首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
Application of feedlot manure (FLM) to cropping and grazing soils could provide a valuable N nutrient resource. However, because of its high but variable N concentration, FLM has the potential for environmental pollution of water bodies and N2O emission to the atmosphere. As a potential management tool, we utilised the low-nutrient green waste compost (GWC) to assess its effectiveness in regulating N release and the amount of N2O emission from two Vertisols when both FLM and GWC were applied together. Cumulative soil N2O emission over 32 weeks at 24°C and field capacity (70% water-filled pore space) for a black Vertisol (Udic Paleustert) was 45 mg N2O m−2 from unamended soil. This increased to 274 mg N2O m−2 when FLM was applied at 1 kg m−2 and to 403 mg N2O m−2 at 2 kg m−2. In contrast, the emissions of 60 mg N2O m−2 when the soil was amended with GWC 1 kg m−2 and 48 mg N2O m−2 at 2 kg m−2 were not significantly greater than the unamended soil. Emission from a mixture of FLM and GWC applied in equal amounts (0.5 kg m−2) was 106 mg N2O m−2 and FLM applied at 0.5 kg m−2 and GWC at 1.5 kg GWC m−2 was 117 mg N2O m−2. Although cumulative N2O emissions from an unamended grey Vertisol (Typic Chromustert) were only slightly higher than black Vertisol (57 mg N2O m−2), FLM application at 1 kg m−2 increased N2O emissions by 14 times (792 mg N2O m−2) and at 2 kg m−2 application by 22 times (1260 mg N2O m-2). Application of GWC did not significantly increase N2O emission (99 mg N2O m−2 at 1 kg m−2 and 65 mg N2O m−2 at 2 kg m−2) above the unamended soil. As observed for the black Vertisol, a mixture of FLM (0.5 kg m−2) and GWC (0.5 or 1.5 kg m−2) reduced N2O emission by >50% of that from the FLM alone, most likely by reducing the amount of mineral N (NH4+–N and NO3–N) in the soil, as mineral N in soil and the N2O emission were closely correlated.  相似文献   

2.
The effect of reduced tillage (RT) on nitrous oxide (N2O) emissions of soils from fields with root crops under a temperate climate was studied. Three silt loam fields under RT agriculture were compared with their respective conventional tillage (CT) field with comparable crop rotation and manure application. Undisturbed soil samples taken in September 2005 and February 2006 were incubated under laboratory conditions for 10 days. The N2O emission of soils taken in September 2005 varied from 50 to 1,095 μg N kg−1 dry soil. The N2O emissions of soils from the RT fields taken in September 2005 were statistically (P < 0.05) higher or comparable than the N2O emissions from their respective CT soil. The N2O emission of soils taken in February 2006 varied from 0 to 233 μg N kg−1 dry soil. The N2O emissions of soils from the RT fields taken in February 2006 tended to be higher than the N2O emissions from their respective CT soil. A positive and significant Pearson correlation of the N2O–N emissions with nitrate nitrogen (NO3 –N) content in the soil was found (P < 0.01). Leaving the straw on the field, a typical feature of RT, decreased NO3 –N content of the soil and reduced N2O emissions from RT soils.  相似文献   

3.
Nitrous oxide (N2O) emissions, soil microbial community structure, bulk density, total pore volume, total C and N, aggregate mean weight diameter and stability index were determined in arable soils under three different types of tillage: reduced tillage (RT), no tillage (NT) and conventional tillage (CT). Thirty intact soil cores, each in a 25 × 25-m2 grid, were collected to a depth of 10 cm at the seedling stage of winter wheat in February 2008 from Maulde (50°3′ N, 3°43′ W), Belgium. Two additional soil samples adjacent to each soil core were taken to measure the spatial variance in biotic and physicochemical conditions. The microbial community structure was evaluated by means of phospholipid fatty acids analysis. Soil cores were amended with 15 kg NO3-N ha−1, 15 kg NH4+-N ha−1 and 30 kg ha−1 urea-N ha−1 and then brought to 65% water-filled pore space and incubated for 21 days at 15°C, with regular monitoring of N2O emissions. The N2O fluxes showed a log-normal distribution with mean coefficients of variance (CV) of 122%, 78% and 90% in RT, NT and CT, respectively, indicating a high spatial variation. However, this variability of N2O emissions did not show plot scale spatial dependence. The N2O emissions from RT were higher (p < 0.01) than from CT and NT. Multivariate analysis of soil properties showed that PC1 of principal component analysis had highest loadings for aggregate mean weight diameter, total C and fungi/bacteria ratio. Stepwise multiple regression based on soil properties explained 72% (p < 0.01) of the variance of N2O emissions. Spatial distributions of soil properties controlling N2O emissions were different in three different tillages with CV ranked as RT > CT > NT.  相似文献   

4.
In this study, we investigated N2O emissions from two fields under minimum tillage, cropped with maize (MT maize) and summer oats (MT oats), and a conventionally tilled field cropped with maize (CT maize). Nitrous oxide losses from the MT maize and MT oats fields (5.27 and 3.64 kg N2O-N ha−1, respectively) were significantly higher than those from the CT maize field (0.27 kg N2O-N ha−1) over a period of 1 year. The lower moisture content in CT maize (43% water-filled pore space [WFPS] compared to 60–65%) probably caused the difference in total N2O emissions. Denitrification was found to be the major source of N2O loss. Emission factors calculated from the MT field data were high (0.04) compared to the CT field (0.001). All data were simulated with the denitrification decomposition model (DNDC). For the CT field, N2O and N2O + N2 emissions were largely overestimated. For the MT fields, there was a better agreement with the total N2O and N2O + N2 emissions, although the N2O emissions from the MT maize field were underestimated. The simulated N2O emissions were particularly influenced by fertilization, but several other measured N2O emission peaks associated with other management practices at higher WFPS were not captured by the model. Several mismatches between simulated and measured \textNH4+ {\text{NH}}_4^ + , \textNO3- {\text{NO}}_3^ - and WFPS for all fields were observed. These mismatches together with the insensitivity of the DNDC model for increased N2O emissions at the management practices different from fertilizer application explain the limited similarity between the simulated and measured N2O emissions pattern from the MT fields.  相似文献   

5.
 Nitrous oxide (N2O) emissions were measured from an irrigated sandy-clay loam cropped to maize and wheat, each receiving urea at 100 kg N ha–1. During the maize season (24 August–26 October), N2O emissions ranged between –0.94 and 1.53 g N ha–1 h–1 with peaks during different irrigation cycles (four) ranging between 0.08 and 1.53 g N ha–1 h–1. N2O sink activity during the maize season was recorded on 10 of the 29 sampling occasions and ranged between 0.18 and 0.94 g N ha–1 h–1. N2O emissions during the wheat season (22 November–20 April) varied between –0.85 and 3.27 g N ha–1 h–1, whereas peaks during different irrigation cycles (six) were in the range of 0.05–3.27 g N ha–1 h–1. N2O sink activity was recorded on 14 of the 41 samplings during the wheat season and ranged between 0.01 and 0.87 g N ha–1 h–1. Total N2O emissions were 0.16 and 0.49 kg N ha–1, whereas the total N2O sink activity was 0.04 and 0.06 kg N ha–1 during the maize and wheat seasons, respectively. N2O emissions under maize were significantly correlated with denitrification rate and soil NO3 -N but not with soil NH4 +-N or soil temperature. Under wheat, however, N2O emissions showed a strong correlation with soil NH4 +-N, soil NO3 -N and soil temperature but not with the denitrification rate. Under either crop, N2O emissions did not show a significant relationship with water-filled pore space or soil respiration. Received: 11 June 1997  相似文献   

6.
Animal excreta-nitrogen (N) deposited onto pastoral soils during grazing has been identified as an important source of nitrous oxide (N2O). Understanding the extent and seasonal variation of N2O emissions from animal urine is important for the development of best management practices for reducing N2O losses. The aim of this study was to determine N2O emissions from cow urine after application onto a pastoral soil in different seasons between 2003 and 2005. A closed soil chamber technique was used to measure the N2O emissions from a poorly drained silt loam soil which received either 0 (control) or 1,000 kg N ha−1 (as real cow urine) per application. Application of cow urine to soil increased N2O fluxes above those from the control site for up to 6 weeks, but the duration for which N2O levels were elevated depended on the season. Nitrous oxide emissions were higher during the winter and spring measurement periods when the soil water-filled pore space (WFPS) was mostly above field capacity, and the emissions were lower during the summer and autumn measurement periods when the soil WFPS was below field capacity. The N2O emission factor for urine ranged from 0.02 to 1.52% of N applied. This seasonal effect suggests that a reduction in urine return to soil (e.g., through use of standoff pads or animal housing) under wet conditions in New Zealand can potentially reduce N2O emissions from pastoral soils.  相似文献   

7.
Nitrous oxide emissions under different soil and land management conditions   总被引:4,自引:0,他引:4  
Nitrous oxide (N2O) emissions of three different soils – a rendzina on cryoturbed soil, a hydromorphic leached brown soil and a superficial soil on a calcareous plateau – were measured using the chamber method. Each site included four types of land management: bare soil, seeded unfertilized soil, a suboptimally fertilized rapeseed crop and an overfertilized rapeseed crop. Fluxes varied from –1g to 100g N2O-nitrogen ha–1 day–1. The highest rates of N2O emissions were measured during spring on the hydromorphic leached brown soil which had been fertilized with nitrogen (N); the total emissions during a 5-month period exceeded 3500gNha–1. Significant fluxes were also observed during the summer. Very marked effects of soil type and management were observed. Two factors – the soil hydraulic behaviour and the ability of the microbial population to reduce N2O – appear to be essential in determining emissions of N2O by soils. In fact, the hydromorphic leached brown soil showed the highest emissions, despite having the lowest denitrification potential because of its water-filled pore space and low N2O reductase activity. Soil management also appears to affect both soil nitrate content and N2O emissions. Received: 4 April 1997  相似文献   

8.
In a 1-year study, quantification of nitrous oxide (N2O) emission was made from a flood-irrigated cotton field fertilized with urea at 100kg N ha−1 a−1. Measurements were made during the cotton-growing season (May–November) and the fallow period (December–April). Of the total 95 sampling dates, 77 showed positive N2O fluxes (range, 0.1 to 33.3g N ha−1 d−1), whereas negative fluxes (i.e., N2O sink activity) were recorded on 18 occasions (range, −0.1 to −2.2g N ha−1 d−1). Nitrous oxide sink activity was more frequently observed during the growing season (15 out of 57 sampling dates) as compared to the fallow period (3 out of 38 sampling dates). During the growing season, contribution of N2O to the denitrification gaseous N products was much less (average, 4%) as compared to that during the fallow period (average, 21%). Nitrous oxide emission integrated over the 6-month growing period amounted 324g N ha−1, whereas the corresponding figure for the 6-month fallow period was 648g N ha−1. Subtracting the N2O sink activity (30.3g N ha−1 and 3.8g N ha−1 during the growing season and fallow period, respectively), the net N2O emission amounted 938g N ha−1 a−1. Results suggested that high soil moisture and temperature prevailing under flood-irrigated cotton in the Central Punjab region of Pakistan though favor high denitrification rates, but are also conducive to N2O reduction thus leading to relatively low N2O emission.  相似文献   

9.
The following six pig slurries obtained after acidification and/or solid/liquid separation were used in the research: original (S) and acidified (AS) pig slurry, nonacidified (LF) and acidified (ALF) pig slurry liquid fraction, and nonacidified (SF) and acidified (ASF) pig slurry solid fraction. Laboratory incubations were performed to assess the effect of the application of these slurries on N mineralization and CO2 and N2O emissions from a sandy soil. Acidification maintained higher NH4 +-N contents in soil particularly in the ALF-treated soil where NH4 +-N contents were two times higher than in LF-treated soil during the 55–171-day interval. At the end of the incubation (171 days), 32.9 and 24.2 mg N kg−1 dry soil were mineralized in the ASF- and SF-treated soils, respectively, but no mineralization occurred in LF- and S-treated soils, although acidification decreased N immobilization in ALF- (−25.3 mg N kg−1 soil) and AS- (−12.7 mg N kg−1 soil) compared to LF- (−34.4 mg N kg−1 soil) and S-treated (−18.6 mg N kg−1 soil) soils, respectively. Most of the dissolved CO2 was lost during the acidification process. More than 90% of the applied C in the LF-treated soil was lost during the incubation, indicating a high availability of the added organic compounds. Nitrous oxide emissions occurred only after day 12 and at a lower rate in soils treated with acidified than nonacidified slurries. However, during the first 61 days of incubation, 1,157 μg N kg−1 soil was lost as N2O in the AS-treated soil and only 937 in the S-treated soil.  相似文献   

10.
Nitrous oxide (N2O) is a greenhouse gas and agricultural soils are major sources of atmospheric N2O. Its emissions from soils make up the largest part in the global N2O budget. Research was carried out at the experimental fields of the Leibniz-Institute of Agricultural Engineering Potsdam-Bornim (ATB). Different types (mineral and wood ash) and levels (0, 75 and 150 kg N ha−1) of fertilization were applied to annual (rape, rye, triticale and hemp) and perennial (poplar and willow) plants every year. N2O flux measurements were performed 4 times a week by means of gas flux chambers and an automated gas chromatograph between 2003 and 2005. Soil samples were also taken close to the corresponding measuring rings. Soil nitrate and ammonium were measured in soil extracts.N2O emissions had a peak after N fertilization in spring, after plant harvest in summer and during the freezing–thawing periods in winter. Both fertilization and plant types significantly altered N2O emission. The maximum N2O emission rate detected was 1081 μg N2O m−2 h−1 in 2004. The mean annual N2O emissions from the annual plants were more than twofold greater than those of perennial plants (4.3 kg ha−1 vs. 1.9 kg ha−1). During January, N2O fluxes considerably increased in all treatments due to freezing–thawing cycles. Fertilization together with annual cropping doubled the N2O emissions compared to perennial crops indicating that N use efficiency was greater for perennial plants. Fertilizer-derived N2O fluxes constituted about 32% (willow) to 67% (rape/rye) of total soil N2O flux. Concurrent measurements of soil water content, NO3 and NH4 support the conclusion that nitrification is main source of N2O loss from the study soils. The mean soil NO3-N values of soils during the study for fertilized soils were 1.6 and 0.9 mg NO3-N kg−1 for 150 and 75 kg N ha−1 fertilization, respectively. This value reduced to 0.5 mg NO3-N kg−1 for non-fertilized soils.  相似文献   

11.
The objective of this work was to evaluate the effect of the chemical nature and application frequency of N fertilizers at different moisture contents on soil N2O emissions and N2O/(N2O+N2) ratio. The research was based on five fertilization treatments: unfertilized control, a single application of 80 kg ha−1 N-urea, five split applications of 16 kg ha−1 N-urea, a single application of 80 kg ha−1 N–KNO3, five split applications of 16 kg ha−1 N–KNO3. Cumulative N2O emissions for 22 days were unaffected by fertilization treatments at 32% water-filled pore space (WFPS). At 100% and 120% WFPS, cumulative N2O emissions were highest from soil fertilized with KNO3. The split application of N fertilizers decreased N2O emissions compared to a single initial application only when KNO3 was applied to a saturated soil, at 100% WFPS. Emissions of N2O were very low after the application of urea, similar to those found at unfertilized soil. Average N2O/(N2O+N2) ratio values were significantly affected by moisture levels (p = 0.015), being the lowest at 120% WFPS. The N2O/(N2O+N2) ratio averaged 0.2 in unfertilized soil and 0.5 in fertilized soil, although these differences were not statistically significant.  相似文献   

12.
Cultivation of rice in unsaturated soils covered with mulch is receiving more attention in China because of increasingly serious water shortage; however, greenhouse gas emission from this cultivation system is still poorly understood. A field experiment was conducted in 2001 to compare nitrous oxide (N2O) and methane (CH4) emission from rice cultivated in unsaturated soil covered with plastic or straw mulch and the traditional waterlogged production system. Trace gas fluxes from the soil were measured weekly throughout the entire growth period using a closed chamber method. Nitrous oxide emissions from unsaturated rice fields were large and varied considerably during the rice season. They were significantly affected by N fertilizer application rate. In contrast, N2O emission from the waterlogged system was very low with a maximum of 0.28 mg N2O m–2 h–1. However, CH4 emission from the waterlogged system was significantly higher than from the unsaturated system, with a maximum emission rate of 5.01 mg CH4 m–2 h–1. Our results suggested that unsaturated rice cultivation with straw mulch reduce greenhouse gas emissions.  相似文献   

13.
Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RT) and direct drilling (DD), all with (+CC) or without (−CC) fodder radish as a winter cover crop. Cover crop growth, soil mineral N dynamics, and other soil characteristics were recorded. Furthermore, soil concentrations of N2O were determined eight times during the monitoring period using permanently installed needles. There was little evidence for effects of the cover crop on soil mineral N. Following spring tillage and slurry application soil mineral N was dominated by the input from slurry. Nitrous oxide emissions during autumn, winter and early spring remained low, although higher emissions from +CC treatments were indicated after freezing events. Following spring tillage and slurry application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250-400 μg N m−2 h−1 except in the CT + CC treatment, where emissions peaked at 900 μg N m−2 h−1. Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha−1. A strong positive interaction between cover crop and tillage was observed. Soil concentration profiles of N2O showed a significant accumulation of N2O in CT relative to RT and DD treatments after spring tillage and slurry application, and a positive interaction between slurry and cover crop residues. A comparison in early May of N2O emissions with flux estimates based on soil concentration profiles indicated that much of the N2O emitted was produced near the soil surface.  相似文献   

14.
Nitrous oxide emitted from urine patches is a key source of agricultural greenhouse gas emissions. A better understanding of the complex soil environmental and biochemical regulation of urine-N transformations in wet soils is needed to predict N2O emissions from grazing and also to develop targeted mitigation technologies. Soil aeration, gas diffusion and drainage are key factors regulating N transformations and are affected by compaction during grazing. To understand how soil compaction from animal treading influences N transformations of urine in wet soils, we applied pressures of 0, 220 and 400 kPa to repacked soil cores, followed by 15N-labeled synthetic urine, and then subjected the cores to three successive saturation–drainage cycles on tension tables from 0 to 10 kPa.Compaction had a relatively small effect on soil bulk density (increasing from 0.81 to 0.88 Mg m−3), but strongly affected the pore size distribution. Compaction reduced both total soil porosity and macroporosity. It also affected the pore size distribution, principally by decreasing the proportion of 30–60 μm and 60–100 μm pores and increasing the proportion of micropores (<30 μm).Rates of urine-N transformations, emissions of N2 and N2O, and the N2O to N2 ratio were affected by the saturation/drainage cycles and degree of compaction. During the first saturation–drainage cycle, production of both N2O and N2 was low (<0.4 mg N m−2 h−1), probably because of anaerobic conditions inhibiting nitrification. In the second saturation/drainage cycle, the predominant product was N2 at all compaction rates. By the third cycle, with increasing availability of mineral-N substrates, N2O was the dominant product in the uncompacted (max = 4.70 mg N m−2 h−1) and 220 kPa compacted soils (max = 7.65 mg N m−2 h−1) with lower amounts of N2 produced, while N2 was produced in similar quantities to N2O (max = 3.11 mg N m−2 h−1) in the 400 kPa compacted soil. Reduced macroporosity in the most compacted soil contributed to more sustained N2 and N2O production as the soils drained. In addition, compaction affected the rate of change of soil pH and DOC, both of which affected the N2O to N2 ratio.Denitrification during drainage and re-saturation may make a large contribution to soil N2O emissions. Improving soil drainage and adopting grazing management practices that avoid soil compaction while increasing macroporosity will reduce total N2O and N2 emissions.  相似文献   

15.
Reduction of nitrous oxide (N2O) to dinitrogen (N2) by denitrification in soils is of outstanding ecological significance since it is the prevailing natural process converting reactive nitrogen back into inert molecular dinitrogen. Furthermore, the extent to which N2O is reduced to N2 via denitrification is a major regulating factor affecting the magnitude of N2O emission from soils. However, due to methodological problems in the past, extremely little information is available on N2 emission and the N2:N2O emission ratio for soils of terrestrial ecosystems. In this study, we simultaneously determined N2 and N2O emissions from intact soil cores taken from a mountainous beech forest ecosystem. The soil cores were taken from plots with distinct differences in microclimate (warm-dry versus cool-moist) and silvicultural treatment (untreated control versus heavy thinning). Due to different microclimates, the plots showed pronounced differences in pH values (range: 6.3–7.3). N2O emission from the soil cores was generally very low (2.0 ± 0.5–6.3 ± 3.8 μg N m−2 h−1 at the warm-dry site and 7.1 ± 3.1–57.4 ± 28.5 μg N m−2 h−1 at the cool-moist site), thus confirming results from field measurements. However, N2 emission exceeded N2O emission by a factor of 21 ± 6–220 ± 122 at the investigated plots. This illustrates that the dominant end product of denitrification at our plots and under the given environmental conditions is N2 rather than N2O. N2 emission showed a huge variability (range: 161 ± 64–1070 ± 499 μg N m−2 h−1), so that potential effects of microclimate or silvicultural treatment on N2 emission could not be identified with certainty. However, there was a significant effect of microclimate on the magnitude of N2O emission as well as on the mean N2:N2O emission ratio. N2:N2O emission ratios were higher and N2O emissions were lower for soil cores taken from the plots with warm-dry microclimate as compared to soil cores taken from the cool-moist microclimate plots. We hypothesize that the increase in the N2:N2O emission ratio at the warm-dry site was due to higher N2O reductase activity provoked by the higher soil pH value of this site. Overall, the results of this study show that the N2:N2O emission ratio is crucial for understanding the regulation of N2O fluxes of the investigated soil and that reliable estimates of N2 emissions are an indispensable prerequisite for accurately calculating total N gas budgets for the investigated ecosystem and very likely for many other terrestrial upland ecosystems as well.  相似文献   

16.
Nitrous oxide emissions were monitored at three sites over a 2-year period in irrigated cotton fields in Khorezm, Uzbekistan, a region located in the arid deserts of the Aral Sea Basin. The fields were managed using different fertilizer management strategies and irrigation water regimes. N2O emissions varied widely between years, within 1 year throughout the vegetation season, and between the sites. The amount of irrigation water applied, the amount and type of N fertilizer used, and topsoil temperature had the greatest effect on these emissions.Very high N2O emissions of up to 3000 μg N2O-N m?2 h?1 were measured in periods following N-fertilizer application in combination with irrigation events. These “emission pulses” accounted for 80–95% of the total N2O emissions between April and September and varied from 0.9 to 6.5 kg N2O-N ha?1.. Emission factors (EF), uncorrected for background emission, ranged from 0.4% to 2.6% of total N applied, corresponding to an average EF of 1.48% of applied N fertilizer lost as N2O-N. This is in line with the default global average value of 1.25% of applied N used in calculations of N2O emissions by the Intergovernmental Panel on Climate Change.During the emission pulses, which were triggered by high soil moisture and high availability of mineral N, a clear diurnal pattern of N2O emissions was observed, driven by daily changes in topsoil temperature. For these periods, air sampling from 8:00 to 10:00 and from 18:00 to 20:00 was found to best represent the mean daily N2O flux rates. The wet topsoil conditions caused by irrigation favored the production of N2O from NO3? fertilizers, but not from NH4+ fertilizers, thus indicating that denitrification was the main process causing N2O emissions. It is therefore argued that there is scope for reducing N2O emission from irrigated cotton production; i.e. through the exclusive use of NH4+ fertilizers. Advanced application and irrigation techniques such as subsurface fertilizer application, drip irrigation and fertigation may also minimize N2O emission from this regionally dominant agro-ecosystem.  相似文献   

17.
Nitrous oxide emission (N2O) from applied fertilizer across the different agricultural landscapes especially those of rainfed area is extremely variable (both spatially and temporally), thus posing the greatest challenge to researchers, modelers, and policy makers to accurately predict N2O emissions. Nitrous oxide emissions from a rainfed, maize-planted, black soil (Udic Mollisols) were monitored in the Harbin State Key Agroecological Experimental Station (Harbin, Heilongjiang Province, China). The four treatments were: a bare soil amended with no N (C0) or with 225?kg?N ha?1 (CN), and maize (Zea mays L.)-planted soils fertilized with no N (P0) or with 225?kg?N ha?1 (PN). Nitrous oxide emissions significantly (P?<?0.05) increased from 141?±?5?g N2O-N?ha?1 (C0) to 570?±?33?g N2O-N?ha?1 (CN) in unplanted soil, and from 209?±?29?g N2O-N?ha?1 (P0) to 884?±?45?g N2O-N?ha?1 (PN) in planted soil. Approximately 75?% of N2O emissions were from fertilizer N applied and the emission factor (EF) of applied fertilizer N as N2O in unplanted and planted soils was 0.19 and 0.30?%, respectively. The presence of maize crop significantly (P?<?0.05) increased the N2O emission by 55?% in the N-fertilized soil but not in the N-unfertilized soil. There was a significant (P?<?0.05) interaction effect of fertilization?×?maize on N2O emissions. Nitrous oxide fluxes were significantly affected by soil moisture and soil temperature (P?<?0.05), with the temperature sensitivity of 1.73–2.24, which together explained 62–76?% of seasonal variation in N2O fluxes. Our results demonstrated that N2O emissions from rainfed arable black soils in Northeast China primarily depended on the application of fertilizer N; however, the EF of fertilizer N as N2O was low, probably due to low precipitation and soil moisture.  相似文献   

18.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

19.
On the main Japanese island of Honshu, bark or sawdust is often added to cattle excreta as part of the composting process. Dairy farmers sometimes need to dispose of manure that is excess to their requirements by spreading it on their grasslands. We assessed the effect of application of bark- or sawdust-containing manure at different rates on annual nitrous oxide (N2O) and methane (CH4) emissions from a grassland soil. Nitrous oxide and CH4 fluxes from an orchardgrass (Dactylis glomerata L.) grassland that received this manure at 0, 50, 100, 200, or 300?Mg?ha?1?yr?1 were measured over a two-year period by using closed chambers. Two-way analysis of variance (ANOVA) was employed to examine the effect of annual manure application rates and years on annual N2O and CH4 emissions. Annual N2O emissions ranged from 0.47 to 3.03?kg?N?ha?1?yr?1 and increased with increasing manure application rate. Nitrous oxide emissions during the 140-day period following manure application increased with increasing manure application rate, with the total nitrogen concentration in the manure, and with cumulative precipitation during the 140-day period. However, manure application rate did not affect the N2O emission factors of the manure. The overall average N2O emission factor was 0.068%. Annual CH4 emissions ranged from ?1.12 to 0.01?kg?C?ha?1?yr?1. The annual manure application rate did not affect annual CH4 emissions.  相似文献   

20.
Nitrous oxide emissions from a sandy-loam textured soil wetted to matric potentials of either-1.0 or-0.1 kPa were determined in laboratory experiments in which the soil was incubated in air (control), air plus 10 Pa C2H2 (to inhibit nitrification), 100 kPa O2 (to suppress denitrification), 10 kPa C2H2 (to inhibit N2O reduction to N2 in denitrification) or following autoclaving. The total N2O production, consumption and net N2O emission from the soils together with the contributions to N2O emission from different processes of N2O production were estimated. The rate of N2O production was significantly greater in the wetter soil (282 pmol N2O g-1 soil h-1) than in the drier soil (192 pmol N2O g-1 soil h-1), but because N2O consumption by denitrifiers was also greater in the wetter soil, the net N2O emissions from the wetter and the drier soils did not differ significantly. Non-biological sources made no significant contribution to N2O emission under either moisture regime and biological processes other than denitrification and nitrification made only a small contribution (1% of the total N2O production) in the wetter soil. Denitrifying nitrifiers were the predominant source of N2O emitted from the drier soil and other (non-nitrifying) denitrifiers were the predominant source of N2O emitted from the wetter soil.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号