首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The experiment was carried out to investigate the effects of arsenic (As) on the physiological and mineralogical properties of barley (Hordeum vulgare L. cv. ‘Minorimugi’). The plants were grown in nutrient solution treated with 0, 6.7, 33.5, and 67 μ M As (0, 0.5, 2.5, and 5 ppm As, respectively) in the phytotron. Dry matter yield of shoots and roots decreased significantly with the As treatments, indicating that barley plants are As-sensitive and As-toxicity depends on the As concentration in the rooting medium. Necrosis in older leaves and chlorosis symptoms (whitish color) in the fully developed young leaves were observed at the 33.5 and 67 μ M As treatments. Arsenic concentration, accumulation, and translocation increased with the increase of As concentration in the rooting medium. Arsenic was mostly concentrated in roots and a little amount was moved to shoots, indicating that As was not easily translocated to shoots of barley seedlings. Concentrations and accumulations of phosphorus (P), potassium (K), calcium (Ca), magnesium (Mg), manganese (Mn), zinc (Zn), and copper (Cu) decreased significantly in shoots for 33.5 and 67 μ M As treatments as compared to the 0 μ M As treatment. Concentrations of P, K, Ca, Mg, Mn, and Cu decreased in roots, but Zn concentration increased in roots at 67 μ M As treatment. Accumulations of P, K, Ca, Mg, Mn, Zn, and Cu in roots also decreased significantly at 67 μ M As treatment. Accumulation of P and the cations showed negative relationship with As. Concentration of Fe decreased in shoots at 33.5 and 67 μ M As treatments where chlorosis was induced in the young leaf but increased in roots at 33.5 and 67 μ M As treatments. It was suggested that As might induce iron (Fe)-chlorosis in the plants. Among the micronutrients, Fe translocation was more affected than others by As. Phytosiderophore (PS) accumulation in roots, which is a symptom of Fe-deficiency in grasses, did not change significantly between 0 and 33.5 μ M As treatments; indicating that As-induced chlorosis did not enhance PS accumulation in roots and decreased due to As-toxicity at 67 μ M As treatment.  相似文献   

2.
Associations between vesicular‐arbuscular mycorrhizal (VAM) fungi and manganese (Mn) nutrition/toxicity are not clear. This study was conducted to determine the effects of excess levels of Mn on mineral nutrient uptake in shoots and roots of mycorrhizal (+VAM) and non‐mycorrhizal (‐VAM) sorghum [Sorghum bicolor (L) Moench, cv. NB9040]. Plants colonized with and without two VAM isolates [Glomus intraradices UT143–2 (UT1 43) and Gl. etunicatum UT316A‐2 (UT316)] were grown in sand irrigated with nutrient solution at pH 4.8 containing 0, 270, 540, and 1080 μM of added Mn (as manganese chloride) above the basal solution (18 μM). Shoot and root dry matter followed the sequence of UT316 > UT143 > ‐VAM, and shoots had greater differences than roots. Shoot and root concentrations and contents of Mn, phosphorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), zinc (Zn), and copper (Cu were determined. The +VAM plants generally had higher mineral nutrient concentrations and contents than ‐VAM plants, although ‐VAM plants had higher concentrations and contents of some minerals than +VAM plants at some Mn levels. Plants colonized with UT143 had higher concentrations of shoot P, Ca, Zn, and Cu and higher root Mg, Zn, and Cu than UT316 colonized plants, while UT316 colonized plants had higher shoot and root K concentrations than UT143 colonized plants. These results showed that VAM isolates differ in enhancement of mineral nutrient uptake by sorghum.  相似文献   

3.
Soil acidity is often associated with toxic aluminum (Al), and mineral uptake usually decreases in plants grown with excess Al. This study was conducted to evaluate the effects of Al (0, 35, 70, and 105 μM) on Al, phsophorus (P), sulfur (S), potassium (K), calcium (Ca), magnesium (Mg), iron (Fe), manganese (Mn), zinc (Zn,) and copper (Cu) uptake in shoots and roots of sorghum [Sorghum bicolor (L.) Moench, cv. SC283] colonized with the vesicular‐arbuscular mycorrhizal (VAM) fungi isolates Glomus intraradices UT143–2 (UT143) and Glomus etunicatum UT316A‐2 (UT316) and grown in sand (pH 4.8). Mycorrhizal (+VAM) plants had higher shoot and root dry matter (DM) than nonmycorrhizal (‐VAM) plants. The VAM treatment had significant effects on shoot concentrations of P, K, Ca, Fe, Mn, and Zn; shoot contents of P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu; root concentrations of P, S, K, Ca, Mn, Zn, and Cu; and root contents of Al, P, S, K, Ca, Mg, Fe, Mn, Zn, and Cu. The VAM effects on nutrient concentrations and contents and DM generally followed the sequence of UT316 > UT143 > ‐VAM. The VAM isolate UT143 particularly enhanced Zn uptake, and both VAM isolates enhanced uptake of P and Cu in shoots and roots, and various other nutrients in shoots or roots.  相似文献   

4.
Barley plants were grown hydroponically at two levels of K (3.0 and 30 mm) and Fe (1.0 and 10 μm) in the presence of excess Mn (25 μm) for 14 d in a phytotron. Plants grown under adequate K level (3.0 mm) were characterized by brown spots on old leaves, desiccation of old leaves, interveinal chlorosis on young leaves, browning of roots, and release of phytosiderophores (PS) from roots. These symptoms were more pronounced in the plants grown under suboptimal Fe level (1.0 p,M) than in the plants grown under adequate Fe level (10 μm). Plants grown in 10 μm Fe with additional K (30 mm) produced a larger amount of dry matter and released less PS than the plants grown under adequate K level (3.0 mm), and did not show leaf injury symptoms and root browning. On the other hand, the additional K supply in the presence of 1.0 μM Fe decreased the severity of brown spots, prevented leaf desiccation, and increased the leaf chlorophyll content, which was not sufficient for the regreening of chlorotic leaves. These results suggested that the additional K alleviated the symptoms of Mn toxicity depending on the Fe concentration in the nutrient solution. The concentration (per g dry matter) and accumulation (per plant) of Mn in shoots and roots of plants grown in 10 μm Fe and 30 mm K were much lower than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that additional K repressed the absorption of Mn. The concentration and accumulation of Fe in the shoots and roots of the plants grown in 10 μm Fe and 30 mm K were higher than those of the plants grown in 10 μm Fe and 3.0 mm K, indicating that the additional K increased the absorption of Fe under excess Mn level in the nutrient solution. The release of PS, chlorophyll content, and shoot Fe concentration were closely correlated.  相似文献   

5.
The objective of this study was to determine relations between Al effects and mineral concentrations in citrus seedlings. Six‐month‐old seedlings of five citrus rootstocks were grown for 60 days in supernatant nutrient solutions of Al, P, and other nutrients. The solutions contained seven levels of Al ranging from 4 to 1655 μM. Al and similar P concentrations of 28 μM P. Aluminum concentrations in roots and shoots increased with increasing Al concentration in the nutrient solution. Aluminum concentrations in roots of Al‐tolerant rootstocks were higher than those of Al‐sensitive rootstocks. When Al concentrations in nutrient solution increased from 4 to 178 μM, the K, Mg, and P concentrations in roots and the K and P levels in shoots increased. Conversely, Ca, Zn, Cu, Mn, and Fe in the roots and Ca, Mg, Cu, and Fe in the shoots decreased. The more tolerant rootstocks contained higher Fe concentrations in their roots than did the less tolerant ones when Al concentrations in solution were lower than 308 μM. Concentrations of other elements (Ca, K, P, Mg, Zn, and Mn) in roots or shoots exhibited no apparent relationship to the Al tolerance for root or shoot growth of the rootstocks. Calcium, K, Zn, Mn, and Fe concentrations in roots and Mg and K concentrations in shoots of all five rootstocks seedlings had significant negative correlations with Al concentrations in corresponding roots or shoots.  相似文献   

6.
Abstract

Plants were grown in solution culture with different levels of Ca to further evaluate Ca relationships to trace metal uptake and to toxicity of trace metals. When tomato plants (Lycopersicon esculentum L., Tropic) were grown at a low level of Ca, the Zn, Cu, Fe, Mn, Al, and Ti concentrations of leaves, stems, and roots were considerably increased. The use of an excess of CaCO3 which increased pH did not influence the trace metal concentrations of plants any more than did Ca++. In a factorial experiment with bush beans (Phaseolus vulgaris L. C.V. Improved Tendergreen) with Ca (10‐4,10‐2, 10‐2 N) and Ni (0, 2 × 10‐6 M, 2 X10‐5 M), Ni phytotoxicity and Ni uptake were decreased somewhat at the highest Ca level. High Ni tended to decrease the Ca concentration in leaves. High Ca and Ni both tended to decrease Fe, Cu, Zn, and Mn concentrations in leaves. The Ni had some interactions on the P concentrations of shoots.  相似文献   

7.
In order to clarify the mechanism by which calcium (Ca) alleviates manganese (Mn) phytotoxicity, barley plants were grown under the following conditions: (1) nutrient solution alone (control), (2) nutrient solution + 25 μM Mn (Mn-toxic), and (3) nutrient solution + 25 μ M Mn + 20 mM Ca (Ca-alleviated). Feeding experiments using 54Mn and 59Fe (iron) with 2.0 or 20 mM Ca to the plant roots were also conducted. The absorption and translocation of 54Mn in the control plants were lowered by the high-Ca (20 mM) feeding condition. The translocation of 54Mn to shoots of Mn-toxic or Ca-alleviated plants was also lowered by the high-Ca feeding condition, but 54Mn absorption by roots of the plants was unaffected. The absorption and translocation of 59Fe in the plants was unaffected by the high-Ca feeding condition. Calcium alleviation of Mn phytotoxicity in barley may be induced mainly by the inhibition of Mn translocation to shoots.  相似文献   

8.
镉处理根表铁膜对水稻吸收镉锰铜锌的影响   总被引:2,自引:0,他引:2  
本试验利用营养液和土壤培养系统,研究不同Fe、 Cd处理下根表铁膜对水稻吸收Cd、 Mn、 Cu、 Zn的影响。土壤中Fe的水平为0、 1、 2 g/kg Fe(以FeSO47H2O的形式供应),Cd 的水平为0、 2、 10 mg/kg Cd(以3CdSO48H2O的形式供应)。营养液中Fe和Cd的水平分别为0、 10、 30、 50、 80、 100 mg/L Fe 和 0、 0.1、 1.0 mg/L Cd。收获后测定水稻根表、 根中和地上部Cd、 Fe、 Mn、 Cu、 Zn 含量。试验结果表明,两种培养方式下,随着介质中Fe浓度的增加,水稻根表铁膜(DCB-Fe)逐渐增多。土壤培养方式下,根表铁膜中Cd 和 Mn 含量随铁膜量增加而略有增加,所有元素含量均表现为根中大于铁膜中。营养液培养条件下,根表铁膜中Mn和Cu含量在高量 Fe 供应时有所增加, Mn、 Cu、 Zn表现为铁膜中大于根中。根表铁膜中Zn含量在两种培养方式下均未呈现一定规律性变化。根中和地上部 Cd、 Mn、 Cu、 Zn 含量一般都随介质中Fe浓度的增加而下降,Cu和Zn含量在加Cd处理中下降。以上结果证明,铁膜对Cd 的吸附阻挡能力有限,对Mn、 Cu、 Zn 的吸附作用因培养方式和元素种类不同而有所差异,植株体内微量元素含量的下降主要与它们之间的相互抑制作用有关。  相似文献   

9.
Application of most waste or by‐product material increases the zinc (Zn) concentration in soils markedly. This investigation was conducted to determine if enhanced sulfur (S) supplied as sulfate (SO4) would modify the toxic effects of excess Zn. Soybean (Glycine max [L.] Merf. cv. Rarisorri) was grown for two weeks in nutrient solutions containing ranges in Zn (0.8 to 80 μM) and S (0.02 to 20 mM). Root and shoot conditions were observed, dry weights measured, and Zri concentration determined. Zinc‐toxicity symptoms started about one week after transplanting young plants to nutrient solutions. Symptoms including chlorosis, especially in the trifoliate leaves, and change in orientation of unifoliate leaves were mild in 20 μM‐, intermediate in 40 μM‐, and severe in 80 μM Zn‐containing solutions. Dry weight was reduced in plants exposed to 20, 40, and 80 μM Zn. Plants grown in 40 μM Zn and 20 mM S survived longer than those grown in lower S concentrations and showed alleviation of the chlorosis in trifoliate leaves. The change in the orientation of the unifoliate leaves due to Zn toxicity, however, was not affected by S. Zinc contents in shoots grown at toxic Zn levels were higher in 20 mM‐ than in lower S‐containing nutrient solutions. High S supply (20 mM) increased Zn translocation from roots to shoots. Besides increasing the Zn translocation from roots to shoots, it seems that S nutrition may also be a factor helping the plants to cope with high levels of Zn in their tissues.  相似文献   

10.
Reports on varietal diversity of upland rice in relation to relatively low aluminium (Al) levels are limited. Therefore, effects were examined of 35, 70, and 140 μM Al on plant growth and uptake of macro‐ and micro‐nutrients (K, P, Ca, Mg, Fe, Zn, Cu, and Mn) and their distribution in three upland rice (Oryza saliva L.) cultivars (BG35, DA14, and IR45) with different Al sensitivity. After an initial growth period of 5 days without Al, the plants were grown for 21 days in nutrient solutions containing Al at pH 4.1. Cultivar BG35 showed the highest and IR45 the lowest tolerance to Al when fresh weights of shoots or roots were considered. Except for IR45 at 140 μM Al, total dry weight was unaffected by Al, and the cultivars could not be clearly distinguished with respect to Al tolerance. Net Al uptake rate was higher in Al tolerant BG35 than in DA14 or IR45. Conversely, in IR45 the absorbed Al was rapidly transported to the shoots and accumulated there. In BG35, net P and Ca uptake rates in Al‐treated plants were high enough to maintain the P and Ca status of the shoots at all Al levels. Irrespective of Al sensitivity, there was a general depression of internal Mg concentration in Al‐reated plants. The Fe, Zn, Cu, and Mn concentrations of the plants were not negatively affected by Al in any of the cultivars.  相似文献   

11.
The effect of three waste waters from two factories, Manquabad (fertilizer) and Bani Quara (detergents and oils), and a sewage effluent from Arab El‐Madabegh (sewage effluent) on the soluble nitrogen and carbon fractions in sunflower plants was studied. In addition, tissue concentrations of sodium (Na), potassium (K), calcium (Ca), magnesium (Mg), chloride (Cl), sulfur (S), phosphorus (P), zinc (Zn), manganese (Mn), copper (Cu), and iron (Fe) were determined. Plants analyzed monthly that were grown in waste waters were found to have significantly higher soluble sugar, hydrolysable carbohydrate, and soluble protein in both their shoots and roots than plants grown in tap water (control). No definite pattern was noted for amino acid responses to the waste water treatment. Element concentrations in the plants were variable, affected by the pollution source differences and monthly sampling. Waste waters significantly enhanced the accumulation of most elements in both shoots and roots. The most notable effect was the increase in the Na, Cl, and Zn concentrations. In addition, waste waters significantly decreased the K content in both shoots and roots. Plants growing in Manquabad waste waters have the highest concentration of Zn, Mn, and Fe. The internal concentration for the mineral elements in the plant tissue was postively and negatively correlated with that found in the waste waters. The negative correlations existed with most elements in the plant tissue and waste waters, indicating the presence of an active regulation system that influenced the element uptake from the waste waters.  相似文献   

12.
In the present experiment, we studied the interaction between copper (Cu) and iron (Fe) in strawberry plants grown in nutrient solutions containing different concentrations of Fe. Plants grown in the absence of iron (Fe0) had the characteristic symptoms of Fe deficiency, with smaller chlorotic leaves, less biomass, acidification of the nutrient solution, and roots that were smaller and less ramified, while no symptoms of Fe deficiency were observed in plants grown with Fe. A greater amount of Cu was found in roots of chlorotic plants than in those grown with Fe, while plants grown with 20 μM of Fe (Fe20) in the nutrient solution had a greater amount of Fe compared with plants from the other treatments. Chlorotic plants (Fe0) and plants grown with the greatest level of Fe (Fe20) had a greater root ferric chelate reductase (FC-R; EC 1.16.1.17) activity compared with the other treatments with 5 or 10 μM Fe in the nutrient solution. The same pattern was obtained for relative FC-R mRNA concentration and for the sum of Fe and Cu contents in shoots (leaves plus crowns). The DNA obtained from amplification of the FC-R mRNA was cloned and several of the inserts analysed by single strand confirmation polymorphism (SSCP). Although there were different SSCP patterns in the Fe20 treatment, all the inserts that were sequenced were very similar, excluding the hypothesis of more than one FC-R mRNA species being present. The results suggest that Cu as well as Fe is involved in FC-R expression and activity, although the mechanism involved in this regulation is unknown so far. Both small contents of Fe and Cu in plants led to an over-expression of the FC-R gene and enhanced FC-R activity in strawberry roots.  相似文献   

13.
Nickel (Ni) is an essential micronutrient for higher plants but is toxic to plants at excess levels. Plant species differ extensively for mineral uptake and accumulation, and these differences often help explain plant tolerances to mineral toxicities/deficiencies. Solution culture experiments were conducted under controlled conditions to determine the effects of Ni on influx into roots (IN) and transport from roots to shoots (TR) of zinc (Zn), iron (Fe), copper (Cu), manganese (Mn), calcium (Ca), magnesium (Mg), phosphorus (P), and sulfur (S) in white clover (Trifolium repens L.), cabbage (ßrassica oleracea van capitata L.), ryegrass (Lolium perenne L.), and maize (Zea mays L.). Nickel decreased both IN and TR of Zn, Cu, Ca, and Mg, but only TR of Fe and Mn in white clover. Both IN and TR of Cu, Fe, Mn, Mg, and S were markedly decreased by Ni >30 μM in cabbage, whereas IN and TR of P increased with Ni treatment. For ryegrass, TR of Cu, Fe, Mn, Ca, and Mg was decreased, but IN of these elements except Mg was not affected by Ni. The IN and TR of P and S were increased in ryegrass with increasing external Ni levels. Nickel inhibited IN of Cu, Ca, and Mg, and TR of Zn, Cu, Fe, Mn, Ca, and Mg in maize. Plant species differed in response to Ni relative to IN and TR of mineral nutrients. Plant tolerance to Ni toxicity was associated with the influence of Ni on IN and TR of Cu, Fe, and Mn in white clover and cabbage but not in maize and ryegrass.  相似文献   

14.
In vitro plantlets or microtubers (in vitro produced tubers) of ‘Spunta’ potato (Solanum tuberosum L.) were planted in a 3 soil: 2 peat moss: 1 sand substrate (by volume) amended with municipal solid waste (MS W) compost at 0, 10, 20, or 30 g 4‐1 L pot. Three months later, plant growth and tuber yield were evaluated and concentrations of shoot and tuber tin (Sn), arsenic (As), copper (Cu), zinc (Zn), nickel (Ni), lead (Pb), manganese (Mn), cadmium (Cd), and iron (Fe) were determined. Amending with MSW resulted in significant increases in concentrations of all tested metals in the substrate. Number of proliferated shoots of plants started from rooted plantlets was greatest at 10 g pot‐1 MSW, whereas shoot weight of plants started from microtubers was greatest at 10 and 20 g pot‐1 MSW. Tuber yield of plants started from rooted plantlets or microtubers was greatest at 10 or 30 g pot‐1 MSW, respectively. In all instances, amending with MSW at 30 g pot‐1 resulted in significant increases in concentrations of all tested metals in shoots and tubers. Concentrations of shoot Ni and tuber Zn and Fe for plants started from rooted plantlets and concentrations of shoot Fe and tuber As, Cu and Pb for plants started from microtubers increased consistently with increasing MSW percentage of the substrate. Plants started from rooted plantlets produced shoots with sufficient Zn, Mn, and Ni concentrations regardless of the substrate but with toxic Cu content at 30 g pot‐1 MSW. Plants started from microtubers produced shoots with sufficient Mn and Ni concentrations regardless of the substrate but with low Zn and deficient Cu in unamended substrates. All plants had shoot Fe content higher than the sufficiency range. Although there were significant differences in concentrations of some nutrients among MSW treatments, no symptoms of nutrient toxicity or deficiency were observed. In all instances, tested elements did not accumulate in tubers to levels hazardous to human health. Concentrations of Cd, the most hazardous element, in potato tubers was not high enough to pose a threat to human. Our results indicate that there is a potential use of MSW in satisfying the needs of potato growth with negligible increases in heavy metal concentrations in tubers.  相似文献   

15.
The lower and upper critical boron levels in cotton (Gossypium herbaceum-Etawa), which are not estimated, were determined to provide guideline values for estimating the boron status from deficiency to toxicity. Cotton plants were grown under greenhouse conditions in complete nutrient solution containing boron at levels ranging from 0 to 50 ppm. Plants were harvested after 40 days and analysed for B, Zn, Fe, Mn and Cu. The lower critical levels for boron in roots, young leaves and old leaves were 103, 61 and 78 ppm, while critical nutrient toxicity levels were 129, 80 and 91 ppm, respectively. For the Gossypium herbaceum-Etawa cultivar, the maximum growth was obtained when 1 ppm boron was applied as H3BO3 in the nutrient solution. High boron concentrations in the nutrient solution were associated with low content of Zn, Fe and Mn in the plants, while boron and Cu concentrations increased with boron supply. Significant correlations were found between B treatments and most response parameters measured.  相似文献   

16.
Tolerance to zinc (Zn) deficiency was examined for three wheat (Triticum aestivum L.) and three barley (Hordeum vulgare L.) varieties grown in chelator‐buffered nutrient solution. Four indices were chosen to characterize tolerance to Zn deficiency: (1) relative shoot weight at low compared to high Zn supply (“Zn efficiency index”), (2) relative shoot to root ratio at low compared to high Zn supply, (3) total shoot uptake of Zn under deficient conditions, and (4) shoot dry weight under deficient conditions. Barley and wheat exhibited different tolerance to Zn deficiency, with barley being consistently more tolerant than wheat as assessed by all four indices. The tolerance to Zn deficiency in the barley varieties was in the order Thule=Tyra>Kinnan, and that of wheat in the order Bastian=Avle>Vinjett. The less tolerant varieties of both species accumulated more P in the shoots than the more tolerant varieties. For all varieties, the concentrations of Mn, Fe, Cu, and P in shoot tissue were negatively correlated with Zn supply. This antagonism was more pronounced for Mn and P than for Cu and Fe. Accumulation of Cu in barley roots was extremely high under Zn‐deficient conditions, an effect not so clearly indicated in wheat.  相似文献   

17.
The effects of manganese (Mn) on the growth and Mn-induced changes in nutrients uptake and translocation in Mn hyperaccumulator Phytolacca acinosa was investigated in this study. Results showed that high Mn (5000 μ M) in culture solution lead to typical Mn toxicity symptoms in leaves of P. acinosa and decrease of dry matter accumulation in shoots whereas there are no obvious toxicity symptoms and significant decrease of dry weight in roots. Manganese accumulation in roots, stems, and leaves increased with the increment of Mn concentration at the medium level. Calcium (Ca), magnesium (Mg), and iron (Fe) concentration in organs of P. acinosa decreased as the Mn concentration in the nutrient solution increased, but the Ca and Mg concentrations were still at a normal level and the Fe concentration at a sufficient level when compared with the normal plants. The Zn concentration affected by higher Mn level occurred only in roots of P. acinosa and the P concentration affected only in stems, whereas there were no significant influences of excess Mn on the potassium (K) and copper (Cu) concentration in organs of P. acinosa.  相似文献   

18.
The effects of cadmium (Cd) exposure on sunflower (Helianthus annuus L.) nutrient accumulation remain unclear. However, studies concerning crop improvement for Cd tolerance suggest the use of biotechnology techniques such as tissue culture. It is still unknown whether in vitro cells respond to Cd exposure in a way similar to plants. In this paper, the objectives were (1) to characterize the effects of Cd exposure in macronutrient and micronutrient accumulation in different sunflower organs/tissues and (2) to compare the behavior of two culture systems (plants vs. tissue culture) regarding Cd and nutrient accumulation. To achieve these aims, sunflower plants were grown hydroponically in the presence of Cd (at levels of 0, 5, 50, and 500 μ M). For in vitro cultures, seeds were germinated axenically and leaf explants were then grown on Murashige and Skoog medium (MS). One-month-old calluses were grown on MS medium containing 0, 5, 50, and 500 μ M Cd. After 21 d of exposure to 500 μ M, all plants were dead. The contents of macro- and micronutrients and of Cd were determined by ICPS in 18 d-exposed plants and calluses and in calluses exposed for six months to 50 μ M Cd. At day 18, Cd content increased in leaves, roots, and calluses. Cadmium exposure also decreased the contents of magnesium (Mg), calcium (Ca), iron (Fe), and manganese (Mn) in roots and of Mg, Ca, copper (Cu), Fe, and Mn in shoots. Exposed calluses suffered decreases only in Mg, Ca, and Mn contents. The contents of most of these nutrients in six-month-exposed calluses were similar to those of the control calluses, indicating that these long-term exposed in vitro cells developed mechanisms for regulating the effects of Cd on the accumulation of nutrients.  相似文献   

19.
ABSTRACT

The element concentrations of alfalfa plants exposed for 10 d to 40 mg lead (Pb) L? 1 from lead nitrate [Pb(NO3)2] alone, or combined with ethylenediaminetetraacetic acid (EDTA) and indole-3-acetic acid (IAA), was determined by inductively coupled plasma-optical emission spectroscopy (ICP-OES). Indole-3-acetic acid at 10 μ M and Pb/EDTA/IAA at 10 μ M increased potassium (K) concentration in roots by 87% and 94%, respectively (P < 0.05). However, IAA at 100 μ M decreased K concentration in leaves (P < 0.05). Plants exposed to 100 μ M IAA, Pb/IAA at 100 μ M, and Pb/EDTA/IAA at 100 μ M had, respectively, 30%, 55%, and 40% more sulfur (S) in leaves than control plants (P < 0.05). Lead and Pb/IAA reduced Ca concentration in stems and leaves (P < 0.05). Conversely, Pb and Pb/EDTA increased Cu concentration in roots and stems. IAA at 100 μ M, Pb, and Pb/EDTA/IAA decreased Zn concentration in roots (P < 0.05). Manganese (Mn) and molybdenum (Mo) concentration in roots and stems was lower in plants treated with Pb and Pb/IAA (P < 0.05). Pb and Pb/IAA reduced (P < 0.05) the iron (Fe) concentration in roots. However, the addition of EDTA and IAA at 10 μ M reduced the negative effects of Pb on Fe absorption.  相似文献   

20.
The influence of elevated levels of micronutrients on the growth and flowering of French marigold (Tagetes patula L.) was investigated. Plants were grown with nutrient solution containing 0.25, 0.5, 1, 2, 3, 4, 5, or 6 mM boron (B), copper (Cu), iron (Fe), manganese (Mn), molybdenum (Mo), or zinc (Zn) and toxicity development was monitored. The threshold micronutrient concentrations that induced visible foliar toxicity symptoms were 0.5 mM B, 4 mM Cu, 4 mM Fe, 2 mM Mn, 1 mM Mo, and 5 mM Zn. The dry matter yields during the 5 week experimental period were reduced when micronutrient concentrations exceeded 0.5 mM B, 3 mM Cu, 3 mM Fe, 6 mM Mn, 0.5 mM Mo, and 5 mM Zn in the fertilizer solution. Leaf chlorophyll contents decreased when the nutrient solution concentrations of Cu, Fe, and Mn were greater than 0.5 mM, 3 mM, and 2 mM, respectively. Visual toxicity symptoms of the six micronutrients were characterized.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号