首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
ABSTRACT

Influences of nickel (Ni) concentrations in the nutrient solution on yield, quality, and nitrogen (N) metabolism of cucumber plants (Cucumis sativus cv ‘RS189’ and ‘Vikima’) were evaluated when plants were grown either with urea or nitrate as the sole N source. The cucumber plants were treated with two N sources, urea and nitrate as sodium nitrate (NaNO3) at 200 mg L?1, and three concentrations of Ni as nickel sulfate (NiSO4·6H2O; 0, 0.5, and 1 mg L?1). Treatments were arranged in a randomized block design with six replicates. The highest concentration of Ni in the leaves (1.2 mg kg?1 Dwt) was observed in the urea-fed plants at 1 mg L?1 Ni concentration. Additions of Ni up to 0.5 mg L?1 had no effect on the fruit Ni concentration in the both urea and nitrate-fed plants. Yield significantly (p < 0.05) increased with the Ni supplements from 0 to 0.5 mg L?1 (10 and 15% in ‘RS189’ and ‘Vikima’, respectively), but decreased when 1 mg L?1 Ni applied to the solutions in urea-fed plants. Nitrate-fed plants had a higher percentage of total soluble solids compare to those urea-fed plants. Nitrate concentrations of the fruits in urea-fed plants in both cultivars were reduced by approximately 50% compared to those nitrate-fed plants. The reduction of nitrate concentration in the fruits became more pronounced as the Ni concentration increased in the solution. The rate of photosynthesis (Pn) increased with the increase of the Ni concentration in the solution with urea-fed plants. Both N concentration and nitrate reductase (NR) activity of young leaves were higher in urea-fed plants at 0.5 mg l?1 Ni concentration. Ni supplements enhanced the growth and yield of urea-fed plants by increasing Pn, N concentration and NR activity. It can be concluded that Ni supplements (0.5 mg l?1) improve yield, quality, and NR activity in urea-fed cucumber plants.  相似文献   

2.
To improve the growth of spinach (Spinacia oleracea cv, Okarne) and to decrease shoot nitrate contents, different concentrations of urea were used as a source of nitrogen in the nutrient solution For hydroponically grown plants. Spinach was grown in a hydroponic got culture amended with 0,20, or 58% urea with or without nickel addition (Ni; 0.05 mg L-1) while the dotal concentration of N (17.33 mmol L-1) remained constant in all the cases. In order to identify the most eEective conceniration of Ni for the growth of spinach, another experiment was conducted using various concentrations sf Ni in a 50% urea solution. Addition of 0.05 mg Ni L-1 to the nutrient solution gave the best results in terms of qualitative and quantitative charaeteristies Naximuna vegetative production was achieved with a 28% urea solution contaimnang Ni. Shoot NO3-N content significantly decreased with increasing level sf urea in the solution. The urea-N content in the shoots was significantly inc~easedw ith both 20 and 50% urea solution without Ni addition. The total-N content in the shoots was almost the same in all the experimental treatments except those utilizing 50% urea solution without Ni addition. The content of Ca in the shoots increased by the addition of Ni with urea in the nutrient soleation, Fe eontent in the shoots was slightly affected by nrea nutrition, except for the treatment utilizing 20% urea solution with Ni addition. The contents of K, Mg, and Zn were significantly agected by urea in the nutrient solution. Ni in the shoots was not detected when it was not supplied in the nutrient solution. Also, the Ni content in the shoots was within the range of natural abundance when Ni was added to the 20 and 50% urea solutions.  相似文献   

3.
Upland rice plants, cultivar ‘IAC 202,’ were grown in nutrient solution until full tillering. Treatments consisted of ammonium nitrate (AN) or urea (UR) as nitrogen (N) source plus molybdenum (Mo) and/or nickel (Ni): AN + Mo + Ni, AN + Mo ? Ni, AN ? Mo + Ni, UR + Mo + Ni, UR + Mo ? Ni, and UR ? Mo + Ni. The experiment was carried out to better understand the effect of these treatments on dry‐matter yield, chlorophyll, net photosynthesis rate, nitrate (NO3 ?‐N), total N, in vitro activities of urease and nitrate reductase (NR), and Mo and Ni concentrations. In UR‐grown plants, Mo and Ni addition increased yield of dry matter. Regardless of the N source, chlorophyll concentration and net photosynthesis rate were reduced when Mo or Ni were omitted, although not always significantly. The omission of either Mo or Ni led to a decrease in urease activity, independent of N source. Nitrate reductase activity increased in nutrient solutions without Mo, although NO3 ?‐N increased. There was not a consistent variation in total N concentration. Molybdenum and Ni concentration in roots and shoots were influenced by their supply in the nutrient solution. Molybdenum concentration was not influenced by N sources, whereas Ni content in both root and shoots was greater in ammonium nitrate–grown plants. In conclusion, it can be hypothesized that there is a relationship between Mo and Ni acting on photosynthesis, although is an indirect one. This is the first evidence for a beneficial effect of Mo and Ni interaction on plant growth.  相似文献   

4.
With the objective of studying the effect of two nutrient solutions and two crop systems (greenhouse and openfield) on nitrate accumulation, incidence of tipburn and chlorophyll content, endive (cv. Cuartana) was planted in 8 L pots, filled with a mixture of coconut coir:perlite (1:1) in three different cycles C1 (winter), C2 (spring) and C3 (summer). Plants were irrigated with two nutrient solutions of different nitrate content: S1, low ([NO?3] = 7.91 mmol L?1) and S2 moderate nitrate content ([NO?3] = 16.91 mmol L?1). Nitrate content was determined by reflectometry, tipburn was evaluated using a qualitative scale and chlorophyll content by soil plant analysis development(SPAD) values. Plants irrigated with S2 showed higher nitrate accumulation in leaves in all cycles, however, no influence of the nutrient solution was observed on the incidence of tipburn. Greenhouse-cultivated plants accumulated more nitrates than those cultivated in open field and also showed a higher incidence of tipburn and SPAD values.  相似文献   

5.
Tomato (Lycopersicon esculentum Mill., cv. Momotaro) plants were grown in nutrient solutions with several levels of urea, nitrate, and ammonium alone or in combination to evaluate the role of urea as an organic nitrogen source compared with that of nitrate and/or ammonium as inorganic nitrogen sources. Nitrogen deficiency and excess symptoms were detected in the urea-fed plants at lower (28 mg N L-1) and higher nitrogen levels (336, 504 mg N L-1), respectively. The effect of urea on plant growth and leaf elemental composition was intermediate between that of nitrate and ammonium. Solution pH under urea nutrition slightly increased or remained stable. When plants were cultured with the solution containing 168 mg N L-1, the total dry weight of the plants which received urea+nitrate was significantly higher than that of the plant which received urea and was almost equal to that of the plants which received nitrate or nitrate+ammonium. Both absorption and utilization of nitrogen in the plants fed with urea decreased compared with those of the plants fed with nitrate or ammonium. The insufficient absorption and utilization of nitrogen were estimated to be the main factors associated with the growth reduction of tomato plants under urea nutrition. However, combined application of urea and nitrate is useful for adequate plant growth without a reduction of the cation absorption in tomato while maintaining a stable solution pH.  相似文献   

6.
Spinach (Spinacia oleracea cv. Okame) was grown in hydroponic pot culture with an Enshi nutrient solution amended with 0, 20, or 50% urea with or without nickel addition (Ni; 0.05 mg L-1), while the total concentration of N (17.33 mmol L-1) remained constant in all the cases to evaluate the effect of partial urea application, with or without the addition of Ni, on the absorption of NO3-N, urea-N, NH4-N, minerals (e.g. Ca, K, Mg, P) by plants. Fresh and dry weight of the shoots was highest when a 20% urea solution with Ni addition was used. The variation in spinach yield was related to the absorption of total-N by the plants. The absorption of total-N, attributed mainly to NO3-N and urea-N, differed between the treatments. In the case of short-term absorption, determination by using 15N-urea and 15N-KNO3 showed that, the urea-N absorption significantly increased with the increase in the urea concentration in the nutrient solution. When the urea solutions were used, regardless of Ni addition, the absorption of NO3-N was more than four times higher than that of urea-No The addition of Ni in the urea solutions stimulated and increased both urea-N and NO3-N absorption. In the case of long-term absorption, the NO3-N absorption decreased with the decrease of the NO3-N concentration when NO3-N was partially replaced with urea in the nutrient solution. The addition of Ni in the urea solutions resulted in the increase of the absorption of both urea-N and NO3-N, but the NO3-N absorption remained lower in all the treatments compared to the control. In the urea solutions, the absorption of urea-N with or without the addition of Ni increased at a lower rate over time (sampling stages). Application of urea, with or without the addition of Ni in the nutrient solution, increased Ca absorption but decreased K and Mg absorption, whereas, P absorption was unaffected. It is suggested that spinach could grow adequately in an Enshi nutrient solution modified with 20% urea with the addition of 0.05 mg Ni L-1, when urea totally replaced NH4-N and partially replaced NO3-N.  相似文献   

7.
Ammonium toxicity in hydroponically grown crops can affect tomato development. However, it has been shown that the silicon (Si) attenuates ammonium toxicity in plants depending on the plant species, the stage of development and the ammonium concentration in the nutrient solution. Thus, in order to investigate how Si attenuates stress caused by ammonium in tomato, a study was carried out involving plants cultivated up to 40 days after seed germination using nutrient solutions containing ammonium concentrations (1, 2, 4, 6 and 8?mmol?L?1), in the absence or presence of Si (1?mmol?L?1). The accumulation and efficiency of nitrogen and Si use, as well as the concentrations of chlorophyll, carotenoids, malondialdehyde, hydrogen peroxide and growth parameters was assessed. At a concentration of 1?mmol?L?1 ammonium, Si increases the accumulation of nitrogen and Si, the nitrogen use efficiency, the root area and dry biomass of the shoot. At concentrations of 1 and 2?mmol?L?1 ammonium, Si increases the leaf area and root dry biomass, and in higher concentrations, there was no effect of Si after the supply of ammonium. It was observed that the addition of Si mitigates ammonium toxicity by 1?mmol?L?1 ammonium, and we can recommend its use in the nutrient solution (Si?=?1?mmol?L?1) to grow tomato cropsthat employs ammonium concentration of 1?mmol?L?1.  相似文献   

8.
The objective of this study was to determine the effect of nitrogen fertilization rate on growth and quality of leafy lettuce grown during the winter season in non-circulating hydroponic system. Plants were subjected to seven nitrogen (N) concentrations, i.e. 0, 30, 60, 90, 120, 150 and 180 mg L?1 N using ammonium nitrate. Nitrogen treatments did not have a significant effect on leaf fresh and dry mass, root fresh and dry mass, number leaves and leaf area. Leaf ascorbic acid and total phenolic content, and antioxidant capacity peaked at 100 and 120 mg L?1 N, whereas leaf chlorophyll concentration linearly increased with increasing N application. The results indicate that a solution N concentration of 100 and 120 mg L?1 may be sufficient to improve growth, yield and quality parameters of leafy lettuce grown in non-circulating hydroponic system.  相似文献   

9.
Abstract

Despite the importance of nitrogen (N) supply to plants, there are still doubts concerning the optimal relations of ammonium and nitrate in the nutrition of yellow passion fruit seedlings. This study aims to evaluate the interaction between nitrogen concentrations and ammonium and nitrate proportions in the nutrition, growth, and dry matter production of passion fruit seedlings grown in a substrate with a nutrient solution. The experiment was conducted in a greenhouse in randomized complete block design with three replications in a 4 × 5 factorial design, consisting of four N concentrations (2.5, 5.0, 10.0 and 20.0?mmol L?1) and five ammonium proportions (0, 25, 50, 75 and 100% in relation to the total N supply). At 60?days after transplanting, green color index; accumulation of N, potassium, calcium, and magnesium in roots and shoots; stem diameter; leaf area; root length; nitrogen use efficiency (NUE); and dry matter of roots and shoots were evaluated. For the formation of seedlings of yellow passion fruit, the nutrient solution should have 13?mmol L?1 of N, with 40% of this nutrient in the form of ammonium. The passion fruit is a plant tolerant to ammonium. However, a critical concentration above 5.7?mmol L?1 of NH4+ in the nutrient solution decreases absorption of cations, NUE, and production of dry matter.  相似文献   

10.
Nitrogen (N) and potassium (K) fertilization play a key role in forage crops and can significantly increase yields of ‘Marandu’ palisadegrass [Brachiaria brizantha (Hochst. exA. Rich.) Stapf.], one of the most important forage crops in Brazil. This study aimed to identify the concentrations of total N and K, nitrate (NO3?), and ammonium (NH4+), chlorophyll meter readings (SPAD), and nitrate reductase activity (At-RNA) required to maximize yield. Plants were grown in quartz substrate and treated with nutrient solutions that ranged from 2 to 33 mmol L?1 for N and 0.5 to 11 mmol L?1 for K. Dry matter production and At-RNA increased with increasing N and K supplies. SPAD readings correlated strongly with N leaf concentration and dry matter production and can be used to assess the N status of this species. The supply of N and K in the fertilization promoted high yield and adequate N and K concentration for plant metabolism.  相似文献   

11.
ABSTRACT

Indian mustard (Brassica juncea Czern) is a promising species for the phytoextraction of zinc (Zn), but the effectiveness of this plant can be limited by iron (Fe) deficiency under Zn-contaminated conditions. Our objectives were to determine the effects of root-applied Fe and Zn on plant growth, accumulation of Zn in plant tissues, and development of nutrient deficiencies for B. juncea. In the experiment, B. juncea was supplied 6 levels of iron ethylenediamine dihydroxyphenylacetic acid (Fe-EDDHA; 0.625 to 10.0 mg L?1) and two levels of Zn (2.0 and 4.0 mg L?1) for 3 weeks in a solution-culture experiment. Nutrient solution pH decreased with decreasing supply of Fe and increasing supply of Zn in solution, indicating that B. juncea may be an Fe-efficient plant. If plants were supplied 2.0 mg Zn L?1, plant growth was stimulated by increases in Fe supply, but plant growth was not influenced by Fe treatments if plants were supplied 4.0 mg Zn L?1. Zinc concentration in roots and shoots was suppressed by increasing levels of Fe in solution. Leaf concentrations of Cu, Mn, and P were suppressed also as Fe supply in solutions increased. Iron additions to the nutrient solution were not effective at increasing the Zn-accumulation potential of B. juncea unless plants were supplied the higher level of Zn in solution culture. Even under these conditions, Fe additions were effective only if supplied at low levels in solution culture (1.25 mg Fe L?1). Results suggest that Fe fertility has limited potential for enhancing Zn phytoextraction by B. juncea, even if plants suffer a suppression in growth from Fe deficiency.  相似文献   

12.
One-year-old, own-rooted pomegranate cultivars “Ermioni” and “Wonderful” plants were irrigated for 75 days with modified Hoagland nutrient solutions containing 0–10 mg L?1 boron (B). At the end of the experiment, the control plants of “Ermioni” presented better growth performance than those of “Wonderful.” However, there were no differences in the treatments with high B concentration (5.0 or 10 mg L?1). Control “Wonderful” plants had higher fresh and dry matter than control “Ermioni” plants. Moreover, the highest B concentrations in nutrient solution led to a significant increase in chlorophyll and carbohydrate content in the leaves of cultivar “Ermioni.” Furthermore, leaf proline concentration, gas exchange, chlorophyll fluorescence, and micro–macronutrients of both cultivars were not affected by any of the tested B treatments. B concentration in plant parts was linearly correlated to B supply. The highest B concentrations were observed in roots followed by stems and apical and basal leaves.  相似文献   

13.
In this study, interactions of nickel sulfate and urea sprays on vegetative growth, yield and leaf mineral contents in strawberry were investigated. Rooted Pajaro strawberry plants were potted in 3 liter pots filled with soil, leaf mold and sand (1:1:1, v/v/v). Established plants were foliar sprayed with nickel sulfate at 0, 150, 300 and 450 mg L?1 and urea 0 and 2 g L?1 concentrations. Results indicated that nickel (Ni; 300 mg L?1) plus urea (2 g L?1) significantly increased the yield and runner numbers. Nickel sulfate at the rate of 300 and 150 mg L?1and urea (2 g L?1) significantly increased the crown numbers. The greatest root fresh and dry weights were obtained from untreated plants. Urea at 2 g L?1 without nickel significantly increased shoot fresh and dry weights. Nickel at 450 mg L?1 without urea significantly increased Ni concentration in leaves. Overall, nickel sulfate at 150 and 300 mg L?1 along with urea at 2 g L?1 were the best treatments.  相似文献   

14.
【目的】土壤盐碱化是制约农作物产量的主要因素之一,盐胁迫影响养分运输和分布,造成植物营养失衡,导致作物发育迟缓,植株矮小,严重威胁着我国的粮食生产。在必需营养元素中,氮素是需求量最大的元素,NO-3和NH+4是植物吸收氮素的两种离子形态。植物对盐胁迫的响应受到不同形态氮素的调控,研究不同形态氮素营养下植物的耐盐机制对提高植物耐盐性及产量具有重要的意义。【方法】本文以喜硝植物油菜(Brassica napus L.)和喜铵植物水稻(Oryza sativa L.)为试验材料,采用室内营养液培养方法,研究了NO-3和NH+4对Na Cl胁迫下油菜及水稻苗期生长状况、对Na+运输和积累的影响,以对照与盐胁迫植株生物量之差与Na+积累量之差的比值,评估Na+对植株的伤害程度。【结果】1)在非盐胁迫条件下,硝态氮营养显著促进油菜和水稻根系的生长;盐胁迫条件下,油菜和水稻生物量均显著受到抑制,Na Cl对供应铵态氮营养植株的抑制更为显著。2)盐胁迫条件下,两种供氮形态下,油菜和水稻植株Na+含量均显著增加,硝态氮营养油菜叶柄Na+显著高于铵态氮营养,叶柄Na+含量/叶片Na+含量大于铵营养油菜,硝态氮营养水稻根系Na+含量显著低于铵营养,地上部则相反。3)铵营养油菜和水稻Na+伤害度显著高于硝营养植株。4)盐胁迫条件下,硝态氮营养油菜地上部和水稻根系K+含量均显著高于铵态氮营养。5)盐胁迫条件下,硝营养油菜和水稻木质部Na+浓度,韧皮部Na+和K+浓度及水稻木质部K+浓度均高于铵营养植株。【结论】与铵营养相比,硝营养油菜和水稻具有更好的耐盐性。硝态氮处理油菜叶柄Na+显著高于铵态氮处理,能够截留Na+向叶片运输。同时,供应硝态氮营养更有利于油菜和水稻吸收K+,有助于维持植物体内离子平衡。盐胁迫下,硝营养油菜和水稻木质部Na+浓度,韧皮部Na+和K+浓度及水稻木质部K+浓度均高于铵营养植株,表明硝态氮营养油菜和水稻木质部-韧皮部对离子有较好的调控能力,是其耐盐性高于铵营养的原因之一。  相似文献   

15.
A glasshouse experiment was carried out in order to study the effect of ammonium supply [0 and 1.5 mmol L‐1 in the nutrient solution, whereas total nitrogen (N) concentration was 9.5 mmol L‐1] on nutrient uptake, leaves, and xylem sap composition and growth of bean plants in sand culture. Ammonium supply caused higher nitrogen, phosphorus (P), potassium (K), and calcium (Ca) uptake. However, K, Ca, and magnesium (Mg) concentrations in the plants (in xylem sap and leaves) were lower when ammonium was supplied. Plants vegetative growth was higher with ammonium supply than without it, specially after four weeks of cultivation.  相似文献   

16.
This nutrient solution experiment investigated the effects of zinc (Zn) and cadmium (Cd) on winter wheat growth and enzymatic activity. Twelve nutrient solution treatments were prepared of four zinc levels (0, 0.5, 5 and 50 mg L?1) and three cadmium levels (0, 5 and 50 mg L?1). Cadmium concentrations ≥5 mg L?1 decreased plant growth, superoxide dismutase activity, and leaf and stem zinc concentrations, but increased plant cadmium concentrations, proline content, and peroxidase and catalase activities. Root activity and zinc concentration were highest in the 5 mg L?1 treatment and lowest in the 50 mg L?1 treatment. Zinc concentrations ≥5 mg L?1 inhibited plant growth, but increased proline content and cadmium concentration in stems and leaves. Low levels of zinc (0.5 mg L?1) increased cadmium-induced toxicity in wheat plants but high levels of zinc (50 mg L?1) reduced. In conclusion, these results indicated that the addition of zinc alleviated cadmium toxicity if the zinc/cadmium ratio was >10/1. Additional study needs to be done to quantify zinc content before zinc is supplied to alleviate cadmium toxicity.  相似文献   

17.
Studies on the effects of salinity and nitrogen (N) fertilization on ionic balance, biomass, and organic N production of annual ryegrass (Lolium multiflorum Lam.) were conducted. Plants grown in sand were irrigated with nutrient solution with an electrical conductivity of 2 or 11.2 dS#lbm‐1, and N in the form of sodium nitrate (NaNO3), ammonium nitrate (NH4NO3), or ammonium sulfate [(NH4)2SO4] ranging from 0.5 to 9.0 mM. Salinity increased the concentration of total inorganic cations (C) in plants and specifically sodium (Na) by more than 3‐fold higher in plants grown at high salinity as compared with plants at low salinity. Sodium (Na) concentration in roots was higher than in shoots irrespective of the salinity level, suggesting a restriction of Na transport from roots to shoots. The concentration of total inorganic anions (A) increased with salinity and when plants were supplied with nitrate (NO3), salinity increased the concentrations of NO3 and chloride (Cl) in plants. Increasing salinity and N concentration in the growth medium increased organic anions concentration in plants, estimated as the difference between C and A. The effect of different N sources on C‐A followed the order: NH4NO3 > NO3 > ammonium (NH4). The base of organic anions and inorganic ions with salinity contributed significantly to the osmotic potential of plants shoots and roots. Changes in C affected N and organic acids metabolism in plants, since C were highly correlated (p=0.0001) with C‐A and organic N (Norg) concentrations regardless of the salinity level or N source in the nutrient solutions. A high and positive linear dependency was found between Norg and C‐A in plants grown at high and low salinity levels and different N sources, pointing out the close relationship between Norg and organic anions on metabolism under these conditions. The amount of biomass produced was correlated positively with organic anion concentration in plants exposed to different salinity levels. Plant biomass increased with N concentration in the nutrient solution regardless of the salinity level applied. Biomass accumulation decreased while Norg concentration increased with salinity. Organic N content remained unaffected in plants exposed to salinity when grown in N less than 9.0 mM.  相似文献   

18.
Abstract

An experiment was carried out in a controlled temperature (CT) room for five weeks with tomato cvs., Moneymaker, Liberto, and Calypso, to investigate possible relationships between zinc (Zn) deficiency or toxicity and electrolyte leakage in plant leaves. The concentrations of Zn in nutrient solution were 0.01, 0.5, and 5.0 mg L?1, respectively. There were significant reductions in the dry matter and chlorophyll content of all three cultivars grown both at 0.01 (low) and 5 mg L?1 (high) Zn compared to 0.5 mg L?1. The concentration of Zn at 0.01 mg L?1 was not sufficient to provide for optimal plant growth, while 5 mg L?1 in nutrient solution was detrimental to plant growth for all three cultivars. Dry matter production was generally lowest in the plants grown at low (0.01 mg L?1) Zn except for Moneymaker where the lowest biomass was in the high Zn treatment. Zinc concentration was increased in the leaves and roots with increasing Zn concentration in nutrient solution. Phosphorus concentration was toxic in the leaves of the plants grown at low (0.01 mg L?1) and was deficienct at high Zn (5 mg L?1). The electrolyte leakage (%) gradually increased in the plants grown at low and high Zn concentrations and these increases were greatest in the leaves of plants grown at low Zn (except for Moneymaker grown at high Zn where reduction in dry matter was less). The best results for all growth parameters tested were for the plants grown at 0.5 mg L?1 Zn. The results of this short‐term experiment show that electrolyte leakage which is relatively simple and easy to measure may be a good indicator of cultivar tolerance to Zn deficiency and toxicity.  相似文献   

19.
增铵对小白菜生长和叶绿素含量的影响   总被引:11,自引:1,他引:11       下载免费PDF全文
在营养液中添加一定量的铵态氮能提高作物生物量和叶绿素含量。为研究增铵对植物生长及叶绿素含量的影响机理,采用了6个NO3-∶NH4 浓度比为5·0∶0·0、5·0∶2·5、5·0∶5·0、5·0∶7·5、5·0∶10·0和0·0∶5·0的处理对小白菜进行培养试验。结果表明,在5mmolL-1硝态氮存在时,适当添加一定量的铵态氮(2·5mmolL-1)小白菜生物量和叶面积分别增加39·6%和16·3%,叶面积与生物量显著相关(r=0·941,p<0·01)。营养液中铵态氮浓度与叶片SPAD值、活性铁及叶绿体蛋白质含量均显著相关,相关系数r分别为0·914、0·954和0·964。适当提高铵态氮浓度增加小白菜产量的机制在于其促进了叶片扩展,提高了总光合面积,其原因可能是适当提高铵态氮浓度促进了叶片细胞分裂。进一步研究表明,提高铵态氮浓度提高叶绿素含量的原因,可能在于其促进了小白菜体内全铁的再利用,从而提高了叶片活性铁含量和叶绿体蛋白质含量。  相似文献   

20.
Abstract

A hydroponic experiment was conducted in a phytotron at pH 5.5 to study the effects of nickel (Ni) on the growth and composition of metal micronutrients, such as copper (Cu), iron (Fe), manganese (Mn), and zinc (Zn), of barley (Hordeum vulgare L. cv. Minorimugi). Four Ni treatments were conducted (0, 1.0, 10, and 100 μM) for 14 d. Plants grown in 100 μM Ni showed typical visual symptoms of Ni toxicity such as chlorosis, necrosis of leaves, and browning of the root system, while other plants were free from any symptoms. Dry weights were the highest in plants grown in 1.0 μM Ni, with a corresponding increase in the chlorophyll index of the plants, suggesting that 1.0~10 μM Ni needs to be added to the nutrient solution for optimum growth of barley plants. The increase of Ni in the nutrient solutions increased the concentrations of Cu and Fe in roots, while a decrease was observed in shoots. The concentrations of Mn and Zn in shoots and roots of plants decreased with increasing Ni supply in the nutrient solution. Shoot concentrations of Cu, Fe, Mn, and Zn in plants grown at 100 μ M Ni were below the critical levels for deficiency. Plants grown at 1.0 μ M Ni accumulated higher amounts of Cu, Fe, Mn and Zn, indicating that nutrient accumulation in plants was more influenced by dry weights than by nutrient concentrations. The translocation of Cu and Fe from roots to shoots was repressed, while that of Mn and Zn was not repressed with increasing Ni concentration in the nutrient solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号