首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.

Purpose

Many amendments have been applied to immobilize heavy metals in soil. However, little information is available on the changes of immobilization efficiencies of heavy metals in contaminated soils over time. This work investigated the immobilization efficiencies of copper (Cu) and cadmium (Cd) in contaminated soils in situ remediated with one-time application of three amendments for 1 year and 4 years.

Materials and methods

Apatite, lime, and charcoal were mixed with the topsoil of each plot with the amounts of 22.3, 4.45, and 66.8 t/ha, respectively. Soil chemical properties and fractions of Cu and Cd were examined after in situ remediation for 1 year and 4 years. Soil sorption and retention capacities and desorption proportions for Cu and Cd were investigated by batch experiments.

Results and discussion

The addition of amendments significantly increased soil pH, but decreased exchange acid and aluminum (Al). The amendments significantly decreased the CaCl2 extractable Cu and Cd and transformed them from active to inactive fractions. After the application of amendments for 1 year, the maximum sorption capacities ranged from 35.6 to 38.8 mmol/kg for Cu and from 14.4 to 17.0 mmol/kg for Cd, which were markedly higher than those of the application of amendments for 4 years (Cu, 29.6–34.7 mmol/kg; Cd, 10.9–16.4 mmol/kg). Desorption proportions (D) of Cu and Cd using three extractants followed the order of \( {D}_{{\mathrm{NaNO}}_3}<{D}_{{\mathrm{CaCI}}_2}<{D}_{{\mathrm{MgCI}}_2} \) . Moreover, the retention capacities (R) of Cu and Cd both increased and followed the order of R apatite?>?R lime?>?R charcoal, resulting in higher Cu and Cd in the amended soils than the untreated soil.

Conclusions

Apatite, lime, and charcoal increased the soil sorption and retention capacities of Cu and Cd and resulted in higher immobilization efficiencies in the amended soils than the untreated soil. However, the immobilization efficiencies of Cu and Cd decreased with the decrease of sorption capacities after 4 years. It was concluded that apatite had the best effect on the long-term stability of immobilized Cu and Cd and can be applied to immobilize heavy metals in contaminated soils.  相似文献   

2.
Abstract

Though surface‐applied gypsum has been shown to be useful in reducing the subsoil acidity syndrome, excessive application could reduce the availability of other essential cations in soil. This study was conducted to determine the effects of surface‐applied gypsum on the availability of potassium (K) and magnesium (Mg) in field soils. Field experiments were conducted on Davidson and Tifton series soils in the southeastern United States with 6 main ameliorant treatments (0, 2, 5, and 10 t gypsum/ha, soil profile mixed to 1 m without lime incorporation and, mixed with lime to 1‐m depth), and 2 levels of Mg (0 and 100 kg Mg/ha) and 4 levels of K (0, 125, 250, and 375 kg K/ha) in a split‐split plot configuration. Alfalfa was grown on the Tifton soil and sorghum on the Davidson soil. Yields of alfalfa and sorghum increased with 2 t gypsum/ha but were adversely affected above 5 t gypsum/ha. Gypsum amendment at 2 t/ha reduced topsoil exchangeable Mg and K in both soils. In the soil profile study, exchangeable Mg was reduced throughout the upper 52.5‐cm depth, while no reduction of K was observed below the 22.5‐cm depth in either soil. The study indicates that Mg is more susceptible to leaching loss than K after surface application of gypsum. It is also suggested that surface‐applied gypsum be used as a soil ameliorant along with proper management of Mg and K fertilizers.  相似文献   

3.
Pot experiments were conducted to evaluate the effects of basic slag (6 to 18 t/ha), lime (CaCO3: 3 to 9 t/ha), lime (3 t/ha) plus MnO2 (100 mg/kg), and leaching (1.8 L/kg soils) on the growth, yield, and nutrition of rice plants grown on two saline-acid sulfate soils. The Sulfic Fluvaquent (Chakaria series) and Typic Sulfaquent (Badarkhali series) respectively showed low pH (4, 4.3); high electrical conductivity (16.2, 14.2 mS/cm), sodium adsorption ratio (13.6, 12.8), and water soluble SO42? (4.6, 4.9 cmol/kg). The growth and yield response of rice to the treatments were found better in Chakaria than in Badarkhali soil. The leaching treatment was found to be the best to produce the maximum straw, and grain yield (869% increase over the control) and the highest dose of basic slag (18 t/ha) was ranked second (728%) in Badarkhali soil. But in Chakaria soil, the best response (928%) was determined with the highest dose of lime (6 t/ha) followed by the leaching (900%) treatment. The additional application of Mn02 (100 mg/kg) with lime (3 t/ha) significantly increased the straw and grain yields of rice by 42–47% compared with the lime 3 t/ha in both the soils. Similar effects were observed for N, P, and K concentrations in plant straw at maturity. Leaching, basic slag, and lime treatments exerted significant decrease of the Fe, Mn, Zn, and S concentrations in plants, increase of soil solution pH and optimization of some element concentrations in the plants and soil solutions.  相似文献   

4.
《Journal of plant nutrition》2013,36(6):1169-1188
Abstract

A pot experiment was conducted to assess the effect of mineral fertilization and compost on the growth and chemical composition of ryegrass (Lolium perenne L.) grown on two Malian agricultural soils coming from Baguinéda, abbreviated as Bgda, (12°23′ S, 7°45′ W) and Gao (16°18′ N, 0°). Treatments included non‐fertilized control, NPK alone, NPK + C25, NPK + C50, NPK + C100, PK + C50, NK + C50, NP + C50, K + C50, P + C50, N + C50, and C50 alone, where NPK represents the non modified Hoagland's solution and C25, C50, and C100 represent the different rates (25, 50, and 100 T/ha) of compost. Compost and mineral fertilization significantly increased dry matter production. The application of 50 T/ha of compost alone increased the dry matter yield by 10 and 17.5% while mineral nitrogen–phosphorus–potassium (NPK) increased yield by 69.7 and 65% for Gao and Bgda, respectively. The combination of compost and mineral NPK (NPK + C25 for Gao and NPK + C50 for Bgda) affected the highest dry matter yield. For both soils, N concentrations in plants increased significantly with compost rate. Phosphorus and K concentrations in plants varied according to the soil. The application of compost increased the uptake of iron (Fe), manganese (Mn), zinc (Zn), copper (Cu), and potassium (K from both soils). Increases in soil organic carbon, available P, calcium (Ca), magnesium (Mg), Fe, Mn, Zn, Cu, K, and pH were observed in treatments receiving compost. Therefore, compost appeared to be a good supplier of nutrients for tropical soils.  相似文献   

5.
ABSTRACT

Attempts were made to ameliorate sodic black calcareous soils by using different crop residues (composted cotton stalk and biomulch 5 t ha?1, respectively) and green manures (in-situ Crotalaria juncea, Sesbania aculeata, Vigna unguiculata, Vigna radiata, and ex-situ Leucaena leucocephala loppings 5 t ha?1) and gypsum 2.5 t ha?1. The organic amendments were outperformed with respect to improvement in soil microbial biomass carbon and dehydrogenase activity, not gypsum. The application of dhaincha significantly improved the mean weight diameter by 14% over control. The application of gypsum and dhaincha recorded a significant drop in pHs (0.1 and 0.07 units) and exchangeable sodium percentage (26.7% and 20.6%) over control. After 2 years of experiments, dhaincha (14.8%) and sunhemp (15.5%) also showed the commensurable potential of improving yields of chickpea as compared to gypsum (14.8%) over control. Hence, dhaincha and sunhemp can be a better alternative choice to gypsum in sodic soils.  相似文献   

6.
Various amendments and/or a plant cover (Agrostis stolonifera L.) were assessed for their potential to reduce trace element leaching in a contaminated soil under semi-arid conditions. The experiment was carried out in field containers and lasted 30 months. Five treatments with amendments (leonardite (LEO), litter (LIT), municipal waste compost (MWC), biosolid compost (BC) and sugar beet lime (SL)) and a plant cover and two controls (control without amendment but with plant (CTRP) and control without amendment and without plant (CTR)) were established. Drainage volumes were measured after each precipitation event and aliquots were analysed for pH, electrical conductivity (EC) and trace element concentrations (As, Cd, Cu, Pb and Zn). Soil pH and trace element extractability (0.01 M CaCl2) at three different depths (0–10, 10–20 and 20–30 cm) were measured at the end of the experiment. Incorporation of amendments reduced leaching of Cd, Cu and Zn between 40–70% in comparison to untreated soil. The most effective amendments were SL, BC and MWC. At the end of the experiment, extractable concentrations of Cd, Cu and Zn were generally lower in all amended soils and CTRP compared to CTR. Soil pH decreased and extractability of metals increased in all treatments in relation to depth. Results showed that use of these amendments combined with healthy and sustainable plant cover might be a reliable option for “in situ” stabilization of trace elements in moderately contaminated soils.  相似文献   

7.

Purpose

In situ immobilization of heavy metal-contaminated soils with the repeated incorporation of amendments can effectively reduce the bioavailability of soil heavy metals. However, the long-term application of amendments would lead to the destruction of soil structure and accumulation of soil toxic elements, ultimately affecting food security and quality. Thus, the sustainability of the amendments in a heavy metal-contaminated soil was evaluated from 2010 to 2012.

Materials and methods

Batch field experiments were conducted in the soils, which were amended with apatite (22.3 t ha?1), lime (4.45 t ha?1), and charcoal (66.8 t ha?1), respectively. The amendments were applied only one time in 2009, and ryegrass was sown each year. Ryegrass and setaria glauca (a kind of weed) were harvested each year. Concentrations of copper (Cu) and cadmium (Cd) were determined by batch experiments. Five fractions of Cu and Cd were evaluated by a sequential extraction procedure.

Results and discussion

Ryegrass grew well in the amended soils in the first year, but it failed to grow in all the soils in the third year. However, setaria glauca could grow with higher biomass in all the amended soils. The treatment of apatite combined with plants was more effective than lime and charcoal treatments in removing Cu and Cd from the contaminated soils by taking biomass into account. Apatite had the best sustainable effect on alleviating soil acidification. The Cu and Cd concentrations of CaCl2-extractable and exchangeable fractions decreased with the application of amendments. Moreover, apatite and lime could effectively maintain the bioavailability of Cu and Cd low.

Conclusions

Apatite had a better sustainable effect on the remediation of heavy metal-contaminated soils than lime and charcoal. Although all the amendment treated soils did not reduce soil total concentrations of Cu and Cd, they could effectively reduce the environmental risk of the contaminated soils. The findings could be effectively used for in situ remediation of heavy metal-contaminated soils.
  相似文献   

8.
It is well known that compost amendment can improve soil phosphorus (P) availability, but there are few studies comparing the effect of one compost type on soil P pools of soils which differ in properties. The aim of this glasshouse experiment was to determine the effect of compost (derived from garden waste) application on P pools in soils with different properties planted with wheat. Four soils from two sites were used, with a heavier and a lighter textured soil from each site. The compost was applied as a 2.5 cm thick layer on the soil surface and wheat plants were grown for 63 days. The treatments also included soil without compost and plants. All pots were regularly watered. The soils were sampled on day 0 in the unamended soils and on day 63 in soil without compost and with compost, and plants after removal of the compost layer. Without and with compost the concentrations of most P pools were higher in the two heavier textured soils (16% and 35% clay) than in the two lighter textured soils (8% and 13% clay). Principal component analysis (PCA) showed that the concentrations of most P pools were positively correlated with organic matter, clay, and silt content of the soils. Only the concentration of water-soluble P was positively correlated with sand content. Compost addition increased the concentration of microbial P, sodium bicarbonate (NaHCO3)-Pi, sodium hydroxide (NaOH)-Pi, hydrochloric acid (HCl)-P, and residual P in all soils, whereas the concentration of NaHCO3-Po was reduced and the concentration of NaOH-Po little affected by compost addition indicating that P was transferred from the compost layer with watering. Compared with the unamended soil on day 0, the concentrations of microbial P, NaHCO3-Pi, NaOH-Pi, HCl-P, and residual P on day 63 were higher, whereas the concentrations of the two organic pools (NaHCO3-Po and NaOH-Po) were lower. This suggests mineralization of organic P pools and formation of inorganic P as well as microbial P uptake. These changes occurred in the unamended and compost-amended soils with greater increases over time in the compost-amended soils. It can be concluded that the size of the P pools is predominately affected by soil texture. Compost amendment increases P availability and microbial P uptake but also leads to the formation of less labile P pools such as HCl-P and residual P which could serve as plant P sources in the long term.  相似文献   

9.
Abstract

A study was conducted to investigate the chemical speciation of added cadmium (Cd) and lead (Pb) and their availability as influenced by fresh organic matter (OM) and sodium chloride (NaCl) in three agricultural soils. The soils were treated with 20 mg Cd/kg as cadmium nitrate [Cd(NO3)2 · 4H2O], 150 mg Pb/kg as lead nitrate [Pb(NO3)2], 20 g/kg alfalfa powder, and 50 mmol/kg of NaCl and then incubated for 3 months at 60% water‐holding capacity (WHC) and constant temperature (25 °C). Subsamples were taken after 1, 3, 6, and 12 weeks of incubation, and electrical conductivity (EC), pH, dissolved organic carbon (DOC), and concentrations of cations and anions were determined in the 1:2.5 soil/water extract. Available Cd and Pb were determined in 0.05 M ethylenediaminetetraacetic acid (EDTA) extract. Concentrations of organic and inorganic species of Cd and Pb in soil solution were also predicted using Visual Minteq speciation program. The most prevalent species of dissolved Pb and Cd in the soils were Pb‐DOC and Cd2+ species, respectively. Salinity application increased the available and soluble Cd significantly in the acid and calcareous soils. It, however, had little effect on soluble Pb and no effect on available Pb. Organic‐matter application decreased availability of added Pb significantly in all soils. In contrast, it raised soluble Pb in all soils except for the acid one and approximated gradually to the added Pb with time. Impact of OM on available Cd was somewhat similar to that of Pb. Soluble Cd increased by OM application in the calcareous soil, whereas it decreased initially and then increased with time in the other soils.  相似文献   

10.
A pot experiment was conducted to investigate the effect of chromium compost (0, 10, 30, and 50%) on the growth and the concentrations of some trace elements in lettuce (Lactuca sativa L.) and in the amended soils. Compost addition to the soil (up to 30%) increased dry matter yield (DMY); more than 30% decreased DMY slightly. The application of compost increased soil pH; nitric acid (HNO3)–extractable copper (Cu), chromium (Cr), lead (Pb), and zinc (Zn); and diethylenetriaminepentaacetic acid (DTPA)–, Mehlich 3 (M3)–, and ammonium acetate (AAc)–extractable soil Cr and Zn. The addition of Cr compost to the soil increased tissue Cr and Zn but did not alter tissue cadmium (Cd), Cu, iron (Fe), manganese (Mn), nickel (Ni), and Pb. The Cr content in the lettuce tissue reached 5.6 mg kg?1 in the 50% compost (326 mg kg?1) treatment, which is less than the toxic level in plants. Our results imply that compost with high Cr could be used safely as a soil conditioner to agricultural crops.  相似文献   

11.
ABSTRACT

Soil degradation due to salinization and sodication is the paramount threat in Indo-Gangetic plains. The studies on reclamation and management of such soils can provide a pragmatic solution for improving fertility and productivity of these soils. Lack of organic matter and poor availability of nutrients are the major factors for low productivity of sodic soils. Rice-wheat is a major cropping system in Indo-Gangetic alluvial plain region even in reclaimed sodic soils and farmers used inorganic fertilizers only to get higher yields. In this study, we used different organic sources of amendments in conjunction with different nitrogen (N) doses supplied through inorganic fertilizers to investigate the combined effect of organic and inorganic amendments on soil fertility and the productivity of rice- wheat system in sodic soils. Salt tolerant varieties of rice and wheat were grown in sodic soil (pH: 9.30, EC: 1.12 dSm?1 and exchangeable sodium percentage, ESP: 52) during 2014–15 to 2016–17 in a field experiment with 13 treatment combinations of organic and inorganic amendments (T1- (control) 100% of recommended dose of N (RDN), T2-municipal solid waste compost (MSWC) @10 t ha?1 + 50%RDN, T3- MSWC @10 t ha?1 + 75% RDN,T4- MSWC @10 t ha?1 + 100%RDN, T5-Vermicompost (VC) @10 t ha?1 + 50% RDN, T6- VC @10 t ha?1 + 75% RDN, T7-VC@10 t ha?1 + 100% RDN, T8- Farm yard manure (FYM) @ 10 t ha?1 + 50% RDN,T9- FYM@10 t ha?1 + 75%RDN, T10- FYM@10 t ha?1 + 100% RDN, T11-Pressmud (PM) @10 t ha?1 + 50% RDN, T12-PM@10 t ha?1 + 75%RDN, and T13- PM @ 10 t ha?1 + 100% RDN). Use of organic amendments supplemented with reduced dose of N through inorganic fertilizer has significantly improved soil bio-physical and chemical properties. Application of VC@10 t ha?1 + 100% RDN (T7) decreased soil bulk density, pH, EC, ESP and Na content to 2.0, 4.2, 26.5, 42.8, and 56.6% respectively and increased soil organic carbon by 34.6% over control (T1). Soil fertility in terms of available N, P, K, Ca, and Mg increased by 20.5, 33.0, 36.4, and 44%, respectively, over control (T1). Soil microbial biomass carbon, nitrogen, and phosphorus also improved significantly due to combined use of organic amendments and inorganic fertilizers over the only use of inorganic fertilizers. Decreasing in soil sodicity and increasing soil fertility showed significant increase (P < 0.05) in crop growth, growth indices, and grain yields of rice and wheat. The study revealed that combined use of VC or MSW compost @10 t ha?1 in conjunction with 75% RDN through inorganic fertilizers in sodic soils proved sustainable technology for restoration of degraded sodic soils and improving crop productivity.  相似文献   

12.
The influence of Cd on the decomposition of various types of organic materials in soil was studied. CdCl2 or CaCl2 (control) was added to a Gley soil at a level of 10 mmol kg-1 soil. Three days later, organic materials including glutamic acid, glucose, casein, starch, cellulose, lignin, rice straw, rice straw compost, or 3 kinds of sludges were mixed with the soil in a proportion of 1%, respectively. During an 8-week period of incubation at 28°C, CO2 evolution was measured periodically. At the end of the incubation period, the form of Cd in the soil was analyzed by successive extractions with water, CaCl2, CH3COOH, Na4P2O7, and with hot HCl after HNO3-HClO4 digestion.

The decomposition of all the organic materials was inhibited by the addition of Cd, but the degree of inhibition varied considerably among the types of organic materials. The decomposition of rice straw, rice straw compost, and sludges was markedly inhibited by Cd. The amount of water-soluble Cd was less in the soils treated with rice straw, rice straw compost, and sludges than in the soils treated with other types of organic materials, while the amounts of CaCI2-extractable Cd were much larger in the latter soils. In the case of rice straw, rice straw compost, and sludges Cd was easily adsorbed from the CdCl2 solution.

These results suggest that the inhibition of organic matter decomposition by Cd is caused by the adsorption of Cd onto organic matter.  相似文献   

13.
Fertilizer recommendations are needed to increase organic vegetable yields. Thus, organic lettuce growth and nutrient uptake was investigated in a randomized block pot experiment with twelve treatments from the factorial structure of three factors: (i) Gafsa phosphate [0 and 200 kg phosphorus pentoxide (P2O5) ha?1], (ii) compost from source separated municipal organic waste (0, 15, and 30 t ha?1) and (iii) limestone [0 and 8 t ha?1 calcium carbonate (CaCO3) equivalent]. Lettuce yield increased with compost application and a first order interaction between lime and phosphate was clear because lime partially replaced the need for phosphate. This was explained by the effect of liming on P availability in acid soils. Nitrogen (N), phosphorus (P), and potassium (K) accumulation increased in lettuces produced with compost or phosphate but only the accumulation of N was increased with lime. This compost is recommended to increase nutrient availability for organic lettuce whereas the need for phosphate fertilization may decrease with liming.  相似文献   

14.
A long-term experiment was conducted to evaluate the effect of integrated use of organic and inorganic sources of nutrients on soil quality and its relation to finger millet yield under two predominant crop rotations viz., groundnut–finger millet and finger millet monocropping in hot moist semiarid rainfed Alfisol soils in South India. Two experiments were laid out separately for each cropping system in a randomized complete block design with five treatments individually with FYM and maize residue-based combinations viz., Control (T1), FYM @ 10t ha ?1 or Maize residue (MR) @ 5t ha ?1 (T2), farm yard manure (FYM) @ 10t ha ?1 or Maize residue (MR) @ 5t ha ?1 + 50% RDF (Recommended Fertiliser Dose) N, P2O5 &; K2O (T3), FYM @ 10t ha ?1 or Maize residue (MR) @ 5t ha ?1 + 100% RDF N,P2O5 &; K2O (T4), Recommended N, P2O5 &; K2O (T5). Thus, four sets of nutrient management systems were evaluated. The results showed that farm yard manure or maize residue application in combination with recommended dose of fertilizer significantly improved the soil physical, chemical, and biological properties compared to control and application of inorganic fertilizers alone. Based on evaluation of 19 soil quality parameters under each of the four nutrient management systems, the common key soil quality indicators emerged out were: organic C (OC), available nitrogen (N), available sulfur (S), and mean weight diameter (MWD) of soil aggregates. A significant correlation between the finger millet yield and the relative soil quality indices (RSQI) indicates the importance of soil quality in these semiarid Alfisol soils. The results and the methodology adopted in the present study could be of importance in improving the soil quality not only for the region of the study, but also in other identical soils and cropping systems across the world.  相似文献   

15.

Purpose

In view that soils are bodies and that processes such as storage and release of water, carbon, nutrients and pollutants, and aeration and rooting happen in these bodies, it is of interest to know the density of elements and compounds in soils. On the basis of soil bulk and element density of organic carbon (OC), N, and heavy metals in soils and of horizon thickness, stocks of these elements for garden soils were calculated.

Materials and methods

Fourteen gardens in four allotments of the northwestern part of the Ruhr area, Germany were investigated. The research included 14 vegetable patches, 13 lawns, 2 compost heaps, and 1 meadow. Volume samples were taken. The soil analysis included pH, soil bulk density, and OC, N, Pb, Cd, Zn, Cu, and Ni contents.

Results and discussion

The soils were from sandy loam to loamy sand. The pH was slightly acid and C/N ratio about 20. Soil bulk density was between 0.8 and 1.4 g cm?3 and mean bulk density was 1.1 g cm?3. Mean OC content was for compost 7.4 %, vegetable patches 5.2 % (0–30 cm depth), and lawns and meadow 5.8 and 5.2 % (0–5 cm depth). OC density for compost was 76 mg cm?3, vegetable patches 56 mg cm?3, and lawns 67 mg cm?3 (0–5 cm). Mean OC stock in 0–30 cm soil depth in vegetable patches was 16.4 kg m?2, lawns 15.5 kg m?2, and meadow 11.1 kg m?2. N contents were between 0.06 and 0.46 %. For compost, the mean was 0.39 %, vegetable patches 0.27 % (0–30 cm), lawn 0.28 %, and meadow 0.26 % (0–5 cm). Mean stock of N in 0–30 cm depth for vegetable patches was 0.84 kg m?2, lawn 0.76 kg m?2, and meadow 0.55 kg m?2. For heavy metals in compost, vegetable patches, lawn and meadow, Cd contents were in the range of 1.7 to 3.0 mg kg?1, Pb 49 to 152 mg kg?1, and Zn 52 to 1830 mg kg?1. The amounts stored per square meters in 30 cm depth were for Cd 0.6–1.1 g, Pb 15–52 g, Zn 41–440 g, Cu 4–39 g, and Ni 1–8 g.

Conclusions

Allotment gardens have a high capacity to store CO2 as OC. Roughly, there will be 7–8 million tons of OC stored in the 1.3 million allotment gardens of Germany. The high amount of 8000 kg N ha?1 could damage the groundwater when released by wrong soil management. Cd, Zn, Pb, Cu, and Ni amounts of 7.8, 1000, 300, 135, and 30 kg ha?1, respectively, are a lasting burden.
  相似文献   

16.
Soil degradation affects soil properties such as structure, water retention, porosity, electrical conductivity (EC), sodium adsorption ratio (SAR), and soil flora and fauna. This study was conducted to evaluate the response of contrasting textured soils irrigated with water having different EC:SAR ratios along with amendments: gypsum (G), farm manure (FM), and mulch (M). Water of different qualities viz. EC 0.6 + SAR 6, EC 1.0 + SAR 12, EC 2.0 + SAR 18, and EC 4.0 + SAR 30 was used in different textured soils with G at 100% soil gypsum requirement, FM at 10 Mg ha?1, and M as wheat straw was added on surface soil at 10 Mg ha?1. Results revealed that the applied amendments in soils significantly decreased pHs and electrical conductivity (ECe) of saturated paste and SAR. Four pore volumes of applied water with leaching fraction 0.75, 0.77, and 0.78 removed salts 3008, 4965, and 5048 kg ha?1 in loamy sand, silty clay loam, and sandy clay loam soils, respectively. First four irrigations with LF of 0.82, 0.79, 0.75, and 0.71, removed 5682, 5000, 3967, and 2941 kg ha?1 salts, respectively. The decreasing order for salt removal with amendments was FM > G > M > C with LF = 0.85, 0.84, 0.71, and 0.68, respectively. This study highlights a potential role of soil textures to initiate any mega program for reclamation of saline-sodic soils in the perspective of national development strategies.  相似文献   

17.

Purpose

The objectives of this study were (1) to investigate the effects of manure compost and earthworms on Cd mobility in Cd-contaminated soil, (2) to test whether the bioturbation of earthworms reduces the immobilization effect of the manure compost when they are combined, and (3) to explore the distribution of Cd in aggregates formed by earthworms with corresponding fractionation analysis.

Materials and methods

A laboratory experiment was conducted to evaluate the effect of either or both application of manure compost and the earthworms Eisenia fetida into cadmium historically contaminated soil on cadmium mobility. Soil characteristics and metal concentrations in earthworms and soil were measured, and soil aggregates in the mesocosms were separated for Cd fraction analysis based on four steps sequential extraction.

Results and discussion

Manure compost reduced mobile Cd based on CaCl2 extraction and Toxicity Characteristic Leaching Procedure (TCLP) test by 60–95 and 25–30 %, respectively. However, earthworm application alone increased Cd mobility by 9–15 %. Besides, in the presence of manure compost, earthworms further immobilized cadmium to a slight extent. The interaction effect of manure compost and earthworms combined on Cd immobilization suggested that earthworms promoted the formation of large macroaggregates (>2 mm) and the redistribution of Cd concentration in soil aggregates. Additionally, earthworms reduced carbonate fraction of Cd from 42.3–49.6 to 6.3–19.5 % in different aggregates, respectively. And, residual fraction of Cd increased from 33.9–42.2 to 63.9–77.5 % simultaneously. The results may be due to the thorough mixture of phosphates and organic matter with cadmium during bioturbation on account of the available form of phosphorus, nitrogen, and cadmium changing to the more recalcitrant form.

Conclusions

Manure compost addition increased the soil pH, phosphorus, nitrogen, and organic carbon content, and decreased Cd mobility. The application of earthworms and manure compost combined exhibited higher efficiency for cadmium immobilization, which can be used for Cd remediation due to the redistribution of Cd concentration in soil aggregates and the transformation of soluble Cd to the residual precipitate fraction.
  相似文献   

18.
Abstract

Besides supplying calcium (Ca) and sulfur (S) to plants, gypsum has recently been used in agriculture to ameliorate some soil physical and chemical properties, especially to alleviate aluminum phytotoxicity in subsoils. When applied in large quantities, however, gypsum may leach significant amounts of nutrients from the plow layer. This study was conducted to assess the effect of gypsum addition to the soil on the magnitude of cation leaching as well as the relationship of leaching with some soil properties in a group of seven Brazilian soils. Rates of gypsum equivalents to 0, 5.0, 10, and 20 t ha?1 (0, 2.5, 5.0, and 10 g kg?1) were mixed with triplicate soil samples consisting of 3.0 kg of dry base soil. After 60 days of incubation at room temperature (15–25°C), the experimental units were packed into polyvinyl chloride leaching columns (32‐cm‐high×10 -cm-diameter) at a density of 0.9 g cm?3. Thereafter, they were percolated once a week with a volume of distilled water equivalent to 1.5 times the total soil porosity over 11 weeks. Soil samples were collected before the first and after the last percolation, for chemical analysis. Averaged across soils, 11 percolation events leached about 26% of each Ca, magnesium (Mg), and potassium (K) from the treatment without gypsum. Averaged across soils and rates, addition of gypsum leached 41–94% of added Ca, 13–90% of exchangeable Mg, and 13–58% of exchangeable K, and the highest losses occurred on the sandiest soils. The relationship between soil parameters and Ca leaching varied with gypsum rate: in the treatments that received gypsum, leaching was negatively related to cation exchange capacity (CEC), clay, and organic matter, and positively correlated with sand; in the treatment with no gypsum, leaching correlated with the same parameters above, nevertheless, all coefficients presented opposite signs. Leaching of K caused by gypsum was negatively associated with clay and positively with sand, whereas leaching of Mg was poorly correlated with any soil parameter. Gypsum is a good source to promote high and fast downward movement of Ca in the soil profile, but rates must be cautiously chosen because of excessive leaching of Mg especially on soils with low CEC.  相似文献   

19.
Potassium (K) is one of the major essential nutrient elements whose application of organic or nano-chelate-fertilizers has received increased attention recently. Cadmium (Cd) contamination in agricultural soils and environment is increasing due to the over-application of Cd-containing phosphate fertilizers. But few studies have been carried out on the environmental influences of K-nano-chelate fertilizers especially on Cd-polluted soils. Therefore, the effects of K-fertilizer application in different rates (0, 100 and 200 mg kg?1 soil) and forms (KCl, K2SO4 and K-nano-chelate) on Cd content and partitioning in Ocimum basilicum grown on an artificially Cd-contaminated calcareous soil (with 40 mg Cd kg?1 soil) were studied under greenhouse conditions. Cadmium decreased shoot dry weight (SDW), but did not affect root dry weight (RDW) and no consistent trend was observed with applied K. Cadmium increased shoot and root Cd concentration or uptake. KCl and K2SO4 increased shoot Cd concentration compared to that of control, whereas K-nano-chelate did not affect it. In Cd-treated soils the mean value of Cd translocation factor (ratio of Cd concentration in shoots to that of roots) decreased by 60% as compared to that of the control. Application of 100 mg K-K2SO4 and 100 and 200 mg K-nano-chelate increased the Cd translocation factor by 49, 59 and 112% in Cd-treated soils, respectively. In Cd-treated soils, greater amounts of Cd accumulated in roots. K-nano-chelate could mitigate the adverse effect of Cd on SDW and Cd accumulation in plants grown on Cd-polluted soils, so the risk of Cd entrance to the food chain is reduced (however, in Cd-untreated soils, K-nano-chelate increased the Cd translocation factor higher than other K sources). In Cd-polluted soils KCl was the most inappropriate fertilizer that may intensify Cd accumulation in plants. However, it may be useful in the phytoremediation of Cd-polluted soils.  相似文献   

20.
Abstract

A great deal of information on the efficiency of gypsum or phosphogypsum to ameliorate acidity in highly weathered soils is available, but only limited information is available on the efficiency in acid Andosols, which possess large amounts of active aluminum (Al). We examined the effectiveness of gypsum application to non-allophanic Andosols (one humus-rich A horizon and two B horizons poor in humus) using extractable soil Al analyses (batch and continuous extraction methods) and a cultivation test using burdock (Arctium lappa). With gypsum amendment, pH(H2O) values of the soil decreased from 4.5–4.7 to 4.2–4.4, whereas the treatment made almost no difference to the values of pH(KCl). Total active Al (acid oxalate-extractable Al) was hardly affected by gypsum for all samples. Potassium chloride-extractable Al definitely decreased with the addition of gypsum in all soils; however, the decrease was small (0.1–1.4 cmolc kg?1) and the values still exceeded “the threshold of 2 cmolc kg?1” for inducing Al toxicity in sensitive plants (4.4–8.6 cmolc Al kg?1). The change in Al solubility with gypsum application represented by Al release rates from soils using continuous extraction methods with a dilute acetate buffer solution (10?3 mol L?1, pH 3.5) differed greatly among the soil samples: The release rate of one of the B horizon samples decreased by 71%, certainly showing the insolubilization of Al compounds, whereas the release rates of the A horizon sample showed almost no change. These changes in Al solubility were well correlated with the plant root growth. Root growth was improved with gypsum in the B horizon sample, whereas improvement was not observed in the A horizon soil. The decrease in the rate of Al release of another B horizon soil with gypsum treatment was smaller (by 20–34%), possibly because of lower pH values after gypsum application (pH[H2O] of 4.2–4.3). In the B horizon soil, root growth improved only slightly. Thus, the effectiveness of gypsum application to acid Andosols appeared to be largely influenced by soil humus contents and slight differences in soil pH values, and corresponded to a decrease in Al release rates using the continuous extraction method.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号