首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
About 170 million tons of phosphogypsum (PG) are annually generated worldwide as a by-product of phosphoric acid factories. Agricultural uses of PG could become the main sink for this waste, which usually contains significant radionuclide (from the 238U-series) and toxic metals concentrations. To study PG effects on pollutant uptake by crops, a completely randomised greenhouse experiment was carried out growing Lycopersicum esculentum Mill L. on a reclaimed marsh soil amended with three PG rates (treatments), corresponding to zero (control without PG application), one, three and ten times the typical PG rates used in SW Spain (20 Mg ha?1). The concentrations of Cd, Pb, U (by inductively coupled plasma mass spectroscopy) and 226Ra and 210Po (by γ-spectrometry and α-counting, respectively) were determined in soil, vegetal tissue and draining water. Cadmium concentrations in fruit increased with PG rates, reaching 44?±?7 μg kg?1 formula weight with ten PG rates (being 50 μg kg?1 the maximum allowed concentration by EC 1881/2006 regulation). Cd transfer factors in non-edible parts were as high as 4.8?±?0.5 (dry weight (d.w.)), two orders of magnitude higher than values found for lead, lead, uranium and radium concentrations in fruit remained below the corresponding detection limits—0.5 and 0.25 mg kg?1 and 0.6 mBq kg?1, respectively (in a d.w. basis). 238U (up to 7 μg kg?1 d.w.) and 210Po (up to 0.74 Bq kg?1 d.w.) could be measured in some fruit samples by α-spectrometry. Overall, the concentrations of these metals and radionuclides in the draining water accounted for less than 1% of the amount applied with PG.  相似文献   

2.
The contents of ten elements [Cd, Pb, W, Zn, Mn, As, Se, Cr, Cu, and organic carbon (Corg)] have been determined in the surficial sediments of Keratsini harbor, Saronikos Gulf, Greece. The contamination of the sediments was assessed on the basis of geoaccumulation index and to corresponding sediment quality guidelines (SQGs) effects range low/effects range median. The results revealed highly elevated Cd, Pb, W, Zn, As, Se, Cr, Cu, and Corg values (Cd, 190–1,763 mg kg?1; Pb, 521–1,263 mg kg?1; W, 38–100 mg kg?1; Zn, 409–6,725 mg kg?1; Mn, 95–1,101 mg kg?1; As, not detectable–1,813 mg kg?1; Se, not detectable–58 mg kg?1; Cr, 264–860 mg kg?1; Cu, 195–518 mg kg?1; and Corg, 0.69–4.41%). The enrichment of metals in the sediments results from the contribution of the central Athens sewage outfall through which the waste of the Attica basin ends up in Keratsini harbor as well as from industrial and ship contaminants.  相似文献   

3.
The analysis of gamma emitters natural radionuclides, i.e., 226Ra, 232Th, and 40K, has been carried out in soil, vegetation, vegetable, and water samples collected from some Northern area of Pakistan, using gamma-ray spectrometry. The ??-ray spectrometry was carried out using high-purity Germanium detector coupled with a computer-based high-resolution multi-channel analyzer. The activity concentrations in soil ranges from 24.7 to 78.5 Bq?kg?1, 21.7 to 75.3 Bq?kg?1, and 298.5 to 570.8 Bq?kg?1 for 226Ra, 232Th, and 40K with the mean value of 42.1, 43.3, 9.5, and 418.3 Bq?kg?1, respectively. In the present analysis, 40K was the major radionuclide present in soil, vegetation, fruit, and vegetable samples. The concentration of 40K in vegetation sample varied from 646.6 to 869.6 Bq?kg?1 on dry weight basis. However, the concentration of 40K in fruit and vegetable samples varied from 34.0 to 123.3 Bq?kg?1 on fresh weight basis. In vegetation samples, along with 40K, 226Ra, and 232Th were also present in small amount. The transfer factors of these radionuclides from soil to vegetation, fruit, and vegetable were also studied. The transfer factors were found in the order: 40K?>?232Th????226Ra. The analysis of water samples showed activity concentrations values for all radionuclides below detection limit. The internal and external hazard indices were measured and found less than the safe limit of unity. The mean value of outdoor and indoor absorbed dose rate in air was found 64.61 and 77.54 nGy?h?1, respectively. The activity concentrations of radionuclides found in all samples during the current investigation were nominal. Therefore, they are not associated with any potential source of health hazard to the general public.  相似文献   

4.
Soil samples were collected from western and southern region of Turkey in 1995 from 17 sampling stations of different depths. Natural and artificial radionuclide activity levels of soil samples of the western and southern sea in Turkey were previously reported about nine years after the Chernobyl accident. The aim of the study was to collect data for following up of the earlier study and to present result for distributions of radionuclides in soil samples of the western and southern regions of Turkey. 226Ra is in the range 19–276 Bq kg?1, 7–173 Bq kg?1 for 238U, 8–244 Bq kg?1 for 232Th, 86–1162 Bq kg?1 (dry wt.) for 40K and 137Cs activity result varies between 1.8–82 Bq kg?1 (dry wt.).  相似文献   

5.
Purpose

Natural organic acids, such as humic acid (HA), play crucial roles in biogeochemistry of anions and cations in soil due to their numerous functional groups on their surfaces. Selenium (Se) and cadmium (Cd) could bind strongly to HA; nevertheless, it is still unclear as to the effects of HA on Se and Cd uptake in rice which will be focused on in this paper.

Materials and methods

Pot experiments were carried out at Huazhong Agricultural University, Wuhan City, Hubei Province, China. Agricultural soils were treated with different concentrations of HA (0, 4, and 8 g kg?1 soil) and Se (SeIV or SeVI) (0 and 2 mg kg?1 soil) as well as with base fertilizer 3 days prior to planting. For Cd treatment, experimental soils were treated with Cd (0 and 2 mg kg?1 soil) 1 month before sowing. For element determination, root (after DCB extraction) and shoot samples were digested with a mixed solution of HNO3-HClO4, and the Se and Cd in digest solution were measured by HG-AFS and ICP-MS, respectively. Fe, Se, and Cd in iron plaque were extracted by DCB extraction and measured by AAS, HG-AFS, and ICP-MS, respectively.

Results and discussion

HA reduced Se (or Cd)-induced growth stimulation and Se and Cd uptake in rice seedlings, whereas iron plaque formation varied little with different treatments. HA inhibited SeIV (or SeVI) uptake in rice seedlings by reducing Se translocations from soil to iron plaque (or by increasing Se adsorption capacity of iron plaque and decreasing Se transport from iron plaque to root). HA reduced Cd uptake in rice seedlings by reducing Cd transport from soil to iron plaque and from iron plaque to root. Compared with single addition of SeIV or SeVI or HA, adding HA combined with SeIV or SeVI could further reduce Cd uptake in rice seedlings, whereas Se contents of aerial tissues did not change obviously.

Conclusions

HA inhibited the accumulation of Se (SeIV or SeVI) and Cd in rice seedlings; nevertheless, the mechanism was different. Compared with adding Se (or HA) alone, application of Se mixed with HA might be a more effective way to produce Se-enriched and Cd-deficient crop in Cd-contaminated soil.

  相似文献   

6.

Purpose

Arid and hyper-arid zones worldwide are reservoirs of chemical compounds, among them are various trace elements. With climate change, abnormal precipitation is occurring in arid and hyper-arid mountainous zones, which in turn is increasing the displacement of trace elements from mountainous to populated areas. The objective of this study was to evaluate trace element displacement of a sediment-laden flood in the Copiapó River Basin on March 24–25, 2015.

Materials and methods

Sixty topsoil samples were taken from 20 agricultural fields. Soil organic matter content, pH, electrical conductivity, and particle size were determined according to accepted procedures in Chile. Samples were acid-digested to determine total Al, As, Cd, Cr, Cu, Fe, Hg, Mn, Mo, Ni, Pb, Se, and Zn content by flame atomic absorption spectroscopy. Hydride generation AAS was used for As and Se determination, and Hg was quantified by cold vapor AAS. Detection limits were 0.2, 0.05, 0.1, and 5.0 mg kg?1 for Cd, Hg, Se, and Mo, respectively. Correlation and principal component analyses were made, and theoretical distribution functions were fitted to each element.

Results and discussion

Metal concentration showed a strong correlation between SOM and particle size, explaining the first component from the principal component analysis. All trace elements correlated well between each other except for Mo and Se. Mo values were consistently below detection levels (<5.0 mg kg?1). Expected values for the elements were (95% of probability): 13–37 g Al kg?1, 10–50 mg As kg?1, <0.2–0.6 mg Cd kg?1, 13–25 mg Cr kg?1, 27–281 mg Cu kg?1, 27–40 g Fe kg?1, <0.05–6.5 mg Hg kg?1, 516–1.080 mg Mn kg?1, 7–24 mg Ni kg?1, 13–50 mg Pb kg?1, 0.2–0.6 mg Se kg?1, and 61–172 mg Zn kg?1. Concentrations of As, Cu, and Hg were consistently above national standards.

Conclusions

The authors conclude that the trace element contents in sediments deposited by the event are within expected values based on soil data in Chile.
  相似文献   

7.
Abstract

Water extraction of trace elements can simulate the concentration of elements in the soil solution from where the plant takes up the elements. The objective of this investigation was to determine the water extractable concentration of seven trace elements (Fe, Mn, Ni, Co, Mo, Pb and Cd) and to assess their relationship with soil properties of the Danube basin in Croatia. Soil samples from the surface layer (0–25 cm) of 74 sites, having different land uses (forest and agricultural land), were collected. Samples were analysed for total and water extractable trace elements as well as for pH, DOC, SOC and CEC. The concentrations of water extractable fraction of trace elements were on average: 20.14 mg kg?1 for Fe, 3.61 mg kg?1 for Mn, 0.07 mg kg?1 for Ni, 0.016 mg kg?1 for Co, 0.01 mg kg?1 for Mo, 0.01 mg kg?1 for Pb and 0.0009 mg kg?1 for Cd. Soil properties were in the following range: pH 4.3–8 (Avg: 6.35), DOC 6.1–73 mg l?1 (Avg: 26 mg l?1), CEC 1.3–24 cmol kg?1 (Avg: 9 cmol kg?1) and SOC 0.5–5% (Avg: 1.7%). The concentration of water extractable fraction of trace elements was significantly correlated with pH (p <0.001), DOC (p <0.001 – p <0.05) and CEC (p <0.001) but their relationship with total content of trace element and SOC was rather weak, suggesting that total metal alone cannot be an indicator of toxicity or deficiency. Results show that pH, DOC and CEC are important soil quality parameters taking part in the solubility control of trace metals in the soil rather than their total concentration. The difference between land uses has been observed as well, suggesting that a change in land use can cause a change in trace element solubility.  相似文献   

8.
Cadmium (Cd) is a common impurity in phosphate fertilizers and application of phosphate fertilizer may contribute to soil Cd accumulation. Changes in Cd burdens to agricultural soils and the potential for plant Cd accumulation resulting from fertilizer input were investigated in this study. A field experiment was conducted on Haplaquept to investigate the influence of calcium superphosphate on extractable and total soil Cd and on growth and Cd uptake of different Komatsuna (Brassica rapa L. var. perviridis) cultivars. Four cultivars of Komatsuna were grown on the soil and harvested after 60 days. The superphosphate application increased total soil Cd from 2.51 to 2.75?mg?kg?1, 0.1?mol?L?1 hydrochloric acid (HCl) extractable Cd from 1.48 to 1.55?mg?kg?1, 0.01?mol?L?1 HCl extractable Cd from 0.043 to 0.046?mg?kg?1 and water extractable Cd from 0.0057 to 0.0077?mg?kg?1. Cd input reached 5.68?g?ha–1 at a rate of 240?kg?ha–1 superphosphate fertilizer application. Superphosphate affected dry-matter yield of leaves to different degrees in each cultivar. ‘Nakamachi’ produced the highest yield in 2008 and ‘Hamami No. 2’ in 2009. Compared with the control (no phosphate fertilizer), application of superphosphate at a rate of 240?kg?ha–1 increased the Cd concentration in dry leaves by 0.14?mg?kg?1 in ‘Maruha’, 1.03?mg?kg?1 in ‘Nakamachi’, 0.63?mg?kg?1 in ‘SC8-007’ in 2008, and by 0.19?mg?kg?1 in Maruha’, 0.17?mg?kg?1 in ‘Hamami No. 2’, while it decreased by 0.27?mg?kg?1 in ‘Nakamachi’ in 2009. Field experiments in two years demonstrated that applications of different levels of calcium superphosphate did not influence Cd concentration in soil and Komatsuna significantly. However, there was a significant difference in Cd concentration of fresh and dry Komatsuna leaves among four cultivars in 2008 and 2009. The highest Cd concentration was found in the ‘Nakamachi’ cultivar (2.14?mg?kg?1 in 2008 and 1.91?mg?kg?1 in 2009). The lowest Cd concentration was observed in the ‘Maruha’ cultivar (1.51?mg?kg?1?dry weight (DW)) in 2008 and in the ‘Hamami No. 2’ cultivar (1.56?mg?kg?1?DW) in 2009. A decreasing trend in Cd concentration was found in ‘Nakamachi’, followed by ‘SC8-007’, ‘Hamami No. 2’ and ‘Maruha’ successively. It is necessary to consider a low-uptake cultivar for growing in a Cd polluted soil. In these two years’ results, ‘Maruha’ cultivar was the lowest Cd uptake cultivar compared to the others.  相似文献   

9.
Currently wood ash is being used as a soil amendment. Its use is regulated based on trace element content. However, no published information exists on solubilities of trace elements in wood ash. We investigated the release of environmentally-significant trace elements (Cd, Cr, Cu, Pb and Zn) from wood ash as a function of pH and of particle size. Wood ash was sampled from three sources in Maine and sieved into <0.5 mm, 0.5–1 mm, and 1–2 mm fractions. Elemental compositions were determined using a HNO3/H2O2 digestion. Sub-samples (1 g) from each of the nine samples (three sources and three size fractions) were reacted with 50 mLs of standardized HNO3 for a week using a range of acid concentrations (0.01–0.25 M) to achieve a range in final pH values. The resulting solutions were filtered and analyzed. The compositions of the three wood ashes varied widely. The dominant elements were Si (9.7–34%), Ca (5.8–21%), K (0.8–5.7%), Al (0.8–4.9%), and Mg (0.5–3.0%). Trace elements were present in the following concentrations ranges: Cd (1.9–12 mg kg?1), Cr (24–92 mg kg?1), Cu (33–75 mg kg?1), and Zn (130–1400 mg kg?1). Both Cd and Zn were released readily from the ashes at final pH values of approximately 6.5 and below. In the final pH range of 3–4, 80–100% of the total Cd and 70–90% of the total Zn was released by the ashes. All three wood ashes showed somewhat different patterns of Cr release. Level of Cr(VI) in a water extract of the ash fractions was found to be a much better predictor of relative Cr solubility than total Cr. Solubility of Cu was low, and Pb was very insoluble. There was little influence of particle size on release of trace elements. The relatively high Cd concentration of wood ash compared with soil, and its relative solubility in wood ash, should be considered in evaluating the potential environmental impact of spreading wood ash on land.  相似文献   

10.
Abstract

A column study was conducted to determine the effect of city compost, lime, gypsum, and phosphate on cadmium (Cd) mobility in three well‐recognized benchmark soils of India [viz., (Islamnagar) Vertisol, (Amarpur) Inceptisol, and (Khala) Alfisol]. Columns made of PVC were filled with soil treated with different treatment doses [viz., 0.5% city compost, 1% city compost, 2% city compost, 2.5 t lime/ha, 5 t lime/ha, 2.5 t lime/ha+0.5% city compost, 2.5 t gypsum/ha, 2.5 t gypsum/ha+0.5% city compost, and 100 kg P2O5/ha as potassium phosphate (KH2PO4). The columns were leached with 100 mg L?1 Cd under saturated condition. The amount of water moving through the soils was measured as the pore volume. A delayed breakthrough curve (BTC) of Cd in the presence of lime has been observed in all the studied benchmark soil series. Among the treatments, lime application reduced the movement of Cd from surface soil to lower depth of soil to a large extent resulted in 9, 25, and 45% more retention of Cd in surface soil of the Islamnagar, Amarpur, and Khala series respectively. Explanation for reduced Cd mobility in limed soil can be derived from pH changes of soils. In comparison to control soil, phosphate application caused 6, 21, and 30% more retention of Cd in surface soil in the Islamnagar, Amarpur, and Khala series, respectively. Combined application of lime and city compost reduced the movement of Cd in the soil profile. It appears that organic matter controls the sorption of Cd in soils. The amount of Cd sorbed increased with increasing organic carbon content, but gypsum application may leach Cd beyond the root‐zone depth. A rapid breakthrough curve was observed under gypsum‐treated soils. Retardation factor revealed that a somewhat lower degree of Cd retention occurred in the Khala series, which might possibly be attributed to less clay content and low pH. Overall, the column study indicated that total Cd accumulation occurred up to depths of 5–7.5 cm, 7.5–10 cm, and 10–15 cm in soils of Islamnagar, Amarpur, and Khala series, respectively.  相似文献   

11.
Soil and water samples were analysed for trace metals and As in two watercourses and 14 sampling plots in a salt marsh polluted by mine wastes in SE Spain. Groundwater levels, soil pH and Eh were measured ‘in situ’ for a 12-month period in each sampling plot, and total calcium carbonate was also determined. Low concentrations of soluble metals (maximum Mn 1.089 mg L?1 and maximum Zn 0.553 mg L?1) were found in the watercourses. However, total metal contents were extremely high in the soils of a zone of the salt marsh (maximum 1,933 mg kg?1 of Mn, 62,280 mg kg?1 of Zn, 16,845 mg kg?1 of Pb, 77 mg kg?1 of Cd, 418 mg kg?1 of Cu and 725 mg kg?1 of As), and soluble metals in the pore water reached 38.7 mg L?1 for Zn, 3.15 mg L?1 for Pb, 48.0 mg L?1 for Mn, 0.61 mg L?1 for Cd and 0.29 mg L?1 for As. Variable concentrations with depth indicate a possible re-mobilisation of the metals, which could be related to spatial and temporal variations of water table level, pH and Eh and to the presence of calcium carbonate. A tendency for the Eh to decrease in the warmest months and to increase in the coldest ones was found, especially, in plots that received water with a high content of dissolved organic carbon. Hence, the existence of nutrient effluent-enriched water may modify the physical–chemical conditions of the soil–water system and influence metal mobility.  相似文献   

12.

Purpose

Cadmium (Cd) is considered a toxic element and its concentrations are relevant to human health and the environment. Therefore, the purpose of the study was to determine the extent to which the bottom sediments of water bodies (artificial lakes and ponds) in the Silesian Upland in southern Poland are contaminated with Cd; an attempt was also made to determine the factors that condition spatial differences in the concentration of this element between individual water bodies in the region.

Materials and methods

Measurements of the Cd content in bottom sediments were carried out in 35 water bodies in southern Poland in 2011 and 2012. Depending on the surface area and morphometric characteristics, from two to nine samples representative in terms of sediment thickness were collected in each water body. Cadmium concentrations were determined for 92 0.25 g aliquots using the TD-ICP method.

Results and discussion

Cadmium content in all samples (0.7–580.0 mg kg?1) was higher than the natural range of concentrations for this element in the Earth’s crust (0.1–0.3 mg kg?1) and the geochemical background for Poland (0.5 mg kg?1) and, with a few exceptions, was also higher than the preindustrial concentration (1.0 mg kg?1) and the regional geochemical background (2.5 mg kg?1). Adopting natural Cd concentrations in the Earth’s crust (0.1–0.3 mg kg?1) as the baseline for the geoaccumulation index (Igeo), the sediments examined can be classified as extremely and heavily contaminated (and moderately contaminated in a small number of cases). The assessment of sediment quality based on Igeo, with the regional geochemical background (2.5 mg kg?1) adopted as the baseline, results in non-contaminated and moderately contaminated sediments being dominant with a far smaller number of heavily and extremely contaminated ones.

Conclusions

In the case of several water bodies, Cd concentrations were at record levels that have not been found anywhere else in the world. On the basis of the Igeo, sediments of varying quality were found—from virtually uncontaminated to extremely contaminated. The Igeo index as an indicator of the quality of bottom sediments is a measure that requires careful interpretation, especially when different concentration levels regarded as natural are used for determining its value.
  相似文献   

13.
Maize (Zea mays L.) is the most widely grown crop in Bosnia and Herzegovina especially in Northwest part of the country. Considering that, the maize is extremely sensitive to micronutrient deficiency the main aim of this study was to asses: (1) micronutrient availability in soil, (2) micronutrient status in silage maize; and (3) the relationship between micronutrient soil availability and maize plant concentration. Soil samples for micronutrient availability (n?=?112) were collected from 28 farms in 7 municipalities. Plant available micro- and macro- nutrients in soil were extracted using Mehlich-3, except plant available Se was extracted using 0.1M KH2PO4. Result showed that on average there was no significant difference between different soil types regarding their potential in plant available nutrients. P deficiency was present both, in soil and plants in whole region. Soil extractable P was ranging from 0.003–0.13?g?kg?1 and total plant P was ranging from 0.79–4.95?g?kg?1. Zinc deficiency was observed in two locations both in soil (0.71?mg?kg?1; 0.79?mg?kg?1) and plant (11.5?mg?kg?1; 15.8?mg?kg?1). Potential Se soil deficiency was observed on some locations, while Se plant status is not high enough to meet daily requirements of farm animals. Extractable soil nutrients could be used as relatively good predictor of potential soil and plant deficiencies, but soil nutrient interactions and climate conditions are highly effecting the plant uptake potential.  相似文献   

14.
ABSTRACT

Selenium (Se) deficiency in Scandinavian soils is a common problem, and crops generally contain inadequate amounts to meet human need. This study shows a relationship of the Se concentration in spring wheat (Triticum aestivum L., c.v. ‘Helena’) and leaching water with timing of nitrogen (N) [as ammonium nitrate (NH4NO3)] and Se [as sodium selenate (Na2SeO4)] application. Ammonium-nitrate was applied by two methods (i) whole amount at sowing and (ii) in split application as 75% at sowing and 25% at stem elongation. Selenate was applied at cereal growth stages after sowing, e.g., tillering, stem elongation, head emergence, and milking. Split N application in comparison to one N application increased the grain protein content from 12.1 to 13.7 mg g? 1, and grain Se was increased from 0.8 to 1.1 mg kg? 1 when Se was applied at stem elongation and from 0.6 to 0.9 mg kg? 1 when applied at heading. The highest Se concentration in plant was achieved with the split N application and Se application at stem elongation or heading. Selenium leaching losses increased with increasing selenium concentration in the wheat grains. No differences in Se leaching losses were obtained with split N application. Applying selenate and ammonium-nitrate together after tillering increased the grain Se concentration, but did not affect the potential leaching of Se, and thus could be considered as an appropriate time of application of these elements.  相似文献   

15.
Low selenium (Se) dietary intake has encouraged the development of fortification strategies such as SeO42- application to arable land. Selenate is highly mobile in soil systems, but it is not known whether fast abiotic retention could reduce Se loss from topsoil after SeO42- fertilisation. This work explicitly aims at fast abiotic SeO42- sorption in three soils exposed to 20–1250 µg L?1 Se in a 24-h batch experiment. This study demonstrated the susceptibility of Se sorption data to distortion when inductively coupled plasma quadrupole mass spectrometry (ICP-QMS) measurements suffered from non-spectral interferences induced by concomitant elements in an aqueous soil-derived matrix. The distribution coefficient (Kd), not exceeding 2 L kg?1 at any Se level, was shown to be a useful indicator for the extent of ion competition for sorption sites depending on the SeO42- concentration employed. Sorption experiments conducted in the presence or absence of nitrate (10 mM), sulphate (0.52 mM) and phosphate (0.21 mM) allowed three phenomena explaining different SeO42- retention behaviours found even between similar Cambisols to be proposed. Finally, we showed that the co-application of sulphate or phosphate with SeO42- might decrease Se sorption from 150–170 µg kg?1 to a net release from native Se pool.

Abbreviations: 1st IP: first ionisation potential; RSD: relative standard deviation  相似文献   


16.
17.
The bioavailability and plant uptake of heavy metals (HM), as well as finding the most reliable methods for the prediction of availability, continues to be one of the most crucial problems in agricultural and environmental studies. In agricultural soils from two regions in Kosovo, known for its metal pollution, we collected 60 soil and plant samples (wheat, corn, potatoes, and grass). Heavy metals were extracted from soil with aqua regia (pseudototal concentration), NH4OAc‐EDTA (potential bioavailable), and NH4NO3 (mobile fraction), plant samples were digested with HNO3/H2O2 (microwave assisted extraction). The pseudo total content of Cd, Pb, and Zn showed high value in Mitrovice (mean: Cd–2.92, Pb–570.15, and Zn–522.86 mg kg?1), whereas in Drenas region Ni and Cr showed high value with a mean 258.54 and 203.22 mg kg?1. Also, the potential bioavailability and mobile form of these metals were increased in Mitrovice (mean: Cd–1.59, Pb–217.05, Zn–522.86 mg kg?1, respectively Cd–0.17, Pb–0.64, and Zn–15.45 mg kg?1), compared to Drenas. Cd and Pb were elevated in potato tubers (mean Cd–0.48 and Pb–0.85 mg kg?1). The TF was higher for micronutrients (Zn and Cu) than for non‐essential metals (Cd and Pb). Multiple regression analysis showed a good model for prediction of Cd, Pb and Zn content in plant with significance 99.9%, whereas this model was not significant for Cu, Cr, and Ni. Soil pH played a significant role in the content of Cd and Zn in wheat and potato plants. Clay content also showed significance in Cd concentration in wheat and potato plants, while carbon content was significant for Cd in grass plants, as well as for Zn in wheat and grass plants.  相似文献   

18.
Irrigation with untreated effluent in periurban agriculture could result in accumulation and bioconcentrations of cadmium (Cd) and lead (Pb). Different amendments were used to investigate their effect on availability, concentration, and uptake of metals by wheat in texturally different soils. Crop was irrigated with water containing Cd and Pb at 20 mg L?1, thereby adding 260 mg pot?1 of each metal. Amendments included calcium carbonate at 6 or 12%, gypsum at 50 or 100% of the soil gypsum requirement, farm manure at 7.50 or 15.00 g kg?1 soil, and a control. Amendments decreased ammonium bicarbonate diethylenetriaminepentaacetic acid (AB-DTPA)–extractable Cd and Pb concentrations and uptake by wheat. Dry matter, concentration, uptake, and extractability of Cd and Pb were greater in sandy loam soil compared with those in sandy clay loam soil irrespective of amendments. Sequential extraction showed that more metals were extracted from the control in all fractions and that predominantly metals were found in the carbonate fraction.  相似文献   

19.
Abstract

Phosphogypsum (PG), the by‐product of wet acid production of phosphoric acid from rock phosphate, was found to be effective as a soil conditioner for sodic, solonets, and solonetzic soils. Unlike mine gypsum, PG contains impurities whose release into soil and ground water need to be monitored. PG was incorporated with soils contaminated with oilfield brine to determinate the influence of PG amendments and brine contamination on soil chemical properties and plant response in a growth chamber. Application rates of PG were 0, 25, 50, 100, 200, and 400 Mg ha‐1 and the testing crop was Barley (Hardeum vulgare L.). Phosphogypsum provides a means of remediating brine spills and can result in benefits expressed as increased plant growth. Soil salinity of brine contaminated soils was ameliorated as evidenced by reduced the electrical conductivity, SAR and exchangeable Na levels in 0–15 cm depth of the columns. There is no evidence that application of PG increased the level of trace elements in plants. Contamination of soil with brine spill is the major factor dominating plant growth and soil‐plant element content. From plant growth point of view, two elements could be excessive, namely Boron (B), and Cadmium (Cd). The high level of B in the plant arose from brine spill and the cause for the excessive Cd level in barley grain is unknown and currently under investigation. The distribution of trace elements in soil profiles demonstrated that there was little, if any, potential for movement of trace elements into greater depths.  相似文献   

20.
Elevated levels of As in contaminated water and soil could pose a major threat to the environment. Relatively high levels of As have been reported in agricultural drainage water and in evaporation pond sediments in Kern County, California. The objective of this study was to enumerate and isolate As-resistant microorganisms from agricultural drainage water and evaporation pond sediments and to assess their tolerance to metals, metalloids and antibiotics. The culture medium was amended with arsenite (III), arsenate (V), methylarsonic acid (MAA), and dimethylarsinic acid (DMA). Among the water samples, As(V), MAA, and DMA added to the medium at concentrations from 0.1 to 1000 mg L?1 showed no effect on the colony forming units (CFUs) compared with no As supplementation, while arsenite (III) (> 1.0 mg L?1) inhibited the population. The sediments showed three trends: (i) no effect on CFUs in the presence of As(V) up to 1000 mg kg?1, (ii) a decline in CFUs in the presence of > 100 mg kg?1, As(III), and (iii) an increase in CFUs upon the addition of MAA or DMA at > 25 mg kg?1, Arsenite (III) was much more toxic to the indigenous microflora than any other As species. Arsenite (III) inactivates many enzymes by having a high affinity for thiol groups of proteins. A plate diffusion method was used to assess the tolerance of the As-resistant bacteria to heavy metals, metalloids and antibiotics. Of 14 isolates tested, all were resistant to Co, Cu, Pb, Ni, Mo, Cr, Se(IV), Se(VI), As(III), As(V), Sb, Sn, and Ag (50 µg mL?1). The most toxic trace elements were Cd followed by Hg>Te>Zn. Multiple antibiotic tolerance (resistance to 2 or more antibiotics) was found among 43% of the isolates. The As-resistant bacteria showed a high tolerance to metals and antibiotics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号