首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nitrous oxide (N2O) emissions, soil microbial community structure, bulk density, total pore volume, total C and N, aggregate mean weight diameter and stability index were determined in arable soils under three different types of tillage: reduced tillage (RT), no tillage (NT) and conventional tillage (CT). Thirty intact soil cores, each in a 25 × 25-m2 grid, were collected to a depth of 10 cm at the seedling stage of winter wheat in February 2008 from Maulde (50°3′ N, 3°43′ W), Belgium. Two additional soil samples adjacent to each soil core were taken to measure the spatial variance in biotic and physicochemical conditions. The microbial community structure was evaluated by means of phospholipid fatty acids analysis. Soil cores were amended with 15 kg NO3-N ha−1, 15 kg NH4+-N ha−1 and 30 kg ha−1 urea-N ha−1 and then brought to 65% water-filled pore space and incubated for 21 days at 15°C, with regular monitoring of N2O emissions. The N2O fluxes showed a log-normal distribution with mean coefficients of variance (CV) of 122%, 78% and 90% in RT, NT and CT, respectively, indicating a high spatial variation. However, this variability of N2O emissions did not show plot scale spatial dependence. The N2O emissions from RT were higher (p < 0.01) than from CT and NT. Multivariate analysis of soil properties showed that PC1 of principal component analysis had highest loadings for aggregate mean weight diameter, total C and fungi/bacteria ratio. Stepwise multiple regression based on soil properties explained 72% (p < 0.01) of the variance of N2O emissions. Spatial distributions of soil properties controlling N2O emissions were different in three different tillages with CV ranked as RT > CT > NT.  相似文献   

2.
Impacts of biochar addition on nitrous oxide (N2O) and carbon dioxide (CO2) emissions from paddy soils are not well documented. Here, we have hypothesized that N2O emissions from paddy soils could be depressed by biochar incorporation during the upland crop season without any effect on CO2 emissions. Therefore, we have carried out the 60-day aerobic incubation experiment to investigate the influences of rice husk biochar incorporation (50 t ha−1) into two typical paddy soils with or without nitrogen (N) fertilizer on N2O and CO2 evolution from soil. Biochar addition significantly decreased N2O emissions during the 60-day period by 73.1% as an average value while the inhibition ranged from 51.4% to 93.5% (P < 0.05–0.01) in terms of cumulative emissions. Significant interactions were observed between biochar, N fertilizer, and soil type indicating that the effect of biochar addition on N2O emissions was influenced by soil type. Moreover, biochar addition did not increase CO2 emissions from both paddy soils (P > 0.05) in terms of cumulative emissions. Therefore, biochar can be added to paddy fields during the upland crop growing season to mitigate N2O evolution and thus global warming.  相似文献   

3.
In grazed pasture systems, a major source of N2O is nitrogen (N) returned to the soil in animal urine. We report in this paper the effectiveness of a nitrification inhibitor, dicyandiamide (DCD), applied in a fine particle suspension (FPS) to reduce N2O emissions from dairy cow urine patches in two different soils. The soils are Lismore stony silt loam (Udic Haplustept loamy skeletal) and Templeton fine sandy loam (Udic Haplustepts). The pasture on both soils was a mixture of perennial ryegrass (Lolium perenne) and white clover (Trifolium repens). Total N2O emissions in the Lismore soil were 23.1–31.0 kg N2O-N ha−1 following the May (autumn) and August (late winter) urine applications, respectively, without DCD. These were reduced to 6.2–8.4 kg N2O-N ha−1 by the application of DCD FPS, equivalent to reductions of 65–73%. All three rates of DCD applied (7.5, 10 and 15 kg ha−1) were effective in reducing N2O emissions. In the Templeton soil, total N2O emissions were reduced from 37.4 kg N2O-N ha−1 without DCD to 14.6–16.3 kg N2O-N ha−1 when DCD was applied either immediately or 10 days after the urine application. These reductions are similar to those in an earlier study where DCD was applied as a solution. Therefore, treating grazed pasture soils with an FPS of DCD is an effective technology to mitigate N2O emissions from cow urine patch areas in grazed pasture soils.  相似文献   

4.
Crop residues with high C/N ratio immobilize N released during decomposition in soil, thus reducing N losses through leaching, denitrification, and nitrous oxide (N2O) emission. A laboratory incubation experiment was conducted for 84 days under controlled conditions (24°C and moisture content 55% of water-holding capacity) to study the influence of sugarcane, maize, sorghum, cotton and lucerne residues, and mineral N addition, on N mineralization–immobilization and N2O emission. Residues were added at the rate of 3 t C ha−1 to soil with, and without, 150 kg urea N ha−1. The addition of sugarcane, maize, and sorghum residues without N fertilizer resulted in a significant immobilization of soil N. Amended soil had significantly (P < 0.05) lower NO3–N, which reached minimum values of 2.8 mg N kg−1 for sugarcane (at day 28), 10.3 mg N kg−1 for maize (day 7), and 5.9 mg N kg−1 for sorghum (day 7), compared to 22.7 mg N kg−1 for the unamended soil (day 7). During 84 days of incubation, the total mineral N in the residues + N treatments were decreased by 45 mg N kg−1 in sugarcane, 34 mg kg−1 in maize, 29 mg kg−1 in sorghum, and 16 mg kg−1 in cotton amended soil compared to soil + N fertilizer, although soil NO3–N increased by 7 mg kg−1 in lucerne amended soil. The addition of residues also significantly increased amended soil microbial biomass C and N. Maximum emissions of N2O from crop residue amended soils occurred in the first 4–5 days of incubation. Overall, after 84 days of incubation, the cumulative N2O emission was 25% lower with cotton + N fertilizer, compared to soil + N fertilizer. The cumulative N2O emission was significantly and positively correlated with NO3–N (r = 0.92, P < 0.01) and total mineral N (r = 0.93, P < 0.01) after 84 days of incubation, and had a weak but significant positive correlation with cumulative CO2 in the first 3 and 5 days of incubation (r = 0.59, P < 0.05).  相似文献   

5.
The objective of this work was to evaluate the effect of the chemical nature and application frequency of N fertilizers at different moisture contents on soil N2O emissions and N2O/(N2O+N2) ratio. The research was based on five fertilization treatments: unfertilized control, a single application of 80 kg ha−1 N-urea, five split applications of 16 kg ha−1 N-urea, a single application of 80 kg ha−1 N–KNO3, five split applications of 16 kg ha−1 N–KNO3. Cumulative N2O emissions for 22 days were unaffected by fertilization treatments at 32% water-filled pore space (WFPS). At 100% and 120% WFPS, cumulative N2O emissions were highest from soil fertilized with KNO3. The split application of N fertilizers decreased N2O emissions compared to a single initial application only when KNO3 was applied to a saturated soil, at 100% WFPS. Emissions of N2O were very low after the application of urea, similar to those found at unfertilized soil. Average N2O/(N2O+N2) ratio values were significantly affected by moisture levels (p = 0.015), being the lowest at 120% WFPS. The N2O/(N2O+N2) ratio averaged 0.2 in unfertilized soil and 0.5 in fertilized soil, although these differences were not statistically significant.  相似文献   

6.
The purpose of this study was to evaluate, during the phenological stages of inoculated soybean crop [Glycine max (L.) Merrill], the effect of different N fertilization levels and inoculation with Bradyrhizobium japonicum on N2O emissions from the soil. Gas emissions were evaluated at field conditions by the static-chamber method. Nitrogen fertilization increased N2O emissions significantly (P < 0.05). The variable that best explained cumulative N2O emissions during the whole soybean growing season was the soil nitrate level (r 2 = 0.1899; P = 0.0231). Soil moisture presented a greater control on N2O emissions between the grain-filling period and the crop commercial maturity (r 2 = 0.5361; P < 0.0001), which coincided with a positive balance of the available soil N, as a consequence of the decrease in crop requirements and root and nodular decomposition. Only soil soluble carbon (r 2 = 0.29; P = 0.019) and moisture (r 2 = 0.24; P = 0.039) were correlated with N2O emissions during the residue decomposition period. The relationship between soil variables and N2O emissions depended on crop phenological or stubbles decomposition stages.  相似文献   

7.
The objective of this study was to examine the effects of soil moisture, irrigation pattern, and temperature on gaseous and leaching losses of carbon (C) and nitrogen (N) from soils amended with biogas slurry (BS). Undisturbed soil cores were amended with BS (33 kg N ha−1) and incubated at 13.5°C and 23.5°C under continuous irrigation (2 mm day−1) or cycles of strong irrigation and partial drying (every 6 weeks, 1 week with 12 mm day−1). During the 6 weeks after BS application, on average, 30% and 3.8% of the C and N applied with BS were emitted as carbon dioxide (CO2) and nitrous oxide (N2O), respectively. Across all treatments, a temperature increase of 10°C increased N2O and CO2 emissions by a factor of 3.7 and 1.7, respectively. The irrigation pattern strongly affected the temporal production of CO2 and N2O but had no significant effect on the cumulative production. Nitrogen was predominantly lost in the form of nitrate (NO3). On average, 16% of the N applied was lost as NO3. Nitrate leaching was significantly increased at the higher temperature (P < 0.01), while the irrigation pattern had no effect (P = 0.63). Our results show that the C and N turnovers were strongly affected by BS application and soil temperature whereas irrigation pattern had only minor effects. A considerable proportion of the C and N in BS were readily available for soil microorganisms.  相似文献   

8.
Nitrous oxide (N2O) is a greenhouse gas and agricultural soils are major sources of atmospheric N2O. Its emissions from soils make up the largest part in the global N2O budget. Research was carried out at the experimental fields of the Leibniz-Institute of Agricultural Engineering Potsdam-Bornim (ATB). Different types (mineral and wood ash) and levels (0, 75 and 150 kg N ha−1) of fertilization were applied to annual (rape, rye, triticale and hemp) and perennial (poplar and willow) plants every year. N2O flux measurements were performed 4 times a week by means of gas flux chambers and an automated gas chromatograph between 2003 and 2005. Soil samples were also taken close to the corresponding measuring rings. Soil nitrate and ammonium were measured in soil extracts.N2O emissions had a peak after N fertilization in spring, after plant harvest in summer and during the freezing–thawing periods in winter. Both fertilization and plant types significantly altered N2O emission. The maximum N2O emission rate detected was 1081 μg N2O m−2 h−1 in 2004. The mean annual N2O emissions from the annual plants were more than twofold greater than those of perennial plants (4.3 kg ha−1 vs. 1.9 kg ha−1). During January, N2O fluxes considerably increased in all treatments due to freezing–thawing cycles. Fertilization together with annual cropping doubled the N2O emissions compared to perennial crops indicating that N use efficiency was greater for perennial plants. Fertilizer-derived N2O fluxes constituted about 32% (willow) to 67% (rape/rye) of total soil N2O flux. Concurrent measurements of soil water content, NO3 and NH4 support the conclusion that nitrification is main source of N2O loss from the study soils. The mean soil NO3-N values of soils during the study for fertilized soils were 1.6 and 0.9 mg NO3-N kg−1 for 150 and 75 kg N ha−1 fertilization, respectively. This value reduced to 0.5 mg NO3-N kg−1 for non-fertilized soils.  相似文献   

9.
Conservation tillage practices are widely used to protect against soil erosion and soil C losses, whereas winter cover crops are used mainly to protect against N losses during autumn and winter. For the greenhouse gas balance of a cropping system the effect of reduced tillage and cover crops on N2O emissions may be more important than the effect on soil C. This study monitored emissions of N2O between September 2008 and May 2009 in three tillage treatments, i.e., conventional tillage (CT), reduced tillage (RT) and direct drilling (DD), all with (+CC) or without (−CC) fodder radish as a winter cover crop. Cover crop growth, soil mineral N dynamics, and other soil characteristics were recorded. Furthermore, soil concentrations of N2O were determined eight times during the monitoring period using permanently installed needles. There was little evidence for effects of the cover crop on soil mineral N. Following spring tillage and slurry application soil mineral N was dominated by the input from slurry. Nitrous oxide emissions during autumn, winter and early spring remained low, although higher emissions from +CC treatments were indicated after freezing events. Following spring tillage and slurry application by direct injection N2O emissions were stimulated in all tillage treatments, reaching 250-400 μg N m−2 h−1 except in the CT + CC treatment, where emissions peaked at 900 μg N m−2 h−1. Accumulated emissions ranged from 1.6 to 3.9 kg N2O ha−1. A strong positive interaction between cover crop and tillage was observed. Soil concentration profiles of N2O showed a significant accumulation of N2O in CT relative to RT and DD treatments after spring tillage and slurry application, and a positive interaction between slurry and cover crop residues. A comparison in early May of N2O emissions with flux estimates based on soil concentration profiles indicated that much of the N2O emitted was produced near the soil surface.  相似文献   

10.
Animal excreta-nitrogen (N) deposited onto pastoral soils during grazing has been identified as an important source of nitrous oxide (N2O). Understanding the extent and seasonal variation of N2O emissions from animal urine is important for the development of best management practices for reducing N2O losses. The aim of this study was to determine N2O emissions from cow urine after application onto a pastoral soil in different seasons between 2003 and 2005. A closed soil chamber technique was used to measure the N2O emissions from a poorly drained silt loam soil which received either 0 (control) or 1,000 kg N ha−1 (as real cow urine) per application. Application of cow urine to soil increased N2O fluxes above those from the control site for up to 6 weeks, but the duration for which N2O levels were elevated depended on the season. Nitrous oxide emissions were higher during the winter and spring measurement periods when the soil water-filled pore space (WFPS) was mostly above field capacity, and the emissions were lower during the summer and autumn measurement periods when the soil WFPS was below field capacity. The N2O emission factor for urine ranged from 0.02 to 1.52% of N applied. This seasonal effect suggests that a reduction in urine return to soil (e.g., through use of standoff pads or animal housing) under wet conditions in New Zealand can potentially reduce N2O emissions from pastoral soils.  相似文献   

11.
Application of feedlot manure (FLM) to cropping and grazing soils could provide a valuable N nutrient resource. However, because of its high but variable N concentration, FLM has the potential for environmental pollution of water bodies and N2O emission to the atmosphere. As a potential management tool, we utilised the low-nutrient green waste compost (GWC) to assess its effectiveness in regulating N release and the amount of N2O emission from two Vertisols when both FLM and GWC were applied together. Cumulative soil N2O emission over 32 weeks at 24°C and field capacity (70% water-filled pore space) for a black Vertisol (Udic Paleustert) was 45 mg N2O m−2 from unamended soil. This increased to 274 mg N2O m−2 when FLM was applied at 1 kg m−2 and to 403 mg N2O m−2 at 2 kg m−2. In contrast, the emissions of 60 mg N2O m−2 when the soil was amended with GWC 1 kg m−2 and 48 mg N2O m−2 at 2 kg m−2 were not significantly greater than the unamended soil. Emission from a mixture of FLM and GWC applied in equal amounts (0.5 kg m−2) was 106 mg N2O m−2 and FLM applied at 0.5 kg m−2 and GWC at 1.5 kg GWC m−2 was 117 mg N2O m−2. Although cumulative N2O emissions from an unamended grey Vertisol (Typic Chromustert) were only slightly higher than black Vertisol (57 mg N2O m−2), FLM application at 1 kg m−2 increased N2O emissions by 14 times (792 mg N2O m−2) and at 2 kg m−2 application by 22 times (1260 mg N2O m-2). Application of GWC did not significantly increase N2O emission (99 mg N2O m−2 at 1 kg m−2 and 65 mg N2O m−2 at 2 kg m−2) above the unamended soil. As observed for the black Vertisol, a mixture of FLM (0.5 kg m−2) and GWC (0.5 or 1.5 kg m−2) reduced N2O emission by >50% of that from the FLM alone, most likely by reducing the amount of mineral N (NH4+–N and NO3–N) in the soil, as mineral N in soil and the N2O emission were closely correlated.  相似文献   

12.
In this study, we investigated N2O emissions from two fields under minimum tillage, cropped with maize (MT maize) and summer oats (MT oats), and a conventionally tilled field cropped with maize (CT maize). Nitrous oxide losses from the MT maize and MT oats fields (5.27 and 3.64 kg N2O-N ha−1, respectively) were significantly higher than those from the CT maize field (0.27 kg N2O-N ha−1) over a period of 1 year. The lower moisture content in CT maize (43% water-filled pore space [WFPS] compared to 60–65%) probably caused the difference in total N2O emissions. Denitrification was found to be the major source of N2O loss. Emission factors calculated from the MT field data were high (0.04) compared to the CT field (0.001). All data were simulated with the denitrification decomposition model (DNDC). For the CT field, N2O and N2O + N2 emissions were largely overestimated. For the MT fields, there was a better agreement with the total N2O and N2O + N2 emissions, although the N2O emissions from the MT maize field were underestimated. The simulated N2O emissions were particularly influenced by fertilization, but several other measured N2O emission peaks associated with other management practices at higher WFPS were not captured by the model. Several mismatches between simulated and measured \textNH4+ {\text{NH}}_4^ + , \textNO3- {\text{NO}}_3^ - and WFPS for all fields were observed. These mismatches together with the insensitivity of the DNDC model for increased N2O emissions at the management practices different from fertilizer application explain the limited similarity between the simulated and measured N2O emissions pattern from the MT fields.  相似文献   

13.
Fluxes of N2O were studied in a Norway spruce forest in the southwest of Sweden. Three differently treated catchments were compared: Limed (6 t dolomite ha–1), Nitrex (additional N-deposition corresponding to 35 kg ha–1 year–1, in small doses) and Control (used as control site). The N-retention was still high (95%) after 2years of N-addition at the Nitrex site when the flux measurements were performed. Each catchment contained both well-drained and poorly drained soils (covered with Sphagnum sp.). The emissions of N2O were in general low with both a high spatial and temporal variation for all three sites. The measured emissions were 25, 71 and 96 (gN2O-N ha–1 year–1) for the well-drained Limed, Control and Nitrex sites, respectively. The average emissions of N2O from the wet areas were significantly higher than the well-drained areas within the catchments. For the wet areas the measured emissions were larger: 90, 118 and 254 (g N2O-N ha–1 year–1) for the Limed, Control and Nitrex sites, respectively. Comparison between treatments showed the wet Nitrex site to have a significantly higher emission than all other sites. The increased N-deposition at the Nitrex site increased the N2O emissions by 0.2% of the added N for the well-drained soils and about 1% for the wet areas, compared with the control site. Since the wet areas represented only a small part of the forest, their larger emissions did not contribute significantly to the overall emission of the forest. Neither temperature nor water content of the soil was well correlated with the N2O emissions. Soil gas samples showed that most of the N2O was produced below a 0.3-m depth in the soil. Received: 27 September 1996  相似文献   

14.
The following six pig slurries obtained after acidification and/or solid/liquid separation were used in the research: original (S) and acidified (AS) pig slurry, nonacidified (LF) and acidified (ALF) pig slurry liquid fraction, and nonacidified (SF) and acidified (ASF) pig slurry solid fraction. Laboratory incubations were performed to assess the effect of the application of these slurries on N mineralization and CO2 and N2O emissions from a sandy soil. Acidification maintained higher NH4 +-N contents in soil particularly in the ALF-treated soil where NH4 +-N contents were two times higher than in LF-treated soil during the 55–171-day interval. At the end of the incubation (171 days), 32.9 and 24.2 mg N kg−1 dry soil were mineralized in the ASF- and SF-treated soils, respectively, but no mineralization occurred in LF- and S-treated soils, although acidification decreased N immobilization in ALF- (−25.3 mg N kg−1 soil) and AS- (−12.7 mg N kg−1 soil) compared to LF- (−34.4 mg N kg−1 soil) and S-treated (−18.6 mg N kg−1 soil) soils, respectively. Most of the dissolved CO2 was lost during the acidification process. More than 90% of the applied C in the LF-treated soil was lost during the incubation, indicating a high availability of the added organic compounds. Nitrous oxide emissions occurred only after day 12 and at a lower rate in soils treated with acidified than nonacidified slurries. However, during the first 61 days of incubation, 1,157 μg N kg−1 soil was lost as N2O in the AS-treated soil and only 937 in the S-treated soil.  相似文献   

15.
Nitrous oxide (N2O) fluxes from an apple orchard soil in the semiarid Loess Plateau of China were measured using static chambers from September 2007 to September 2008. In this study, three sites were selected at distance of 2.5 m (D 2.5), 1.5 m (D 1.5), and 0.5 m (D 0.5) from the apple tree row. Nitrous oxide fluxes followed seasonal pattern, with high N2O emission rates occurring in the hot-humid summer and low rates in the cold-dry winter. Pulses of N2O emissions occurred after nitrogen fertilizer application, summer rainfall events, and during freeze-thaw cycles. Annual average N2O emission rates were the highest at D 0.5 site (48.2 ± 39.9 μg N2O m−2 h−1), the lowest at D 2.5 site (31.9 ± 18.2 μg N2O m−2 h−1), and intermediate at D1.5 site (36.8 ± 32.2 μg N2O m−2 h−1), suggesting that N2O emissions from the apple orchard soil increased when the chamber location was closer to the apple tree row. This may be due to the fertilization close to roots in hot and humid season. Over one third (37.1%) of the annual N2O emission occurred in the summer. Annual N2O emissions from the apple orchard soil averaged to 3.22 kg N2O ha−1 year−1. Annual emission factor of the apple orchard from the applied fertilizer (uncorrected for background emission) was 0.658%. This value was nearly a half (53%) of the default value provided by the Intergovernmental Panel on Climate Change for the application of synthetic fertilizers to cropland (1.25%). Therefore, the amount of N2O emissions from the semiarid apple orchard soil could be largely overestimated if no regional-specific factor is used.  相似文献   

16.
A 3-year field study in southeast China was performed to examine the relationship between N2O emission and winter wheat production. Over the 2002–03, 2003–04 and 2004–05 wheat-cropping seasons, N2O emissions depended on nitrogen addition, plowing practice, and preceding crop type treatments, and showed a pronounced inter-annual variation. N2O–N emission factor, the proportion of fertilizer N released as N2O–N from the wheat field, varied from 1.33% to 2.97%. The relationship between N2O emission (y) and crop yield (x) was well explained by the function y = 3.773Ln(x) + 1.46. Similarly, the function y = 4.445Ln(x) − 3.52 can be employed to address the relationship between N2O emission (y) and above ground biomass (x). About 84% and 87% of variation in seasonal N2O emission were explained by the two functions, while only 66% of the variation was represented by the N input with a linear relationship. The results of this study suggest that seasonal N2O emission of soil under winter wheat could be better predicted by crop yield and biomass than by N input. Submitted to Biology and Fertility of Soils.  相似文献   

17.
The impacts of fallow on soil fertility, crop production and climate-forcing gas emissions were determined in two contrasting legumes, Gliricidia sepium and Acacia colei, in comparison with traditional unamended fallow and continuous cultivation systems. After 2 years, the amount of foliar material produced did not differ between the two improved fallow species; however, grain yield was significantly elevated by 55% in the first and second cropping season after G. sepium compared with traditional fallow. By contrast, relative to the unamended fallow, a drop in grain yield was observed in the first cropping season after A. colei, followed by no improvement in the second. G. sepium had higher foliar N, K and Mg, while A. colei had lower foliar N but higher lignin and polyphenols. In the third year after fallow improvement, a simulated rainfall experiment was performed on soils to compare efflux of N2O and CO2. Improved fallow effects on soil nutrient composition and microbial activity were demonstrated through elevated N2O and CO2 efflux from soils in G. sepium fallows compared with other treatments. N2O emissions were around six times higher from this nitrogen-fixing soil treatment, evolving 69.9 ngN2O–N g−1soil h−1 after a simulated rainfall event, compared with only 8.5 and 4.8 ngN2O–N g−1soil h−1 from soil under traditional fallow and continuous cultivation, respectively. The findings indicate that selection of improved fallows for short-term fertility enhancement has implications for regional N2O emissions for dry land regions.  相似文献   

18.
 Nitrous oxide (N2O) emissions and methane (CH4) consumption were quantified following cultivation of two contrasting 4-year-old pastures. A clover sward was ploughed (to 150–200 mm depth) while a mixed herb ley sward was either ploughed (to 150–200 mm depth) or rotovated (to 50 mm depth). Cumulative N2O emissions were significantly greater following ploughing of the clover sward, with 4.01 kg N2O-N ha–1 being emitted in a 48-day period. Emissions following ploughing and rotovating of the ley sward were much less and were not statistically different from each other, with 0.26 and 0.17 kg N2O-N ha–1 being measured, respectively, over a 55-day period. The large difference in cumulative N2O between the clover and ley sites is presumably due to the initially higher soil NO3 content, greater water filled pore space and lower soil pH at the clover site. Results from a denitrification enzyme assay conducted on soils from both sites showed a strong negative relationship (r=–0.82) between soil pH and the N2O:(N2O+N2) ratio. It is suggested that further research is required to determine if control of soil pH may provide a relatively cheap mitigation option for N2O emissions from these soils. There were no significant differences in CH4 oxidation rates due to sward type or form of cultivation. Received: 1 November 1998  相似文献   

19.
 N2O emissions were periodically measured using the static chamber method over a 1-year period in a cultivated field subjected to different agricultural practices including the type of N fertilizer (NH4NO3, (NH4)2SO4, CO(NH2)2 or KNO3 and the type of crop (rapeseed and winter wheat). N2O emissions exhibited the same seasonal pattern whatever the treatment, with emissions between 1.5 and 15 g N ha–1 day–1 during the autumn, 16–56 g N ha–1 day–1 in winter after a lengthy period of freezing, 0.5–70 g N ha–1 day–1 during the spring and lower emissions during the summer. The type of crop had little impact on the level of N2O emission. These emissions were a little higher under wheat during the autumn in relation to an higher soil NO3 content, but the level of emissions was similar over a 7-month period (2163 and 2093 g N ha–1 for rape and wheat, respectively). The form of N fertilizer affected N2O emissions during the month following fertilizer application, with higher emissions in the case of NH4NO3 and (NH4)2SO4, and a different temporal pattern of emissions after CO(NH2)2 application. The proportion of applied N lost as N2O varied from 0.42% to 0.55% with the form of N applied, suggesting that controlling this agricultural factor would not be an efficient way of limiting N2O emissions under certain climatic and pedological situations. Received: 1 December 1997  相似文献   

20.
 Soils are a major source of atmospheric NO and N2O. Since the soil properties that regulate the production and consumption of NO and N2O are still largely unknown, we studied N trace gas turnover by nitrification and denitrification in 20 soils as a function of various soil variables. Since fertilizer treatment, temperature and moisture are already known to affect N trace gas turnover, we avoided the masking effect of these soil variables by conducting the experiments in non-fertilized soils at constant temperature and moisture. In all soils nitrification was the dominant process of NO production, and in 50% of the soils nitrification was also the dominant process of N2O production. Factor analysis extracted three factors which together explained 71% of the variance and identified three different soil groups. Group I contained acidic soils, which showed only low rates of microbial respiration and low contents of total and inorganic nitrogen. Group II mainly contained acidic forest soils, which showed relatively high respiration rates and high contents of total N and NH4 +. Group III mainly contained neutral agricultural soils with high potential rates of nitrification. The soils of group I produced the lowest amounts of NO and N2O. The results of linear multiple regression conducted separately for each soil group explained between 44–100% of the variance. The soil variables that regulated consumption of NO, total production of NO and N2O, and production of NO and N2O by either nitrification or denitrification differed among the different soil groups. The soil pH, the contents of NH4 +, NO2 and NO3 , the texture, and the rates of microbial respiration and nitrification were among the important variables. Received: 28 October 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号