后至玉米收获,间作显著降低了两种作物各层无机氮含量;无机氮含量随着施氮量增加而显著增加。蚕豆收获后间作体系0—100 cm土层无机氮累积量略高于单作体系,且0—100 cm 土层无机氮累积量高于100—160 cm土层;玉米收获后,间作蚕豆和玉米土壤无机氮累积量在0—100 cm土层分别平均降低了51.7%和16.6%,在100—160 cm土层平均降低了42.1%和6.1%;与不施氮相比,施氮蚕豆和玉米无机氮累积量在0—100 cm土层分别平均增加了40.1%和81.5%,在100—160 cm土层分别增加了69.6%和40.6%;与单作体系相比,间作体系0—100 和100—160 cm土层土壤无机氮分别降低43.4%和34.1%。因此,施氮肥显著增加土壤无机氮的累积,而豆科/禾本科间作减少了土壤无机氮的残留。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号