首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This study was conducted to investigate the effect of pyrolysis temperature on chemical properties of poultry manure (PM) biochar over the range of 200–500°C. Chemical properties of biochar produced at 200°C were almost the same as PM, but significant changes were observed in higher-temperature-produced biochars. According to elemental and fourier transformation infrared analyses, the degree of carbonization in biochar was accelerated with increasing pyrolysis temperature. Biochar yield decreased, while its pH, cation exchange capacity, and P, K, Fe, Mn, Zn, and Cu contents increased with increasing pyrolysis temperature. The biochar produced at 400°C or 500°C was highly alkaline. Also, due to high electrical conductivity, these types of biochars may not be suitable for salt-sensitive crops. It was concluded that the pyrolysis temperature of more than 300°C reduces the quality of PM biochar for use in calcareous soils, although it may be suitable for acidic soils or environmental application.  相似文献   

2.
Biochars, derived from rambutan (Nepheliumlappaceum) peel through slow pyrolysis, were characterised and investigated as potential adsorbent for the removal of copper ion, Cu(II) from aqueous solution. Characteristics of five biochars of rambutan peel with different pyrolytic temperatures ranging from 300 to 700 °C (B300, B400, B500, B600, B700) were studied, and adsorption abilities of respective biochars were evaluated. Adsorption experiments were carried out by varying adsorbent dosage (0.2, 0.4, 0.8, 1.0, 2.0, and 4.0 g/L) and initial copper ion, Cu(II) concentrations (50 and 100 mg/L) to determine the optimum pyrolytic temperature of biochar with high adsorption affinity. The adsorption kinetics were best described by the pseudo-second order model for all the tested biochars, while the adsorption equilibrium best fitted by Langmuir isotherm. The overall results showed that biochar derived at 600 °C can be used as an effective adsorbent for removal of Cu(II) from aqueous solutions. Furthermore, feedforward artificial neural network (FFBP) modelling was performed to compare the simulated results with experimental output data of Thermogravimetric analysis (TGA) and atomic absorption spectroscopy (AAS) analysis which were trained using Levenberg-Marquardt (LM) backpropagation algorithm. The FFBP structure for pyrolysis process comprised of TGA temperature as input and biomass final weight as output. The adsorption modelling was simulated using adsorption time, temperature, biochar dosage and initial Cu(II) concentration as input data, while final Cu(II) concentration was used as output data to the network. Finally, modelling structure of 1-9-1 and 4-8-1 gave best performance with regression, R 2 value of 0.9999 and 0.9547 for TGA and AAS analysis, respectively.  相似文献   

3.
以玉米秸秆为原料,在300、450益和600益下裂解得到3种生物炭,通过批处理实验讨论了溶液初始pH值和裂解温度对玉米秸秆及其生物炭吸附Cr(遇)的影响,并用吸附动力学模型和等温吸附模型对实验结果进行拟合。结果表明:对于同种吸附材料而言,溶液初始pH值越低,玉米秸秆及其生物炭对Cr(遇)的吸附量越大;当溶液初始pH值为3或5时,对Cr(遇)的吸附性能大小顺序为:玉米秸秆>生物炭300益>生物炭450益>生物炭600益;当溶液初始pH=1时,对Cr(遇)的吸附性能大小顺序为:生物炭300益>玉米秸秆>生物炭450益>生物炭600益,且生物炭300益对Cr(遇)的最大吸附量约为141.24 mg·g-1。可见,溶液初始pH值越低,生物炭的裂解温度越低,越有利于生物炭对Cr(遇)的吸附。  相似文献   

4.
This experiment was conducted to investigate the effects of biochars, produced from maize straw at different temperatures (300, 400, and 500 °C), on growth of maize. Maximum cation exchange capacity (CEC) (106 cmolc kg?1) of biochar was observed at 400 °C. The pH, electrical conductivity (EC), and carbon content of biochars significantly increased with increasing temperature, and maximum pH (9.8), EC (3.0 dS m?1), and carbon content (607 g kg?1) were observed at 500 °C. Concentration of phosphorus (P), potassium (K), calcium (Ca), and magnesium (Mg) significantly increased with increasing temperature, while of nitrogen (N) decreased. Ammonium bicarbonate–diethylene triamine penta acetic acid (AB-DTPA)–extractable nutrients were decreased with increasing pyrolysis temperature. Shoot and root dry matter of maize increased significantly with application of biochar produced at 300 and 400 °C and decreased significantly at 500 °C. Maximum shoot and root dry matter of maize was obtained at biochar produced at 300 °C. Phosphorus and K concentration in shoots and roots increased with biochar, and it was significantly more with fertilizer application. In contrast to P, shoot and root K concentration increased significantly with increasing pyrolysis temperature. The results of this study indicated that application of biochar produced at low pyrolysis temperature may be a practical approach to improve crop growth.  相似文献   

5.
The effects of biochar properties on crop growth are little understood. Therefore, biochar was produced from eight feedstocks and pyrolyzed at four temperatures (300°C, 400°C, 500°C, 600°C) using slow pyrolysis. Corn was grown for 46 days in a greenhouse pot trial on a temperate and moderately fertile Alfisol amended with the biochar at application rates of 0.0%, 0.2%, 0.5%, 2.0%, and 7.0% (w/w) (equivalent to 0.0, 2.6, 6.5, 26, and 91 t biochar ha−1) and full recommended fertilization. Animal manure biochars increased biomass by up to 43% and corn stover biochar by up to 30%, while food waste biochar decreased biomass by up to 92% in relation to similarly fertilized controls (all P < 0.05). Increasing the pyrolysis temperature from 300°C to 600°C decreased the negative effect of food waste as well as paper sludge biochars. On average, plant growth was the highest with additions of biochar produced at a pyrolysis temperature of 500°C (P < 0.05), but feedstock type caused eight times more variation in growth than pyrolysis temperature. Biochar application rates above 2.0% (w/w) (equivalent to 26 t ha−1) did generally not improve corn growth and rather decreased growth when biochars produced from dairy manure, paper sludge, or food waste were applied. Crop N uptake was 15% greater than the fully fertilized control (P < 0.05, average at 300°C) at a biochar application rate of 0.2% but decreased with greater application to 16% below the N uptake of the control at an application rate of 7%. Volatile matter or ash content in biochar did not correlate with crop growth or N uptake (P > 0.05), and greater pH had only a weak positive relationship with growth at intermediate application rates. Greater nutrient contents (N, P, K, Mg) improved growth at low application rates of 0.2% and 0.5%, but Na reduced growth at high application rates of 2.0% and 7.0% in the studied fertile Alfisol.  相似文献   

6.
The effect of pyrolysis temperature on the nutritional quality of agricultural biochar is unclear, so better understanding of its properties and how it affects soil nutrient availability and plant growth is needed. Biochars obtained at different pyrolysis temperatures (250, 300, 350 and 400 °C) were characterized by thermogravimetric analyser and Fourier transform infrared spectroscopy. Biochars were applied at a rate of 10 g/kg to find out their effects on the mineral nutrition and growth of lettuce. The experimental results suggested that high biochar temperatures caused oxidation of the mineral elements, breaking of C–C and C–H bonds and removal of aliphatic and peptide groups from the pyrolysed materials. The total concentrations of phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), copper (Cu), manganese (Mn) and boron (B) were increased by increasing pyrolysis temperatures, although water‐soluble concentrations of those elements were greatly reduced (with the exception of K and B). Compared to the control, dry weights of lettuce and maize crops were significantly increased by the biochar treatments obtained at 300 and 350 °C. Biochar treatments significantly increased the P and K concentrations of both plants compared to the control, while concentrations of Ca and Mg in lettuce plants were decreased. Iron, Mn and B concentration of the lettuce plants were reduced and Zn concentration of maize increased by the biochar treatments. It was concluded that in terms of an agricultural product, biochars produced at low temperature are better.  相似文献   

7.
The term biochar refers to materials with diverse chemical, physical and physicochemical characteristics that have potential as a soil amendment. The purpose of this study was to investigate the P sorption/desorption properties of various slow biochars and one fast pyrolysis biochar and to determine how a fast pyrolysis biochar influences these properties in a degraded tropical soil. The fast pyrolysis biochar was a mixture of three separate biochars: sawdust, elephant grass and sugar cane leaves. Three other biochars were made by slow pyrolysis from three Amazonian tree species (Lacre, Ingá and Embaúba) at three temperatures of formation (400 °C, 500 °C, 600 °C). Inorganic P was added to develop sorption curves and then desorbed to develop desorption curves for all biochar situations. For the slow pyrolysis, the 600 ºC biochar had a reduced capacity to sorb P (4–10 times less) relative to those biochars formed at 400 °C and 500 °C. Conversely, biochar from Ingá desorbed the most P. The fast pyrolysis biochar, when mixed with degraded tropical mineral soil, decreased the soil's P sorption capacity by 55% presumably because of the high soluble, inorganic P prevalent in this biochar (909 mg P/kg of biochar). Phosphorus desorption from the fast pyrolysis biochar/soil mixture not only exhibited a common desorption curve but also buffered the soil solution at a value of ca. 0.2 mg/L. This study shows the diversity in P chemistry that can be expected when biochar is a soil amendment and suggests the potential to develop biochars with properties to meet specific objectives.  相似文献   

8.
Adsorption of DNA by biochars was investigated in the present study. Biochars were produced from air-dried willow wood chips at 300, 400, 500, and 600 °C under limited oxygen supply. The resulting products, referred to as BC300, BC400, BC500, and BC600, respectively, were characterized for their elemental composition, cation exchange capacity (CEC), specific surface areas (SSA), and microporosity. According to a Langmuir isotherm, maximum DNA adsorption capacity of biochars was ranked as BC500?>?BC600?>?BC400?>?BC300. Increasing solution pH (from 4.0 to 9.0) faintly decreased DNA adsorption onto biochars. The addition of Na+, Mg2+, and Ca2+ slightly increased the adsorption of DNA, and the effect decreased by increasing the pyrolysis temperature of biochars, indicating that electrostatic interaction was not the main driving force for DNA adsorption onto those biochars. Correlation analysis showed that SSA and micropore surface area were the main factors influencing DNA adsorption on biochars.  相似文献   

9.
镉污染水稻秸秆生物炭对土壤中镉稳定性的影响   总被引:1,自引:1,他引:0  
中国农田土壤镉等重金属污染问题突出,对其生产过程中产生的镉污染水稻秸秆进行无害化和资源化利用研究具有重要意义。该研究通过连续提取试验、风险评价指数法、吸附动力学/热力学、土柱试验,以及X射线衍射分析、傅里叶变换红外光谱分析等手段,探究了不同热解温度下制备的镉污染水稻秸秆生物炭对土壤中Cd的稳定特性。研究结果表明,镉污染水稻秸秆热解制备的生物炭可有效吸附土壤镉。热解温度显著影响生物炭对Cd的吸附能力(P<0.05),高温生物炭对Cd吸附容量大,700 ℃下制备的生物炭对Cd的吸附容量可达72.57 mg/g。生物炭对Cd的吸附主要通过含氧官能团表面络合和碳酸盐共沉淀吸附,其吸附过程符合Langmuir方程和准二级动力学模型,吸附过程受化学速率控制。土柱试验表明,镉污染水稻秸秆生物炭能有效降低土壤Cd的下渗迁移能力,其作用机制主要是将土壤Cd从酸可提取态转化为残渣态,施入高温生物炭的土壤中Cd的残渣态比例最高。上述结果表明,热解可有效处理镉污染水稻秸秆,制备的生物炭可用于Cd等重金属污染土壤的稳定修复,有效解决镉污染水稻秸秆的潜在二次污染问题并实现其安全利用。  相似文献   

10.

Purpose

Biochars have been considered as useful soil amendments due to their beneficial properties in improving soil fertility, carbon (C) sequestration, and soil decontamination. In our study, a series of biochars produced from different types of feedstocks at two pyrolysis temperatures (300 and 500 °C) were characterized to evaluate their different potentials as soil amendments.

Materials and methods

Ten types of feedstocks were used to prepare biochars at the pyrolysis temperatures of 300 and 500 °C, for 2 h. Chemical and physical analyses, X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier Transform Infrared (FTIR) analyses were conducted to determine differences in biochar properties. Then, soil incubation studies were used to investigate the relationships between these biochar properties and their different ameliorant values in soil.

Results and discussion

The pH, ash, total C, total potassium, total phosphorus, total base cation concentrations, surface areas, and total pore volumes of biochars produced at 500 °C were higher than at 300 °C, while the reverse applied for yields, total oxygen and total hydrogen, and average pore widths and particle sizes. Cluster analysis suggested that biochars derived from similar feedstock types belonged in the same category. The SEM, XRD, and FTIR analyses of typical biochars from the different categories suggested both variations and similarities in their characteristics. In addition, the results from soil incubation experiments were consistent with the conclusions made from biochar characteristics analysis.

Conclusions

Biochars derived from swine manures, fruit peels, and leaves with high pH and macro-nutrients appeared appropriate to increase soil pH and soil nutrient availability; whereas, biochars from wetland plant residues with high C concentrations and Brunauer–Emmett–Teller were better for soil C sequestration and contaminant adsorption.  相似文献   

11.
皇竹草生物炭的结构特征及其对()的吸附性能   总被引:1,自引:0,他引:1  
以皇竹草茎秆为原料,在限氧控温(300、500、700℃)条件下制备生物炭,研究该生物炭的结构特征及其对Cr(Ⅵ)的吸附行为。结果发现,随着热解温度的升高,皇竹草生物炭的产率下降,而灰分、pH呈上升趋势;电镜扫描(SEM)观察可见不同热解温度下所制备的生物炭结构相似,均具多孔和管状结构,但在700℃条件下所制备的生物炭相对300℃下制备的生物炭孔壁变薄,且孔壁有附着物,切面有突起结构。三种温度下制备的皇竹草生物炭对溶液中的Cr(Ⅵ)都具有较好的吸附作用,且500、700℃下制备的生物炭比300℃下制备的生物炭具有更好的吸附效果。在0~1 h之间,三种热解温度下制备的生物炭对铬的吸附量均随着时间的延长而快速增加,当吸附至1h时,基本达到饱和状态,随后吸附量无明显变化。  相似文献   

12.

Purpose

Remediation of metal contaminated soil with biochar is attracting extensive interest in recent years. Understanding the significance of variable biochar properties and soil types helps elucidating the meticulous roles of biochar in immobilizing/mobilizing metals/metalloids in contaminated soils.

Materials and methods

Six biochars were produced from widely available agricultural wastes (i.e., soybean stover, peanut shells and pine needles) at two pyrolysis temperatures of 300 and 700 °C, respectively. The Pb-, Cu-, and Sb-contaminated shooting range soils and Pb-, Zn-, and As-contaminated agricultural soils were amended with the produced biochars. The mobility of metals/metalloids was assessed by the standard batch leaching test, principal component analysis and speciation modeling.

Results and discussion

The changes in soil properties were correlated to feedstock types and pyrolysis temperatures of biochars based on the principal component analysis. Biochars produced at 300 °C were more efficient in decreasing Pb and Cu mobility (>93 %) in alkaline shooting range soil via surface complexation with carboxyl groups and Fe-/Al-minerals of biochars as well as metal-phosphates precipitation. By contrast, biochars produced at 700 °C outperformed their counterparts in decreasing Pb and Zn mobility (100 %) in acidic agricultural soil by metal-hydroxides precipitation due to biochar-induced pH increase. However, Sb and As mobility in both soils was unfavorably increased by biochar amendment, possibly due to the enhanced electrostatic repulsion and competition with phosphate.

Conclusions

It is noteworthy that the application of biochars is not equally effective in immobilizing metals or mobilizing metalloids in different soils. We should apply biochar to multi-metal contaminated soil with great caution and tailor biochar production for achieving desired outcome and avoiding adverse impact on soil ecosystem.
  相似文献   

13.
In this study, biochars from rice straw(Oryza sativa L.) were prepared at 200–600?C by oxygen-limited pyrolysis to investigate the changes in properties of rice straw biochars produced at different temperatures, and to examine the adsorption capacities of the biochars for a heavy metal, copper(Ⅱ)(Cu(Ⅱ)), and an organic insecticide of cyromazine, as well as to further reveal the adsorption mechanisms.The results obtained with batch experiments showed that the amount of Cu(Ⅱ) adsorbed varied with the pyrolysis temperatures of rice straw biochar. The biochar produced at 400?C had the largest adsorption capacity for Cu(Ⅱ)(0.37 mol kg-1) among the biochars,with the non-electrostatic adsorption as the main adsorption mechanism. The highest adsorption capacity for cyromazine(156.42 g kg-1) was found in the rice straw biochar produced at 600?C, and cyromazine adsorption was exclusively predominated by surface adsorption. An obvious competitive adsorption was found between 5 mmol L-1Cu(II) and 2 g L-1cyromazine when they were in the binary solute system. Biochar may be used to remediate heavy metal- and organic insecticide-contaminated water, while the pyrolysis temperature of feedstocks for producing biochar should be considered for the restoration of multi-contamination.  相似文献   

14.
ABSTRACT

Addition of more resistant organic materials, such as biochars, to soils not only enhances soil C sequestration but also can also benefit soil fertility. The aim of this study was to investigate the effect of two organic materials (sheep manure and vermicompost) and their biochars produced at two pyrolysis temperatures (300 and 500°C) applied at 5% (w/w) on the chemical fractions of Zn and Cu and some chemical characteristics of an unpolluted, light textured calcareous soil. Addition of the raw organic materials and their-derived biochars significantly enhanced plant available K, P, and Zn but significantly decreased plant available Cu in the soil. Sheep manure biochar produced at 300°C was most effective at increasing plant available P (13-fold) and K (1.9 fold) likely due to formation of more soluble forms of P and K compared to raw material or biochar produced at higher temperature (500°C). Whereas, raw vermicompost and sheep manure were most effective at enhancing plant available Zn, by increasing water soluble and exchangeable Zn fraction likely due to organic complexation. All amendments, especially biochars produced at 300°C reduced water soluble and exchangeable Cu mainly attributed to increased soil P availability. The results of this study showed that in the short-term, addition of the low-temperature biochars was best for enhancing soil P and K availability, but concomitantly reduced Cu availability the most, whereas, addition of the raw organic materials was better for enhancing Zn availability compared to the biochars.  相似文献   

15.
The low efficiency of phosphorus fertilization in weathered soils can limit plant development. The application of biochars in these areas has been seen as an important way to increase the efficiency of phosphorus fertilization and to promote better plant growth. However, biochars are alkaline materials that can increase soil pH and thus change the nutrient dynamics, which has been often ignored in studies of this nature. Here, all treatments had their pH standardized at 6.1 to eliminate the influence of pH on biochar application responses. The main goal of this study was to evaluate the real potential of coffee straw and eucalyptus bark biochars, produced under different pyrolysis temperatures, in the optimization of phosphorus fertilization and the development of Brachiaria brizantha. A greenhouse experiment was set up in a 2 × 2 × 5 factorial scheme, conducted for 120 days. The biochars, prepared from coffee straw and eucalyptus bark at 350 and 600°C, were applied at five rates in a Red-Yellow Oxisol. The application of biochars may reduce the demand for nutrients and correctives, optimize phosphorus fertilization and improve the development of Brachiaria brizantha, but this ability depends on the raw material and the pyrolysis temperature used in its production. All analysed biochars can contribute to higher tillering and dry matter production, but only coffee straw biochars and eucalyptus bark biochar produced at 350°C were efficient in the optimization of phosphorus fertilization until 120 days of cultivation of Brachiaria brizantha.  相似文献   

16.
The chars in the natural environment can affect the migration of polybrominated diphenyl ethers(PBDEs). However, there is insufficient research relating to the adsorption behavior and mechanisms of PBDEs on biochars. This study examined the adsorption kinetics of 2,2′,4,4′-tetrabromodiphenyl ether(BDE-47) on maize straw-derived biochars(MSBCs) pyrolyzed at four different temperatures via batch experiments. The biochar samples were characterized using Fourier transform infrared(FTIR) spectroscopy,Raman spectra, and elemental analysis. A two-compartment first-order model and pseudo-second-order model exhibited a better fit compared to a pseudo-first-order model in describing the BDE-47 adsorption on biochars, which was dominated by a slow adsorption compartment and chemisorption. The MSBC pyrolyzed at 600 °C had the highest BDE-47 adsorption capacity owing to its relatively large specific surface area and relatively high aromaticity compared with the other three MSBCs pyrolyzed at 300, 400, and 500 ℃.However, there was no significant difference in adsorption capacity among the other three biochars. The organic functional groups coupled with the graphene structures of biochars and the hydrophobic effect of the functional groups promoted the adsorption of BDE-47. Pore diffusion was not the sole rate-limiting step; film diffusion was also involved in the adsorption process of BDE-47 on biochars. The overall results demonstrate the transport and potential treatment of PBDEs using biochars.  相似文献   

17.
ABSTRACT

Recently, the use of biochars for stabilization of soil heavy metals has been expanded due to their adsorption characteristics, low cost and carbon storage potential. A factorial experiment was performed to investigate the effects of two plant residue biochars (licorice root pulp and rice husk biochar each applied at 2.5% (w/w)) produced at two temperatures (350 and 550 °C), and three Ni application rates (0, 150 and 300 mg Ni kg?1) on bioavailability and chemical fractions of Ni in a calcareous soil after spinach cultivation. Application of all the biochars significantly reduced Ni bioavailability factor (5–15%) and spinach Ni concentration (54–77%) in Ni-treated soil. The biochars produced at 550 °C were more effective at reducing Ni mobility and Ni uptake by spinach than those produced at 350 °C, attributed to higher CaCO3 and lower acidic functional group content, which resulted in greater enhancement of soil pH. When comparing the biochars produced at the same temperature, the rice husk biochars were the most effective in reducing Ni bioavailability, likely due to their lower acidic functional group content and higher nano-silica content which resulted in higher soil pH values and potentially promoted the formation of Ni-silicates and hydroxides.

Abbreviations : Ni: Nickel; RHB: rice husk biochar; LRB: licorice root pulp biochar; WsEx: water soluble and exchangeable; CARB: carbonate form; RES: residual; MnOx; manganese oxides bound; AFeOx; amorphous iron oxides bound; CFeOx: crystalline iron oxides bound; OM: organic bound.  相似文献   

18.

Purpose

Biochars are a by-product of the biofuel processing of lignocellulosic and manure feedstocks. Because biochars contain an assemblage of organic and inorganic compounds, they can be used as an amendment for C sequestration and soil quality improvement. However, not all biochars are viable soil amendments; this is because their physical and chemical properties vary due to feedstock elemental composition, biofuel processing, and particle size differences. Biochar could deliver a more effective service as a soil amendment if its chemistry was designed ex ante with characteristics that target specific soil quality issues. In this study, we demonstrate how biochars can be designed with relevant properties as successful soil amendments through feedstock selection, pyrolysis conditions, and particle size choices.

Materials and methods

Biochars were produced by pyrolysis of parent lignocellulosic feedstock sources—peanut hull (PH; Archis hypogaea), pecan shell (PS; Carya illinoensis), switchgrass (SG; Panicum virgatum), pine chips (PC; Pinus taeda), hardwood wastes (wood), and poultry litter manure (PL; Gallus domesticus), as well as blends of these feedstocks at temperatures ranging from 250 to 700 °C. Additionally, blended feedstocks were made into pellets (>2 mm) prior to pyrolysis at 350 °C. Dust-sized (<0.42 mm) biochar was obtained through grinding of pelletized biochars. After chemical characterization, the biochars were evaluated as fertility amendments in a Norfolk soil (fine-loamy, kaolinitic, thermic, Typic Kandiudult) during two different pot incubation experiments.

Results and discussion

PL biochars were alkaline and enriched in N and P, whereas biochar from lignocellulosic feedstocks exhibited mixed pH and nutrient contents. Blending PL with PC resulted in lower biochar pH values and nutrient contents. In pot experiment 1, most biochars significantly (P?<?0.05) raised soil pH, soil organic carbon, cation exchange capacity, and Mehlich 1 extractable P and K. PL biochar added at 20 g?kg?1 resulted in excessive soil P concentrations (393 to 714 mg?kg?1) and leachate enriched with dissolved phosphorus (DP, 22 to 70 mg?L?1). In pot experiment 2, blended and pelletized PL with PC feedstock reduced soil pH and extractable soil P and K concentrations compared to pot experiment 1. Water leachate DP concentrations were significantly (P?<?0.05) reduced by pelletized biochar blends.

Conclusions

Short-term laboratory pot experiments revealed that biochars can have different impacts at modifying soil quality characteristics. Keying on these results allowed for creating designer biochars to address specific soil quality limitations. In the process of manufacturing designer biochars, first, it is important to know what soil quality characteristics are in need of change. Second, choices between feedstocks, blends of these feedstocks, and their accompanying particle sizes can be made prior to pyrolysis to create biochars tailored for addressing specific soil quality improvements. Utilization of these principles should allow for effective service of the designed biochar as a soil amendment while minimizing unwanted ex facto soil quality changes and environmental effects.  相似文献   

19.
We examined the possibility of an environment‐friendly slow‐release fertilizer (SRF) made of biochar impregnated by anaerobically digested slurry. The biochar materials were produced from three types of feedstocks (orange peel, residual wood, water‐treatment sludge) at different temperatures of 300°C, 500°C, and 700°C via pyrolysis. The release behaviors of the water‐soluble K+, Ca2+, and Mg2+ were similar for all impregnated biochars and the commercial SRF used. The water‐retention capacity was greatly improved by mixing the biochar‐SRF with the soil. The yield of lettuce was lower for the biochar‐SRF applications of 3.7 to 34.2 t ha–1 than for the commercial SRF application of 51.4 t ha–1. This might be due to excessive increase of soil pH for the biochar‐SRF application. Based on these results, the authors concluded that the biochar impregnated with nutrients could become an effective slow‐release K+ fertilizer.  相似文献   

20.

Purpose

Diethyl phthalate (DEP) is one of the most commonly used plasticizers as well as a soil contaminant. Using biochar to remediate soils contaminated with DEP can potentially reduce the bioavailability of DEP and improve soil properties. Therefore, a laboratory study was conducted to evaluate the effect of biochar on soil adsorption and desorption of DEP.

Materials and methods

Two surface soils (0–20 cm) with contrasting organic carbon (OC) contents were collected from a vegetable garden. Biochars were derived from bamboo (BB) and rice straw (SB) that were pyrolyzed at 350 and 650 °C. Biochars were added to two types of soil at rates of 0.1 and 0.5 % (w/w). A batch equilibration method was used to measure DEP adsorption-desorption in biochar treated and untreated soils at 25 °C. The adsorption and desorption isotherms of DEP in the soils with or without biochar were evaluated using the Freundlich model.

Results and discussion

The biochar treatments significantly enhanced the soil adsorption of DEP. Compared to the untreated low organic matter soil, the soils treated with 0.5 % 650BB increased the adsorption by more than 19,000 times. For the straw biochar treated soils, the increase of DEP adsorption followed the order 350SB?>?650SB. However, for the bamboo biochars, the order was 650BB?>?350BB. Bamboo biochars were more effective than the straw biochars in improving soils’ adsorption capacity and reducing the desorption ability of DEP.

Conclusions

Adding biochar to soil can significantly enhance soil’s adsorption capacity on DEP. The 650BB amended soil showed the highest adsorption capacity for DEP. The native soil OC contents had significant effects on the soils’ sorption capacity treated with 650BB, whereas they had negligible effects on the other biochar treatments. The sorption capacity was affected by many factors such as the feedstock materials and pyrolysis temperature of biochars, the pH value of biochar, and the soil organic carbon levels.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号