首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 312 毫秒
1.
利用光谱反射特征预测柑橘叶片冻害   总被引:3,自引:3,他引:0  
相对电导率是反映植物膜系统状况的一个重要的生理生化指标,与树体营养状况密切相关,越冬前的树体营养状态对果树抵御极端低温和顺利越冬是一个重要的影响因素,而果树受冻时细胞液渗出量和降解量也是冻害发生程度的指标。该研究对不同冻害处理下的柑橘叶片进行光谱扫描,采用了逐步回归法分析了叶片光谱反射率和叶片电导率之间的关系,构建了2种光谱反射预测柑橘叶片电导率模型,其决定系数分别为0.8201、0.8013。结果表明,柑橘叶片电导率与反射光谱之间有较强的相关性,且2种模型所得预测值与实测值的相对误差都小于10%,说明模型具有良好的预测结果。该模型可以为采用空间遥感监测果园生长状况和冻害情况提供参考。  相似文献   

2.
基于特征光谱参数的苹果叶片叶绿素含量估算   总被引:5,自引:4,他引:1  
果树叶绿素含量的快速、无损、准确监测,可以及时掌握果树的营养水平,对指导果树管理具有重要意义。该文利用2012年和2013年山东省肥城市潮泉镇下寨村的苹果叶片叶绿素含量和叶片光谱数据,分析了叶绿素含量和苹果叶片原始光谱及其变换形式之间的相关性,筛选出较优光谱参数,并利用随机森林法、偏最小二乘法、BP神经网络和支持向量机回归法进行估算和验证。结果表明:1)叶绿素含量与叶片原始光谱及其变换形式之间的最优光谱参数分别为554和708 nm的原始光谱反射率,554和708 nm倒数之对数光谱,535、569、700和749 nm一阶微分光谱以及557和708 nm连续统去除光谱;2)随机森林、偏最小二乘法、BP神经网络和支持向量机估算模型的R2分别为0.94,0.61,0.66和0.60,RMSE分别为0.34,0.78,0.75和0.81 mg/dm2。说明随机森林算法模型用于估算苹果叶片叶绿素含量效果较好,为及时了解果树养分状况及果树营养诊断提供技术支持。  相似文献   

3.
用高光谱成像技术检测柑橘红蜘蛛为害叶片的色素含量   总被引:3,自引:2,他引:1  
为解决传统理化法检测柑橘树叶片受红蜘蛛为害后色素含量变化时存在的工作量大、效率低等问题,该文研究应用高光谱成像技术检测柑橘红蜘蛛为害叶片色素含量的方法。研究中对比了正常叶片与受害叶片的原始光谱以及原始光谱一阶微分曲线的差异,寻找反映叶片色素含量变化的特征波段;分析了特征波段反射率比值与叶片色素间相关性;采用单变量线性回归法分析了常用植被指数预测叶片色素含量的效果;采用逐步回归分析法建立了叶片色素含量预测模型,并对模型预测效果进行了F检验。结果表明:常用植被指数预测叶片色素含量结果不理想;选取的667/522、667/647和522/647 nm等3个特征波段反射率比值与叶片3种色素含量间具有较高的相关性;用于建立叶片色素含量预测模型的最佳特征波段反射率比值为667/522和667/647 nm,所建立的模型可较好地预测健康及受害叶片的叶绿素a、叶绿素b和类胡萝卜素含量。  相似文献   

4.
基于光谱特征分析的苹果树叶片营养素预测模型构建   总被引:5,自引:3,他引:2  
该文旨在利用光谱分析技术建立高精度苹果叶片营养素预测模型,为苹果树的精细管理提供技术支持。在苹果树年度生长周期的坐果期、生理落果期和果实成熟期等重要物候期,采集了180个果树叶片样本并测量了果树叶片在可见光和近红外波段的反射光谱,同时在实验室采用化学方法获取了果树叶片的氮素以及叶绿素含量。对于聚类后样本,分别分析了果树叶片反射光谱以及经小波滤波后的反射光谱与叶绿素以及氮素之间的相关关系,而后利用偏最小二乘和支持向量机(SVM,support vector machine)方法分别建立了果树叶片叶绿素和氮素含量的回归模型。研究发现,随着生长阶段的推进,在可见光处的反射率逐渐升高,在近红外处的反射率逐渐降低,且基于小波滤波反射光谱的营养素SVM回归模型精度最高:建立的叶绿素回归模型,其测定系数R2达到0.9920,均方根误差 RMSE为0.0039,验证精度R2达到0.9036,RMSE为0.1979;建立的氮素回归模型,其测定R2和验证R2也达到0.74以上,模型的回归RMSE为0.0554,验证RMSE为0.1215。结果表明,采用支持向量机回归模型可以精确估计果树叶片叶绿素含量,对氮素含量的估计精度也达到了实用化水平。  相似文献   

5.
柑橘叶片叶绿素含量高光谱无损检测模型   总被引:13,自引:5,他引:13  
针对柑橘叶片叶绿素含量的传统化学检测,不仅耗时长且损伤柑橘叶片,还依赖检测者实操技术,无法集成于精细农业中变量喷施农机具的诸多弊端,该文探讨快速无损检测柑橘叶片叶绿素含量方法。以117棵园栽萝岗甜橙树为研究对象,选用ASD Field Spec 3光谱仪对萌芽期、稳果期、壮果促梢期、采果期共4个生长时期的柑橘叶片进行高光谱反射率采集,并同步采用分光光度法测得叶片的叶绿素含量;以原始光谱及其变换形式作为模型输入矢量,分别在主成分分析(principle component analysis,PCA)降维的基础上利用支持向量机回归(support vector regression,SVR)算法和在小波去噪的基础上利用偏最小二乘回归(partial least square regression,PLSR)算法对柑橘叶片叶绿素含量进行建模预测,全生长期整体建模的校正集和验证集最佳模型决定系数R2分别为0.8713和0.8670,均方根误差RMSE(root-mean-square error)分别为0.1517和0.1544,试验结果表明,高光谱可快速无损地对柑橘叶片叶绿素含量进行精确的定量检测,为柑橘不同生长期的营养监测提供理论依据。  相似文献   

6.
高光谱信息量巨大,如何选取最佳组合波段构建高精度光谱模型,是植被参数遥感反演模型研究的重要工作基础。该研究将最佳指数与相关系数通过熵权评价值进行融合,提出最佳指数-相关系数法(optimum index factor and correlation coefficient,OIFC)。基于OIFC法选取了小麦叶片叶绿素含量的最佳组合波段,并利用最佳组合波段的高光谱数据建立小麦叶片叶绿素含量预测模型。结果表明:利用OIFC法所提取的小麦叶绿素最佳组合波段是760、1 860、1 970 nm;对比最佳指数法(optimum index factor,OIF)、最大相关系数法(maximum correlation coefficient,MCC)提取波段以及归一化植被指数(normalized difference vegetation index,NDVI)、土壤调和植被指数(soil-adjusted vegetation index,SAVI)所建立的叶片叶绿素含量高光谱模型,基于OIFC法构建的模型预测值与实测值具有显著的线性关系,决定系数达0.827,且均方根误差最小(RMSE=5.44)。可见,基于OIFC法构建的小麦叶绿素含量模型具有更高的精度,该结果验证了利用OIFC法提取高光谱特征波段的可行性,并且能够获得更高建模精度的特征波段。  相似文献   

7.
基于反射光谱预处理的苹果叶片叶绿素含量预测   总被引:9,自引:8,他引:1  
以苹果叶片叶绿素含量为研究对象,定量研究了光谱数据预处理方法对光谱特征提取及叶绿素含量预测模型的影响。首先,比较了苹果叶片原始反射率光谱、小波包去噪反射率光谱、反射率一阶差分光谱、先小波包去噪后一阶差分光谱、先一阶差分后小波包去噪光谱这5种光谱的波段间相关系数以及光谱与叶绿素含量间的相关系数,建立了叶绿素含量预测逐步回归模型并对建模结果进行了比较分析。结果表明单纯3层sym8小波包去噪可使光谱曲线平滑,但不会明显提高模型精度;一阶差分虽然放大了局部噪声,但是消除了基线漂移影响,可提高模型精度;先差分后小波包去噪比先小波包去噪后差分具有更高的峰值信号噪声比,更低的均方误差与最大误差,建模结果也显示出同样的结果。因此,先差分后小波包去噪算法可认为是一种有效的苹果叶片叶绿素含量预测光谱预处理方法。利用这一方法建立了苹果叶片叶绿素含量预测模型,获得了较高的预测精度。该研究可用于对苹果树营养状态的评价并指导按需施肥。  相似文献   

8.
为了利用冠反射光谱特征监不同筋力小麦品种的生理特征差异,利用不同筋力小麦冠层反射光谱的差异,可对不同小麦品种进行遥感识别与监测。试验以低筋小麦品种扬麦13和高筋小麦品种徐麦31为材料,结合不同生育时期两品种叶面积指数(LAI)、叶绿素含量和叶片氮含量的变化,以及相应的光谱参数,分析不同筋力小麦冠层反射光谱的变化特征。结果表明,在近红外和可见光波段,从拔节期到蜡熟期,扬麦13的冠层光谱反射率均高于徐麦31,在孕穗期两品种的差异最显著;LAI、叶片叶绿素和氮含量均在开花时达最大值,扬麦13的叶绿素含量明显高于徐麦31,而LAI和叶片氮含量则低于徐麦31。比值植被指数(RVI)、归一化植被指数(NDVI)与LAI;红边位置(λr)、红边幅值(Dr)与叶绿素含量,氮素反射指数(NRI)、抗大气植被指数(VARIgreen)与叶片氮含量极显著相关,表明RVI、NDVI可以反演LAI;λr、Dr可以反演叶绿素;NRI、VARIgreen可以反演叶片氮含量的变化。以上光谱参数能反映小麦相关指标的变化情况,不同时期可运用小麦冠层反射光谱进行不同筋力小麦品种识别,孕穗期为最佳识别时期。通过本研究,以期为不同筋力小麦品种的遥感识别提供依据。  相似文献   

9.
基于高光谱图像的黄瓜叶片叶绿素含量分布检测   总被引:7,自引:3,他引:4  
植物叶片叶绿素含量及分布是植物营养信息表达的重要指标。为了给大棚黄瓜营养元素的控制提供理论依据,该研究利用高光谱图像建立简单实用的光谱值和叶绿素含量关系的模型,从而实时、无损地检测叶片的叶绿素分布。选取黄瓜叶片的高光谱图像数据块中450~850 nm波段作为研究波段。选取8个具有代表性的植被指数,建立特征波长λ下相应的光谱反射值Rλ与黄瓜叶片叶绿素含量之间的关系模型。结果显示,基于最优指数(R695–705)-1-(R750–800)-1的模型可以很好地预测黄瓜叶片叶绿素的含量,校正集和预测集相关系数r分别为0.8410和0.8286,最小均方根误差RMSE分别为0.2045和0.2190 mg/g。最后根据最优模型预测叶片上任意位置叶绿素的含量,并通过伪彩手段描述叶绿素含量的分布。研究结果表明,利用高光谱图像技术分析黄瓜叶片叶绿素含量及其在叶面上的分布是可行的。另外,该研究确定的最优植被指数所包含的695~705和750~800 nm 2个波段可用于搭建更加简便实用的快速检测叶片叶绿素的便携式多光谱设备。  相似文献   

10.
基于光谱特征参数的温室番茄叶片叶绿素含量预测   总被引:3,自引:1,他引:2  
为了快速、准确估测温室番茄叶片叶绿素含量,提升作物精细管理水平,利用光谱分析技术研究了温室番茄不同生长阶段叶绿素含量和响应光谱的相关性,在幼苗营养生长阶段叶片叶绿素含量呈增长趋势,到移植50天前后达到最大值,在此期间反射光谱的红边会向红外方向(长波)偏移,同时绿峰向蓝光(短波)方向偏移,绿峰幅值减小。从结果期开始叶绿素含量呈下降趋势,而红边、绿峰及绿峰幅值向相反方向变化。为了定量分析叶绿素含量和叶片反射光谱间的关系,从自定义的68个光谱特征参数中提取了7个能反映叶绿素含量变化的最优参量,并使用逐步回归、岭回归、主成分分量回归和偏最小二乘回归消除了最优参量的多重共线性,建立了叶绿素含量预测模型,其中岭回归模型精度最佳,均方根误差(RMSE)为0.406,决定系数(R2)为0.839。  相似文献   

11.
基于光谱变换的低温胁迫下冬小麦叶绿素含量估测研究   总被引:2,自引:0,他引:2  
近年来,冻害已成为影响我国冬麦区的农业气象灾害之一,及时、快速、准确地获取冬小麦叶绿素含量对于监测冬小麦冻害发生具有极其重要的意义。本研究通过低温胁迫试验,在拔节期对两个冬麦品种进行-6℃,4 h、8 h和12 h的胁迫处理后,测定其冠层光谱反射率,并对原始光谱数据进行15种典型变换处理,分析比较不同光谱变换下冬小麦叶绿素含量的PLSR模型,筛选出能够表征低温胁迫下冬小麦叶绿素含量的最佳光谱变换方式。结果表明,随低温胁迫时间的延长,两个冬小麦品种叶绿素含量呈降低趋势,随着低温胁迫后天数的增加,各处理与对照的差异逐渐减小。胁迫后5 d,近红外区域反射率有较大升高,并随低温胁迫后时间的延长而升高;在可见光区域,短期内差异不明显。胁迫后10 d、20 d、35 d,黄、红波段逐渐趋于水平,同时近红外区域反射率差异逐渐缩小,可见光区域光谱反射率出现不同程度的上升。对原始光谱数据进行15种典型变换处理,发现原始光谱的倒数、对数、幂、平方根等变换难以提高与叶绿素含量的相关性,且建模效果较差。除原始光谱对数的一阶微分(T6)外,其他微分变换处理的叶绿素含量诊断模型都优于原始光谱。综合考虑模型的校正、验证效果、模型最佳因子数以及相对分析误差的大小,二阶微分变换处理(T15)叶绿素含量校正模型的R2和RMSE分别为0.930、0.340,验证模型的R~2为0.753,表明基于T15的光谱变换数据可实现低温胁迫下叶绿素含量的准确估算,为最佳光谱变换方式。  相似文献   

12.
冬小麦苗期叶绿素含量检测光谱学参数寻优   总被引:5,自引:3,他引:2  
光谱分析技术是作物生长检测的主要手段,为了解决大田漫反射采集所造成的光谱基线漂移和偏移问题,研究采集了冬小麦冠层325~1 075 nm范围反射光谱,采用多元散射校正方法对小麦原始光谱进行预处理。采取遗传算法对光谱特征参数寻优并结合相关分析结果,选取486、599、699和762 nm波长处反射率值并组合计算了RVI(ratio vegetation index),DVI(difference vegetation index),NDVI(normalized difference vegetation index)和SAVI(soil-adjusted vegetation index)共12个植被指数,分析了各植被指数与叶绿素含量值之间的相关关系,结果显示:DVI和SAVI可抑制苗期土壤背景干扰并对叶绿素含量响应较为敏感,与叶绿素含量相关性最优的参数分别为DVI(762,599)、SAVI(762,599)、DVI(762,699)和SAVI(762,699),与叶绿素含量的相关系数都达到0.6以上。基于相关性最优光谱植被指数DVI(762,699)和SAVI(762,599)利用最小二乘-支持向量回归建立冬小麦叶绿素含量预测模型,建模集决定系数为0.681,验证集决定系数为0.611。该模型可用于无损检测冬小麦苗期叶绿素含量,以期为后续施肥决策提供支持。  相似文献   

13.
用于微小型光谱仪的冬小麦抽穗期叶绿素含量诊断模型   总被引:3,自引:3,他引:0  
采用基于微小型光谱学传感器构建的作物冠层反射光谱探测系统,在田间轻量便携式地测量冬小麦抽穗期冠层可见光-近红外反射光谱。首先对冠层反射光谱进行去噪预处理,对原始光谱先一阶微分运算后,采用Bior Nr.Nd双正交小波进行小波包分解和重构以达到数据平滑的目的。对样本点数据利用蒙特卡罗抽样方法进行分析,去除异常样本点值,然后基于Random frog特征变量选取算法进行叶绿素含量敏感波长筛选。分别对原始光谱和经预处理后的光谱数据所选取的敏感波长进行偏最小二乘回归(partial least squares regression,PLSR)建模,建模结果如下:基于原始光谱的敏感波长639、436、459、642、556、653、596、455 nm建立叶绿素含量诊断PLSR模型,建模精度Rc2为0.70,均方根误差为1.398 0,验证精度Rv2为0.10,均方根误差为2.381 0;经过预处理后,基于选取的特征波长719、572、562、605、795、527、705、514 nm建立叶绿素含量诊断PLSR模型,建模精度Rc2为0.69,均方根误差为1.364 8,验证精度Rv2为0.52,均方根误差为1.839 7,估测能力得到了提高。结果表明:基于微小型光谱学传感器构建的作物冠层反射光谱探测系统能够合理地预测冬小麦叶片中的叶绿素含量,可用于田间冬小麦抽穗期的作物营养诊断。  相似文献   

14.
基于红边参数的植被叶绿素含量高光谱估算模型   总被引:11,自引:2,他引:9  
利用ASD便携式野外光谱仪和SPAD-502叶绿素计实测了落叶阔叶树法国梧桐、毛白杨叶片的高光谱反射率与叶片绿度,并对原始光谱反射率及一阶导数光谱与叶片绿度进行了相关分析,建立了基于红边位置、峰度系数、偏度系数的叶片叶绿素含量的高光谱估算模型,最后采用红边位置、峰度、偏度作为BP人工神经网络的输入变量进行了叶绿素含量的估算。结果表明:基于红边位置的法国梧桐、毛白杨叶绿素估算模型的决定系数达到0.7366、0.7289;基于峰度、偏度建立的估算模型可以有效提高估算精度,模型的决定系数均达0.8341以上;法国梧桐和毛白杨人工神经网络模型的确定系数决定系数分别达到0.9574和0.9523。与单变量模型相比人工神经网络模型反演精度明显提高,是一种良好的植被叶绿素含量高光谱反演模式。  相似文献   

15.
利用一次寒潮降温过程,以苗期12个品种的冬小麦为研究对象,测定其低温逆境下叶片光谱反射率和SPAD(Soil and Plant Analyzer Development,SPAD)值。以2020年12月28日(最高/最低温为15℃/3℃)的观测值为胁迫前数据,12月31日(最高/最低温为1℃/−9℃)的观测值为低温胁迫后数据,分析低温胁迫前后小麦叶片原始光谱和SPAD值的变化规律。在多种光谱参数中,采用相关分析方法遴选出5个与SPAD值密切相关的特征变量,分别建立低温胁迫前、后以原始光谱数据、一阶光谱导数和三种植被指数为自变量的小麦叶片叶绿素含量反演模型,并进行交互验证,筛选出低温胁迫后小麦叶绿素含量的最优反演模型。结果表明:(1)与胁迫前相比,低温胁迫后小麦叶片SPAD整体呈上升趋势,光谱反射率在叶绿素吸收较好的可见光区域有所降低,叶片表现出受冻特征;(2)构建的低温胁迫前后两种混合模型,交互验证后精度较低,表明常温下小麦叶绿素含量估算模型并不适用于遭受低温胁迫后的小麦叶绿素估算,需单独建立低温胁迫后的估算模型;(3)利用光谱数据构建冬小麦低温胁迫下叶绿素含量反演混合模型中,以一阶光谱导数在694nm处建立的模型估算效果最优,拟合度(R2)为0.694,均方根误差(RMSE)为3.191,说明利用小麦叶片光谱特征波段建立低温胁迫下叶片叶绿素含量反演模型的方法是可行的。研究结果可为多品种冬小麦叶片叶绿素含量无损监测提供参考。  相似文献   

16.
基于无人机高光谱的冬小麦氮素营养监测   总被引:11,自引:10,他引:1  
为了实现小区域尺度上的作物氮素营养状况遥感监测,该研究利用无人机搭载Cubert UHD185成像光谱仪对2016 -2017年关中地区的冬小麦进行遥感监测,通过分析冠层光谱参数与植株氮含量、地上部生物量和氮素营养指数的相关性,筛选出对三者均敏感的光谱参数,结合多元线性逐步回归、偏最小二乘回归和随机森林回归建立抽穗期冬小麦氮素营养指数(Nitrogen Nutrition Index,NNI)估测模型,并与单个光谱参数建立的冬小麦氮素营养指数模型进行比较。结果表明,任意两波段光谱指数对氮素营养指数更为敏感,与氮素营养指数均达到了极显著性相关;基于差值光谱指数和红边归一化指数的单个光谱参数构建的模型具有粗略估算氮素营养指数的能力,相对预测偏差分别为1.53和1.56;基于随机森林回归构建的多变量冬小麦氮素营养指数估算模型具有极好的预测能力,模型决定系数为0.79,均方根误差为0.13,相对预测偏差为2.25,可以用来进行小区域范围内的冬小麦氮素营养指数遥感填图,为冬小麦氮素营养诊断、产量和品质监测及后期田间管理提供科学依据。  相似文献   

17.
利用高光谱估测干旱胁迫下接菌根菌大豆叶绿素含量   总被引:1,自引:0,他引:1  
该研究旨在利用高光谱遥感动态监测干旱胁迫下接种菌根植物生长状况,为菌根技术在旱区农业中的推广提供一定的理论基础。以盆栽大豆为对象,在不同接种丛枝菌根时期采用高光谱遥感技术监测不同干旱胁迫下接菌和不接菌处理大豆叶片的叶绿素含量变化,对比分析了3个水分梯度下及同一水分梯度下接菌和不接菌处理的大豆地上部分干质量、叶绿素含量和叶片光谱在可见光和近红外区域的响应特征差异,建立了大豆叶绿素含量与多个光谱变量的估测模型。研究结果表明:接菌第45天和第64天,同一水分梯度下接菌大豆地上部分干质量优于不接菌处理,且其叶绿素含量也高于不接菌,这些差异在叶片光谱曲线特征中同样得以反映,接种菌根在一定程度上可以缓解干旱胁迫对植物生长的影响;基于多元线性逐步回归方法建立的一阶微分模型能较准确地估测干旱胁迫下接菌大豆的叶绿素含量,其模型决定系数和预测检验决定系数分别为0.90和0.84,具有较高的精度和良好的预测能力。  相似文献   

18.
不同形式的光谱参量对春玉米氮素营养诊断的比较   总被引:6,自引:3,他引:3  
选择适宜的光谱参量,对利用光谱技术进行作物营养诊断精确度的提高是至关重要的。该文对单因素氮处理下春玉米(Zea may L.)不同层位叶片光谱反射率与氮含量作了相关分析,探讨了叶片水平上单波段光谱反射率(R)、单波段光谱反射率的对数(LgR)、双波段组合光谱反射率(R1+R2)、以及对数形式的双波段组合光谱反射率(LgR1+ LgR2)4种形式光谱参量对氮素营养诊断的可靠性。结果表明,第6片完全展开叶叶片光谱反射率与氮含量在可见光波段存在较高的负相关关系,以550和720 nm两波段组合的光谱参量(LgR550+LgR720和Lg(R550+R720))建立的线性回归方程的拟合度最好;不同生育期应选择对养分盈亏敏感的叶片作为营养诊断的光谱监测目标,不同生育期叶片氮素营养的光谱敏感波段不同,应选择二者相关性高的波段,较为适宜的光谱参量形式与营养成分建立估算模型。研究表明,经对数处理后的光谱参量,无论是单波段还是双波段,拟合方程的精度都有不同程度的提高,且方程的稳定性也增强,说明对数形式的光谱参量提高了对氮素营养诊断的精确度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号