首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
采用田间定位试验研究方法,于2008~2010连续3年研究了水旱轮作制下连续秸秆覆盖对土壤理化性质和作物产量的影响。结果表明,连续秸秆覆盖显著降低了土壤表层(05cm)容重,提高了05cm和515cm土层土壤含水量。同时连续秸秆覆盖还田还可以显著提高025cm土层土壤有机质、碱解氮、速效磷和速效钾含量。秸秆覆盖对表层(05cm)土壤养分状况的效应更明显。秸秆连续覆盖5季后,05cm土层土壤速效钾含量的增幅(7.64%~15.33%)速效磷(7.52%~10.03%)碱解氮(7.30%~8.74%)有机质(6.08%~7.53%)。秸秆覆盖还田后,可以提高作物产量。其中旱季作物(小麦、油菜)的增产效应要高于水季作物(水稻),并且随着秸秆还田年限和用量的增加,作物的增产幅度也随之提高。起主要作用的产量构成因素是小麦、水稻的有效穗数以及油菜单株角果数和每角粒数。  相似文献   

2.
  【目的】   丛枝菌根真菌(arbuscular mycorrhizal fungi,AMF) 有利于作物对养分的吸收。在镉、铅污染的土壤中,作物常将镉、铅积累在秸秆中,随着秸秆的还田而释放回土壤。探究前茬蚕豆秸秆还田和丛枝菌根真菌 单施或联合施用对土壤肥力、后茬玉米的矿质养分与镉、铅吸收的影响,为AMF 在调控污染农田轮作体系矿质养分与镉铅累积的生态功能提供新认识。   【方法】   采用四室隔板分室系统进行蚕豆秸秆降解试验,供试土壤和蚕豆秸秆均来源于云南省会泽铅锌矿区污染区,土壤全镉和铅含量分别为4.5和269.0 mg/kg,蚕豆秸秆镉和铅含量分别为1.9和10.9 mg/kg。将蚕豆秸秆粉碎至粒径0.5~2.0 mm装入尼龙袋中,埋于土壤内进行腐解培养试验。玉米盆栽试验设4个处理:污染土壤对照 (CK)、接种AMF菌根 (AMF)、添加蚕豆秸秆 (SI)、接种AMF菌根同时添加蚕豆秸秆 (SI+AMF)。分析AMF对蚕豆秸秆降解、矿质养分 (N、P、K) 与镉铅释放、土壤速效养分含量、玉米生长、矿质营养和镉铅吸收的影响。   【结果】   接种AMF显著提高蚕豆秸秆的降解量、矿质养分和镉铅释放量,促进蚕豆秸秆降解。与AMF处理相比,AMF+SI处理玉米根系的AMF侵染率提高了12%。SI处理显著增加土壤速效养分含量和玉米植株钾含量,降低玉米根部的镉含量,但对玉米株高和生物量没有显著影响。接种AMF、SI+AMF处理显著提高土壤速效氮、磷、钾含量,增加玉米氮、磷、钾含量与吸收量,显著提高玉米株高和生物量,同时显著降低土壤有效态镉、铅含量和玉米植株镉、铅含量。双因素分析表明,接种AMF和添加秸秆对土壤速效氮、磷、钾含量影响显著,但接种AMF对植株矿质元素吸收量、土壤有效态镉、铅含量和植株镉、铅含量作用显著,接种AMF与添加秸秆对各测定指标没有显著的交互作用。   【结论】   AMF能促进前茬秸秆降解、养分和镉铅的释放。接种AMF在提高土壤氮、磷、钾养分含量,降低有效态镉、铅含量,提高玉米对氮、磷、钾的吸收,降低镉和铅在玉米植株内的积累量等方面,均显示出良好的应用前景。虽然接种AMF与秸秆还田没有表现出显著的交互作用,但秸秆还田可增加AMF在玉米根部的侵染率,因此,在使用AMF菌剂时应考虑秸秆还田。  相似文献   

3.
优化水稻-油菜轮作模式下秸秆还田方式,为秸秆还田机械化提供技术参数,为作物高产和土壤培肥的协同发展提供理论支撑。2017—2019年在长江中游稻-油轮作区开展秸秆还田田间试验,共设置4个处理,分别为:不留茬+细粉碎、留中茬+细粉碎、留中茬+粗粉碎、留高茬+细粉碎,对比分析不同留茬高度和秸秆粉碎程度对作物生长与产量,以及作物生长过程中土壤养分含量的影响。结果表明:水稻和油菜均表现为留茬越高越有利于提高基本苗,且秸秆粗粉碎基本苗高于细粉碎,但不同留茬高度和秸秆粉碎程度对作物苗期SPAD值未表现出明显影响。第一季作物产量均是以留中茬高于不留茬和留高茬(水稻和油菜产量增幅分别为7.1%~21.1%和2.4%~4.6%)、细粉碎高于粗粉碎(增幅分别为11.7%和12.9%),但第二季作物产量处理间差异均未达到显著水平。作物生育期内土壤养分含量整体变化为先降低、到收获期有略微升高的趋势;在作物生育前期,水稻季不留茬+细粉碎、油菜季留中茬+粗粉碎可提高土壤铵态氮和硝态氮含量;在作物收获期,水稻和油菜季均是以留中茬+粗粉碎处理土壤有效磷和速效钾含量较高。因此,在作物产量反映和土壤养分变化的基础上,综合考虑秸秆还田作业成本与能耗,本研究推荐长江中游稻-油轮作周年秸秆还田方式为水稻留中茬、油菜留中茬或高茬,秸秆粉碎程度均为细粉碎。  相似文献   

4.
紫色土丘陵区秸秆还田的腐解特征及对土壤肥力的影响   总被引:38,自引:1,他引:38  
在分析水稻、小麦、油菜秸秆的养分含量和化学组成的基础上,通过田间两年四作的定位试验,探讨了紫色丘陵区秸秆还田的腐解变化及对土壤肥力的影响。结果表明,秸秆含有丰富的养分,经腐解后给土壤提供了大量的碳、氮、磷、钾。在腐解过程中,还田后的前3个月分解快,后期分解缓慢;3种秸秆在田间的分解速率(K):麦秸〉稻草〉油菜秸,秸秆翻埋〉秸秆面施;养分释放速度钾〉磷〉氮。测定了不同处理的土壤水分特征曲线.并将实验结果拟合为经验关系式。秸秆覆盖还田促进土壤团粒结构形成,提高了土壤水稳性团聚体含量,从而改善了土壤通透性和保水保肥性。秸秆覆盖还田还降低了土壤容重,增加了土壤总孔隙度,使土壤有机质、速效氮、磷、钾得到一定提高,从而达到培肥地力的目的。  相似文献   

5.
稻麦两熟制不同耕作方式与秸秆还田土壤肥力的综合评价   总被引:18,自引:6,他引:12  
该文通过大田小区和网室水泥池微区3年的定位试验,比较研究了稻麦两熟条件下免耕套播秸秆覆盖NTS、免耕套播高茬NT、翻耕秸秆还田CTS、翻耕秸秆不还田CK共4个处理对土壤肥力的影响,并运用数值化方法综合评价土壤肥力.结果表明:免耕和秸秆还田可提高土壤有机质、速效磷、速效钾等土壤养分含量,且主要是0~7cm增加造成的.土壤肥力数值化综合评价表明,土壤肥力免耕秸秆覆盖好于免耕高茬,翻耕秸秆还田好于翻耕不还田,不同处理养分肥力指标以免耕秸秆覆盖处理最高,翻耕不还田最低;但综合肥力指标却以翻耕秸秆还田最高,免耕高茬最低,主要受土壤容重影响.从不同层次看,综合肥力指标和养分肥力指标均以上层O~7cm较高,下层14~21cm较低,尤其免耕秸秆覆盖和免耕高茬处理.  相似文献   

6.
秸秆还田对西藏中部退化农田土壤的影响   总被引:6,自引:0,他引:6  
李萍  熊伟  冯平  薛会英  蔡晓布 《土壤》2004,36(6):685-687
就不同秸秆还田方式对西藏中部退化农田土壤的影响进行了研究,结果表明:秸秆还田对增加土壤有机质、全N、速效P、全K和速效K具有重要作用。秸秆还田后,能提高土壤综合肥力水平,且有翻埋>高茬>覆盖的趋势。根据当地的生态条件,要控制西藏中部农田土壤的退化趋势,促进已退化土壤生产力的恢复和持续提高,建议该地区采用高茬方式进行秸秆还田。  相似文献   

7.
还田作物秸秆腐解及其养分释放特征概述   总被引:23,自引:0,他引:23  
秸秆还田作为作物秸秆最有效的利用方式之一,可显著提高作物产量,促进资源循环利用和农业可持续发展。还田秸秆的快速腐解对改善土壤耕层质量,促进物质循环和培肥地力都有重要意义。本文概述了还田作物秸秆腐解及其养分释放特征;同时探讨了秸秆初始碳氮比、秸秆还田方式、土壤氮素供给、外施腐熟剂以及秸秆还田后的土壤环境等因素对秸秆腐解过程和秸秆养分释放特征的影响;最后对新的生产条件下如何更好地实现还田秸秆资源的高效利用提出展望,旨在为作物生产制定科学系统的秸秆还田方案、加速秸秆腐解及养分释放再利用提供理论依据。  相似文献   

8.
通过大田试验研究了不同小麦秸秆还田量(0、1500、3000、4500、6000kg.hm-2)对水稻生长、土壤微生物量及酶活性的影响。结果表明:秸秆还田后,水稻分蘖数、株高、SPAD及干物质积累量均高于秸秆不还田(对照),但是未全部达到显著性差异;50%秸秆还田处理增产效果最显著(P〈0.05),与对照相比,理论增产10.2%,实际增产9.0%;秸秆还田处理显著增加了土壤全氮和速效氮含量,对土壤有机质、有效磷和速效钾含量影响不显著;50%秸秆还田处理对微生物量碳、氮的提高作用最明显(P〈0.05),分别较对照提高46.0%和90.0%;25%和50%秸秆还田显著提高了土壤脲酶活性(P〈0.05);25%、50%和75%秸秆还田土壤过氧化氢酶活性较对照提高9.3%、12.1%和8.5%(P〈0.05);与对照相比,50%秸秆还田土壤蔗糖酶活性提高20.3%(P〈0.05)。鉴于秸秆还田对作物产量和土壤肥力的长期效应以及对土壤微生物生理代谢影响的复杂性,合理秸秆还田量的选择还需进行长期定位试验研究。  相似文献   

9.
不同秸秆还田方式对红壤性质及花生生长的影响   总被引:6,自引:2,他引:6  
唐晓雪  刘明  江春玉  吴萌  李忠佩 《土壤》2015,47(2):324-328
通过田间小区试验研究化肥配合不同秸秆还田方式对红壤养分、生物学特性和作物生长的影响。结果表明,与其他(NPK、NPKD1、NPKD2)处理相比,氮磷钾化肥配合秸秆直接还田(NPKJG)处理土壤碱解氮降低了7.88%~31.37%,速效磷降低了7.72%~23.81%。各处理土壤脲酶活性在花生的生长期间先降低后升高,而转化酶活性先升高后降低(除NPK处理的转化酶活性持续降低外)。氮磷钾化肥配合Fe SO4促腐秸秆堆肥还田处理(NPKD2)提高了土壤脲酶活性26.14%,而配合碱渣促腐秸秆堆肥处理(NPKD1)提高了土壤转化酶活性66.13%。氮磷钾化肥配合Fe SO4促腐秸秆堆肥处理土壤微生物生物量碳含量较高,且提高了花生各农艺性状指标和产量。  相似文献   

10.
《土壤通报》2015,(1):198-202
以渭南市临渭区对农田和果园两种土地利用方式下土壤养分分层现象进行研究,其中农田进行了连续13年的机械化秸秆全量还田。通过采样分析,研究不同土地利用方式和秸秆还田对土壤有机碳、活性有机碳、全氮、速效磷、速效钾含量和分层的影响,以期为不同土地利用方式和秸秆还田对土壤养分含量和分层提供科学参考。结果表明,两种土地利用方式下土壤有机碳、活性有机碳、全氮、速效磷和速效钾含量随土壤剖面递增逐渐减小;两种土地利用方式对土壤各养分分层趋势的影响不同,各养分(除速效磷)三个层次间的分层比均是农田大于果园;采用秸秆还田后的农田土壤表层(0~5 cm)养分含量显著高于果园,并且养分在农田的三个层次间的差异比果园大,表明秸秆全量还田能加速土壤养分分层趋势。  相似文献   

11.
实验研究了自然条件下原位提取的田菁(Sesbania cannabina)淋溶液和田菁秸秆模拟还田对不同类型受体植物三叶鬼针草(Bidens pilosa)、稗草(Echinochloa crusgalli)和萝卜(Raphanus sativus)的生长及土壤性质的影响,旨在从化感作用角度综合评价田菁作为绿肥栽培时的生态效应。结果表明:原位提取的田菁淋溶液和模拟还田的田菁秸秆(根、茎、叶)对发育初期的受体植物三叶鬼针草、稗草和萝卜的生长具有一定的抑制作用,尤其对于稗草的抑制效果表现最强;然而对于受体植物生长的土壤,其土壤微生物数量和土壤酶活性显著增加,此外田间野外调查进一步证实了田菁对提高土壤肥力具有显著的促进效果。因此,合理利用田菁秸秆资源不仅能抑制杂草生长,还增加了土壤酶活性和土壤微生物量,促进了土壤的代谢,显著提高了土壤肥力水平。  相似文献   

12.
在崇明东滩湿地公园设置了3块实验田,研究基于芦苇直接还田(处理Ⅰ)和堆肥后还田(处理Ⅱ)的处理措施对盐碱土壤的改良效应以及对土壤微生物呼吸和植物生长的影响,并通过主成分分析法评价仅考虑传统土壤肥力指标及加和了土壤微生物呼吸和植物生物量等碳收支指标的土壤综合改良效应。结果表明,两种模式都能显著提高土壤的养分。总氮、总磷和总钾均显著高于对照(P〈0.05),有机质较对照分别提高10.8%(P=0.053)和10.9%(P=0.052);地上生物量为对照的344%(P=0.000)和167%(P=0.000),但土壤微生物呼吸仅分别较对照提高14%(P=0.085)和43%(P=0.001)。主成分分析结果显示仅考虑传统的土壤肥力指标,对照、处理Ⅰ、处理Ⅱ的综合得分分别为-0.641、0.260、0.381,加和土壤微生物呼吸与植物生物量后综合主成分得分为-1.011、0.644、0.367。这表明按传统评价指标,处理Ⅱ是较好的改良模式,但加和了土壤微生物呼吸与植物固碳量等碳收支指标后,处理Ⅰ得分高于处理Ⅱ,因此这是一种相对低碳化的改良模式。  相似文献   

13.
The sustainability of rice–wheat cropping system (RWCS) is threatened by increasing labor, water, and energy crises in the region. Conservation RWCSs offers an ecofriendly alternate option. This study was aimed to evaluate the impact of sesbania brown manuring in direct‐seeded aerobic rice (DSAR) and of rice residue mulch in no‐tilled wheat (NTW) on soil health, weed dynamics and system productivity. The experiment was composed of five RWCS systems: (i) DSAR‐NTW; (ii) DSAR + sesbania brown manuring‐NTW; (iii) DSAR‐NTW + rice residue mulch; (iv) puddled transplanted flooded rice (PudTR)‐NTW; and (v) PudTR‐plow‐tilled wheat. Sesbania brown manuring in direct‐seeded rice decreased the weed density and dry biomass 41–56% and 62–75%, respectively, than the sole direct‐seeded rice crop. At rice harvest, better soil health, in terms of total nitrogen (N), soil organic carbon, soil microbial biomass carbon, and soil microbial biomass nitrogen, was noted with DSAR + sesbania brown manuring‐NTW. Rice residue mulch retention in NTW decreased weed density and dry weight by 60 and 69%, respectively, than those under NTW with no mulch. At wheat harvest, highest total N, soil organic carbon, and soil microbial biomass carbon were recorded with DSAR‐NTW + rice residue mulch, followed by DSAR + sesbania brown manuring‐NTW. Overall, NTW grown after DSAR + sesbania brown manuring produced more grain yield than PudTR‐NTW and PudTR‐plow‐tilled wheat systems. In conclusion, sesbania brown manuring in DSAR and residue mulch retention in NTW may be opted to improve soil properties, suppress weeds, and to harvest better grain yield and achieve higher system productivity in conservation RWCSs. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

14.
ABSTRACT

Leguminous crops, particularly winter annuals, have been utilized in conservation systems to partially meet nitrogen (N) requirements of succeeding summer cash crops. Previous research also highlights the benefits of utilizing summer annual legumes in rotation with non-leguminous crops. This study assessed the N contribution of peanut (Arachis hypogaea L.) residues to a subsequent cotton (Gossypium hirsitum L.) crop in a conservation system on a Dothan sandy loam (fine-loamy, kaolinitic, thermic Plinthic Kandiudults) at Headland, AL during the 2003–2005 growing seasons. Treatments were arranged in a split plot design, with main plots of peanut residue retained or removed from the soil surface, and subplots as N application rates (0, 34, 67, and 101 kg ha? 1) applied in fall and spring. Peanut residue did not influence seed cotton yields, leaf N concentrations, or plant N uptake for either growth stage or year of the experiment. There was a trend for peanut residue to increase whole plant biomass measured at the first square in two of three years. Seed cotton yields and plant parameters measured at the first square and mid-bloom responded favorably to spring N applications, but the recommended 101 kg N ha? 1 did not maximize yields. The results from this study indicate that peanut residue does not contribute significant amounts of N to a succeeding cotton crop, however, retaining residue on the soil surface provides other benefits to soils in the southeastern U.S.  相似文献   

15.
Soil microbes are an essential component of most terrestrial ecosystems; as decomposers they are responsible for regulating nutrient dynamics, and they also serve as a highly labile nutrient pool. Here, we evaluated seasonal variations in microbial biomass carbon (MBC) and nitrogen (MBN) as well as microbial activity (as qCO2) for 16 months with respect to several factors relating to soil moisture and nutrients under different land management practices (plant residue application, fertilizer application) in both clayey (38% clay) and sandy (4% clay) croplands in Tanzania. We observed that MBC and MBN tended to decrease during the rainy season whereas they tended to increase and remain at high levels during the dry season in all treatment plots at both of our test sites, although soil moisture did not correlate with MBC or MBN. qCO2 correlated with soil moisture in all treatment plots at both sites, and hence soil microbes act as decomposers mainly during the rainy season. Although the effect of seasonal variation of soil moisture on the dynamics of MBC, MBN, and qCO2 was certainly greater than that attributable to plant residue application, fertilizer application, or soil texture, plant residue application early in the rainy season clearly increased MBC and MBN in both clayey and sandy soils. This suggests that plant residue application can help to not only counter the N loss caused by leaching but also synchronize crop N uptake and N release from soil microbes by utilizing these microbes as an ephemeral nutrient pool during the early crop growth period. We also found substantially large seasonal variations in MBC and MBN, continuously high qCO2, and rapid turnover of soil microbes in sandy soil compared to clayey soil. Taken together, our results indicate that soil microbes, acting as both a nutrient pool and decomposers, have a more substantial impact on tropical sandy soil than on clayey soil.  相似文献   

16.
Organic matter incorporation into soil can increase nutrient availability to plants but it can affect soil microbial communities. These in turn influence soil fertility and plant growth. Soil biochemical and microbiological properties are indicators of soil quality, but there is still no consensus as to how these should be used. Recent developments in molecular biology have provided new tools to obtain a view of the whole microbial community. The long-term impact of crop residue management on the microbial biomass, and on the activity and community structure of soil bacteria was evaluated in a clay soil of Southern Italy, where a monoculture of durum wheat (Triticum durum Desf.) was grown in semiarid conditions, and burning or incorporation of post harvest plant residues were typical practices. The role of N-mineral fertilization, simultaneously with the ploughing in of crop residues and during the plant growth cycle was also investigated. Total bacterial counts of viable cells, biomass C, ATP content of soil microorganisms, genetic fingerprinting of the total eubacterial community and of ammonia oxidizers were evaluated. Burning and incorporation did not affect microbial biomass C, ATP content, and total bacterial counts of viable cells although statistically relevant changes were detected among rhizosphere and bulk soil samples regardless of the crop residue management used. Molecular fingerprinting confirmed that: no significant change in the composition and diversity of total bacteria, as well as of ammonia oxidizers was induced by the crop residue managements; that soil bacteria were more sensitive to N fertilizer application during the plant growth cycle; and that rhizosphere soil samples were significantly different from those of the bulk soil. As microbiological and genetic factors related to soil fertility were not affected significantly, the long-term incorporation of crop residues, under the field conditions investigated, is a sustainable practice to manage post-harvest residues.  相似文献   

17.
Soil samples were collected from a loamy sand and a clayey soil near Cinzana, Mali, for the purpose of documenting the seasonal dynamics of soil inorganic N after 9 years under five crop-management systems. The cropping systems were: continuous grain sorghum (Sorghum bicolor) or millet (Pennisetum glaucum) without residue return, continuous grain with stalk residue returned to the field every second year, grain in rotation with cowpea (Vigna unguiculata), and grain in rotation with the green manure crops, sesbania (Sesbania rostrata) and dolichos (Dolichos lablab). A sharp increase in soil N was observed early in the rainy season in both soils. Extractable N concentration in loamy sand and clayey soils, respectively, peaked between 15–22 kg and 33–51 kg N ha–1 in the upper 10 cm of soil. In the clayey soil, the higher soil N concentrations associated with the early season flush lasted 8 weeks after the onset of rain. Nitrogen addition through rotational crops and crop residue was low. Significant improvement of cereal grain yield may not be possible solely by rotation with sesbania and dolichos green manure or cowpea without additional nutrient input. Earlier cereal planting, where feasible, is recommended to improve synchrony of soil N mineralization and crop demand.  相似文献   

18.
Improved fallows with leguminous trees have been developed in Southern Africa as a viable alternative to inorganic fertilizers but the changes in soil properties that are responsible for crop productivity improvement and implications of mixing litter and fresh leaves from the same tree species on soil fertility are not fully understood. Our objectives were to quantify (1) some changes in soil properties that are responsible for crop production improvement under improved fallow systems; (2) the N mineralization patterns of mixtures of litter and fresh leaves from the same tree species. The treatments used in the study were 2-year planted Sesbania sesban (sesbania) and Cajanus cajan (cajanus) and controls of natural fallow, continuous fertilized and unfertilized maize. At fallow clearing sesbania contributed 56 kg N ha–1 through litter and fresh leaves. Sesbania (fresh leaves + litter) showed high N mineralization after 10 weeks compared to the mixture of cajanus fresh leaves with litter. Maize yields were significantly correlated with preseason NO3-N and total inorganic-N content of the top 20-cm soil layer. Soil penetrometer resistance at 4 weeks after planting was lowest in the sesbania land-use system (2.2 Mpa), whereas the highest percentage of water-stable aggregates at fallow clearing and crop harvest was in sesbania (83%) and cajanus (77%), respectively. The improved soil conditions and N contribution of sesbania and cajanus fallows to the subsequent maize crop was evidenced by increased maize yields of between 170–200% over maize without fertilizer.  相似文献   

19.
Suppressing soil-borne diseases with residue management and organic amendments   总被引:15,自引:0,他引:15  
Changes in agricultural practices with time have led to a decline in soil structure and with it, an increase in soil-borne plant diseases. Agricultural practices such as incorporating organic amendments and managing the type and quantity of crop residue, have a direct impact on plant health and crop productivity. Soil management practices involving tillage, rotation, and burning will impact the amount and quality of organic matter that is returned to the soil. These practices influence pathogen viability and distribution, nutrient availability, and the release of biologically active substances from both crop residues and soil microorganisms as illustrated by the model system of Cochliobolus sativus on the development of common root rot in cereals. The application of organic amendments, manures and composts that are rich in nitrogen, may reduce soil-borne diseases by releasing allelochemicals generated during product storage or by subsequent microbial decomposition. The modes of action for disease suppression are elucidated for a number of diseases including verticillium wilt and common scab of potato. Developing disease suppressive soils by introducing organic amendments and crop residue management takes time, but the benefits accumulate across successive years improving soil health and structure.  相似文献   

20.
Field observations have shown that a substantial portion of peanut leaves abscise in windrows during pod curing, leading to an uneven distribution of leaves and stems when intact residues are spread during harvest. Possible differences in nitrogen (N) mineralization rates between peanut leaf and stem residues may lead to spatial and temporal variability in available N during subsequent crops. The objective of this study was to quantify N mineralization in soil amended with different peanut residue components under simulated conventional and conservation tillage practices. A 252-day microlysimeter incubation was conducted in which peanut leaves, stems and a 1:1 mixture of leaves:stems from three varieties were incorporated or placed on the soil surface to simulate conventional or conservation tillage, respectively. Soils were periodically leached to assess N mineralization compared with a soil-only control. Nitrogen mineralization was only affected by residue component. Averaged over variety and residue placement, soil amended with leaves mineralized 10% more N relative to the control or soil containing stems. It was estimated that leaves supplied 25 kg N ha−1 over 252 days at 0–15 cm soil depth, which would likely be insufficient to induce a yield response by a subsequent crop. This study suggests that uneven distribution of peanut leaf and stem residues following harvest causes only minor spatial and temporal variability in available N during subsequent crop growth. These results support the growing body of evidence indicating that peanut residue N contributions to subsequent crops are negligible in the peanut basin of the south-eastern USA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号