首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.

Context

The requirement for rebuilding forecrop stands besides replacement of meadow vegetation with forest plants and formation of soil humus is the presence of a compatible ectomycorrhizal (ECM) fungal community.

Aims

This study aims to assess ectomycorrhizal fungi diversity associated with silver fir (Abies alba Mill.) seedlings regenerating in silver fir stands and Scots pine forecrops.

Methods

One-year-old seedlings were sampled in six study sites: three mature fir forests and three pine forests. ECM fungi were identified by polymerase chain reaction amplification and sequencing of the internal transcribed spacer of rDNA.

Results

The mean mycorrhizal colonization exceeded 90 %. Thirty-six ectomycorrhizal taxa were identified in fir stands and 23 in pine forecrops; ten out of these species were common to both stands. The fungal communities were different between study sites (R?=?0.1721, p?=?0.0001). Tomentella stuposa was the only species present at all sites.

Conclusion

Silver fir seedlings in Scots pine forecrops supported smaller ECM fungal communities than communities identified in mature silver fir stands. Nevertheless, fungal colonization of seedling roots was similar in both cases. This suggests that pine stands afforested on formerly arable land bear enough ECM species to allow survival and growth of silver fir seedlings.  相似文献   

2.
Bark weevils are consistently associated with various fungi. They act as effective vectors for root-rot fungi, the rust pathogen and the ophiostomatoid fungi. In comparison with bark beetles, the interaction between ophiostomatoid fungi and bark weevils has been poorly studied in Europe. This study aims to clarify the ties among ophiostomatoid fungi and their weevil vectors in Pinus sylvestris. Samples associated with three bark weevils, including Pissodes castaneus, P. piniphilus and P. pini were collected from seven pine stands in Poland. Fungi were isolated from laboratory-reared and field-collected beetles, larvae and galleries of weevils. Isolates were identified based on morphology, DNA sequence comparison for two gene regions (ITS, ß-tubulin) and phylogenetic analyses. Fourteen morphological and phylogenetic ophiostomatoid species were identified among the 1,219 isolates. These 14 species included 11 novel associations between fungi and bark weevils. The most commonly encountered fungal associates of bark Pissodes species were Leptographium procerum, Ophiostoma quercus and O. minus. The spectrum of fungal associates was similar in three bark weevil species, despite some differences between species. Except for P. castaneus, all species of bark weevil were frequently associated with ophiostomatoid fungi. Pissodes castaneus does appear to be a consistent vector of L. procerum and Sporothrix inflata while O. minus, O. quercus and O. cf. rectangulosporium were often found in association with P. piniphilus and P. pini.  相似文献   

3.

Context

The development of multiple trait selection indices for solid (structure) wood production in the Scots pine (Pinus sylvestris L.) breeding program requires genetic variances and covariances estimated among wood quality traits including stiffness.

Aims

Genetic control and relationships among Scots pine growth, fiber, and wood quality traits were assessed by estimating heritability, phenotypic and genetic correlation using a Scots pine full-sib family trial.

Method

Wood quality traits including clearwood and dynamic acoustic stiffness were measured using SilviScan and Hitman in a 40-year-old progeny trial and by sampling increment cores of 778 trees of 120 families. Genetic parameters were estimated using the mixed model by the ASReml software.

Results

Heritability ranged from 0.147 to 0.306 for growth, earlywood, transition wood and latewood proportion traits and from 0.260 to 0.524 for fiber dimension, wood density, MFA and stiffness traits. The highly unfavorable genetic correlation between diameter and whole core density (?0.479) and clearwood stiffness (?0.506) and dynamic acoustic stiffness (?0.382) was observed in this study.

Conclusion

The unfavorable genetic correlations between growth traits and stiffness indicate that multiple traits selection using optimal economic weights and optimal breeding strategies are recommended for the advanced Scots pine breeding program.  相似文献   

4.

Context

To sustainably manage loblolly pine plantations for bioenergy and carbon sequestration, accurate information is required on the relationships between management regimes and energy, carbon, and nutrient export.

Aims

The effects of cultural intensity and planting density were investigated with respect to energy, carbon, and essential nutrients in aboveground biomass of mid-rotation loblolly pine plantations, and the effects of harvesting scenarios on export of nutrients were tested.

Methods

Destructive biomass sampling of a 12 years-old loblolly pine culture/density experiment, and analysis of variance were used to assess the effects of cultural intensity (operational vs. intensive) and six planting densities ranging from 741 to 4,448 trees ha?1. Two harvesting scenarios (stem-only vs. whole-tree harvesting) were assessed in terms of energy, carbon, and nutrient export.

Results

The concentrations of energy, carbon, and nutrients varied significantly among stem wood, bark, branch, and foliage components. Cultural intensity and planting density did not significantly affect these concentrations. Differences in energy, carbon and nutrient contents among treatments were mainly mediated by changes in total biomass. Nutrient contents were affected by either cultural intensity or planting density, or both. Stem-only harvesting removed 71–79 % of aboveground energy and carbon, 29–45 % of N, 28–44 % of P, 44–57 % of K, 51–65 % of Ca, and 50–61 % of Mg.

Conclusions

Stem-only harvesting would be preferred to whole-tree harvesting, from a site nutrient conservation perspective.  相似文献   

5.

? Context

Soil temperature can limit tree growth and function, but it is often unaddressed in understanding the successional status of trees.

? Aims

We tested how soil temperature affected carbon allocation strategies of two dominant co-occurring boreal conifer species, Pinus contorta and Picea mariana.

? Methods

We measured nonstructural carbon (NSC) concentrations, biomass, and photosynthesis of dormant and actively growing 2-year-old seedlings in response to three soil temperatures (5, 10, and 20 °C) under a common ambient air temperature.

? Results

For both species, variation in carbon reserves with soil temperature was more pronounced following seedling growth than during dormancy. For both species and all organ types (roots, needles, and stems), NSC concentrations were highest when seedlings were grown at 5 than 20 °C. Mass adjusted for NSC content was negatively correlated with NSC concentration for all organ types of both species. Soil temperature had a marginally significant effect on photosynthesis of pine; seedlings grown at 10 or 20 °C acquired more carbon than seedlings grown at 5 °C. Spruce seedlings photosynthesized more when grown at 20 °C than at 5 or 10 °C.

? Conclusion

Interspecific differences in allocation of carbon may underlie the responses of P. mariana and P. contorta to cold soils and consequently their successional status.  相似文献   

6.
Models for predicting microfibril angle variation in Scots pine   总被引:1,自引:0,他引:1  

Context

Microfibril angle (MFA) is one of the key determinants of solid timber performance due to its strong influence on the stiffness, strength, shrinkage properties and dimensional stability of wood.

Aims

The aim of this study was to develop a model for predicting MFA variation in plantation-grown Scots pine (Pinus sylvestris L). A specific objective was to quantify the additional influence of growth rate on the radial variation in MFA.

Methods

Twenty-three trees were sampled from four mature Scots pine stands in Scotland, UK. Pith-to-bark MFA profiles were obtained on 69 radial samples using scanning X-ray diffractometry. A nonlinear mixed-effects model based on a modified Michaelis–Menten equation was developed using cambial age and annual ring width as explanatory variables.

Results

The largest source of variation in MFA (>90 %) was within trees, while between-tree variation represented just 7 % of the total. Microfibril angle decreased rapidly near the pith before reaching stable values in later annual rings. The effect of ring width on MFA was greater at higher cambial ages.

Conclusion

A large proportion of the variation in MFA was explained by the fixed effects of cambial age and annual ring width. The final model is intended for integration into growth, yield and wood quality simulation systems.  相似文献   

7.

Context

Ophiostomatoid fungi can severely affect the health and economic value of Norway spruce trees (Picea abies). Although the diversity of ophiostomatoid species and their associations with insects have been well-investigated in central and northern Europe, little is known about the conditions in south-eastern Europe.

Aim

This study aims to study the assemblages of ophiostomatoid fungi associated with three bark beetle species (Ips typographus, Ips amitinus, and Pityogenes chalcographus) that infect Norway spruce in Slovenia.

Methods

Bark beetles were sampled in four phytogeographic regions in Slovenia. The fungi found on the bark beetles were identified based on morphology, DNA sequence comparisons of ITS regions and phylogenetic analysis. The species compositions of the fungal associates of the three insect species were compared and the pairwise associations of the occurrence of the fungal species were analysed.

Results

Thirteen different species were found. The most commonly encountered fungal associates of the beetles were Ophiostoma bicolor, Ophiostoma brunneo-ciliatum, Grosmannia piceiperda, Ophiostoma ainoae, Ceratocystiopsis minuta, and Grosmannia penicillata. The composition of the fungal associates differed among the bark beetle species, but not among the phytogeographic regions.

Conclusions

This study confirms that ophiostomatoid species are common associates of the investigated bark beetle species. Many ophiostomatoid species have strong host associations. I. typographus and P. chalcographus can act as effective vectors for O. bicolor, O. ainoae, G. piceiperda and O. brunneo-ciliatum, whereas I. amitinus often carries G. piceiperda and C. minuta in Slovenian forests.  相似文献   

8.

? Context

It is assumed that global change is already affecting the composition, structure and distribution of forest ecosystems; however, detailed evidences of altitudinal and latitudinal shifts are still scarce.

? Aims

To develop a method based on National Forest Inventory (NFI) to assess spatio-temporal changes in species distributions.

? Methods

We develop an approach based on universal kriging to compare species distribution models from the different NFI cycles and regardless of the differences in the sampling schemes used. Furthermore, a confidence interval approach is used to assess significant changes in species distribution. The approach is applied to some of the southernmost populations of Pinus sylvestris and Fagus sylvatica in the Western Pyrenees over the last 40 years.

? Results

An increase of the presence of the two species in the region was observed. Scots pine distribution has shifted about 1.5 km northwards over recent decades, whereas the European beech has extended its distribution southwards by about 2 km. Furthermore, the optimum altitude for both species has risen by about 200 m. As a result, the zone in which the two species coexist has been enlarged.

? Conclusions

This approach provides a useful tool to compare NFI data from different sampling schemes, quantifying and testing significant shifts in tree species distribution over recent decades across geographical gradients.  相似文献   

9.

? Context

The rising demand of energy wood for heating purposes in Germany leads to concerns regarding the overexploitation of forests. A major aspect is the impact of whole-tree harvesting on long-term productivity of forest soils.

? Aims

This study aimed to analyze the effects of nutrient removal on productivity using the historically prevalent practice of litter raking. Since there is a lack of controlled whole-tree harvesting experiments in Germany, we used litter raking as a surrogate management practice entailing the removal of nutrients from forest stands.

? Methods

We used three sites with documented litter raking to analyze the effects of nutrient removal on productivity using dendroecological methods: two recent litter removal experiments in two Scots pine stands (Siegenburg and Burglengenfeld) and one oak stand (Eichhall) with documented historic litter raking. Basal area increment (BAI) and tree-ring characteristics were compared between periods with litter raking and the preceding periods for both treatment and control plots.

? Results

For the two Scots pine sites with a relatively short litter raking period, no effects of litter raking on BAI could be ascribed to nutrient removal. On the oak site with a longer history of litter utilization, the loss in BAI due to litter raking amounts to 22 % during the period with active raking and to still 17 % in the recovery period.

? Conclusions

These results contribute to the still very limited understanding about the impact of whole-tree harvesting on forest productivity in Germany by laying down an upper limit of possible effects due to nutrient removal, as nutrient loss by litter raking tends to be higher than nutrient loss by whole-tree harvesting.  相似文献   

10.
Ecology and evolution of pine life histories   总被引:1,自引:0,他引:1  

Introduction

Pinus is a diverse genus of trees widely distributed throughout the Northern Hemisphere. Understanding pine life history is critical to both conservation and fire management.

Objectives

Here I lay out the different pathways of pine life history adaptation and a brief overview of pine evolution and the very significant role that fire has played.

Results

Pinus originated ~150?Ma in the mid-Mesozoic Era and radiated across the northern continent of Laurasia during the Cretaceous Period. Pines have followed two evolutionary strategies interpreted as responses to competition by the newly emerging angiosperms. The Strobus lineage mostly has radiated into stressful sites of low nutrient soils and extremes in cold or heat. The Pinus (subgenus) lineage has radiated into fire-prone landscapes with diverse fire regimes. Examination of life history traits illustrates syndromes associated with fire-avoider, fire-tolerater, fire-embracer, and fire-refuge strategies.

Conclusion

Understanding the current pattern of pine distribution requires interpreting their evolution in terms of climate, geology, and fire. All three of these factors have played a role since the Mesozoic origin of the genus. All are important to the appropriate management of these resources.  相似文献   

11.

? Context

Modification of stand density by thinning may buffer the response of tree growth and vigor to changes in climate by enhancing soil water availability.

? Aims

We tested the impact of thinning intensity on cambial growth of Aleppo pine (Pinus halepensis L.) under semi-arid, Mediterranean conditions.

? Methods

A multiple thinning experiment was established on an Aleppo pine plantation in Spain. We analysed the stem growth dynamics of two different crown classes under four different thinning intensities (15 %, 30 %, and 45 % removal of the basal area) for 2 years, based on biweekly band dendrometer recordings. Local relative extractable soil water was derived from the use of a water balance model Biljou© (available at https://appgeodb.nancy.inra.fr/biljou/) and used as an explanatory variable.

? Results

Radial growth was mainly controlled by soil water availability during the growing season, and differed by crown class. The growth rates of dominant trees were significantly higher than the growth rates of suppressed trees. Removal of 30 % and 45 % of the initial basal area produced a growth release in both dominant and suppressed trees that did not occur under less intense thinning treatments.

? Conclusions

Soil water availability was the main driver of radial growth during the growing season. Forest management confirmed its value for ameliorating the effects of water limitations on individual tree growth. These results may help managers understand how altering stand density will differentially affect diameter growth responses of Aleppo pine to short-term climatic fluctuations, promoting forests that are resilient to future climatic conditions.  相似文献   

12.

Context

Edible stone pine (Pinus pinea L.) nut is a forest product which provides the highest incomes to the owners of stone pine forests.

Aim

The objective of this work is to evaluate the effect of first thinning on growth and cone production in an artificially regenerated stand in order to determine optimum intensity.

Methods

A thinning trial was installed in 2004 to compare two thinning regimes (heavy and moderate) and a control treatment. From 2004 to 2012, six inventories of forest attributes were carried out, and the cone crop was harvested annually. We evaluated the effect of thinnings on growth using repeated measures analysis of variance with a mixed model approach. With regards to cone production, we first estimated the probability of finding cones in a tree by applying a generalized mixed model and then estimated cone production by using a mixed model, including climatic variables.

Results

We found that thinning had a positive influence on tree diameter increment. Thinning increased the probability of finding cones and cone production. However, significant differences between heavy and moderate thinnings were not found.

Conclusion

We recommend early silvicultural treatments in stone pine stands to favor the development of trees and larger edible pine nut production.  相似文献   

13.

Context

Reliable information on tree stem diameter variation at local spatial scales and on the factors controlling it could potentially lead to improved biomass estimation over pine plantations.

Aims

This study addressed the relationship between local topography and tree diameter at breast height (DBH) within two even-aged radiata pine plantation sites in New South Wales, Australia.

Methods

A total of 85 plots were established, and 1,302 trees were sampled from the two sites. Airborne light detection and ranging (LiDAR) was used to derive slope and aspect and to link them to each individual tree.

Results

The results showed a significant relationship between DBH and local topography factors. At both sites, trees on slopes below 20° and on southerly aspects displayed significantly larger DBHs than trees on steeper slopes and northerly aspects. Older trees with similar heights also exhibited a significant relationship between DBH and aspect factor, where greater DBHs were found on southerly aspects.

Conclusions

The observed correlation between tree DBH and LiDAR-derived slope and aspect could contribute to the development of improved biomass estimation approaches in pine plantations. These topographical variables are easily attained with airborne LiDAR, and they could potentially improve DBH predictions in resource inventories (e.g. stand volume or biomass) and support field sampling design.  相似文献   

14.

Key message

Mixing sessile oak and Scots pine in central France to reduce intraspecific competition for water resources did not improve the ability of these two species to withstand severe drought during the summer.

Context

In order to reduce the impact of increasingly extreme droughts on forests, managers must adapt their practices to future climate conditions. Maintaining a greater diversity of tree species in temperate forest ecosystems is one of the recommended options.

Aims

We addressed how interactions between sessile oak and Scots pine in mixed forests in central France affect their functional response to drought.

Methods

We characterized the carbon isotope composition (δ13C) in the tree growth rings formed during wet (2001, 2007) or dry (2003, 2004) summers for each of the two species growing both in pure and in mixed stands in order to compare the effect of stand composition on variations in carbon isotope discrimination (Δ13C) among contrasted years.

Results

The severe drought in 2003 induced a strong decrease in Δ13C for all trees and in all stands as compared to 2001. This decrease was greater in pine than in oak. There was no significant difference between pure and mixed stands in the response of either species to drought.

Conclusion

Mixing sessile oak and Scots pine in stands in central France does not improve the ability of either species to withstand severe drought during the summer.
  相似文献   

15.

Key message

Onset and cessation of radial and height increment of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.) in southern Finland were independent phenomena. They both contributed to the increment period duration, which was a more crucial factor defining the magnitude of annual radial and height increment.

Context

Phenology of diameter and height increment is a critical component of growth, also contributing to damage and survival of trees.

Aims

We quantified annual variation in intra-annual tracheid production and height increment of Norway spruce (Picea abies (L.) Karst.) and Scots pine (Pinus sylvestris L.).

Methods

The number of tracheids and the day of the year for the onset and cessation of tracheid production were monitored from microcores collected repeatedly during growing seasons 2001–2012 in southern Finland. Weekly height increment was also measured in an adjacent sapling stand in 2008–2012.

Results

The first tracheids in pine were found around mid-May and in spruce a week later. The cessation of the tracheid production occurred during the last week of August for both tree species. Increment onset and cessation were independent phenomena, both contributing to the magnitude of tracheid production via increment period duration, which appeared to be a more crucial factor defining the number of tracheids. Duration of the height increment period was also related to shoot length but the connection was less tight than the link between the duration of tracheid production and the number of tracheids. A thermal threshold around 100 d.d. (degree days) was found for the onset of radial increment. No single environmental factor triggered the cessation of tracheid production, but in some years, soil water availability appeared to play a role.

Conclusion

The results indicate that extending growing seasons due to the climatic warming may increase growth in the Finnish forests.
  相似文献   

16.

Context

Tube shelters have been shown to enhance field performance of several Mediterranean species, but responses of newly planted seedlings to the microenvironment induced by shelter walls with different light transmissivity are still poorly documented.

Aims

We studied effects of a range of shelters with varying light transmissivity on post-planting seedling responses during the wet season establishment phase for two Mediterranean trees of contrasting functional ecology.

Methods

Root growth, biomass allocation, water potential, and chlorophyll fluorescence of Quercus ilex and Pinus halepensis seedlings were evaluated across shelters varying in light transmissivity (80, 40, 20, and 10 % plus a mesh shelter) with irrigation.

Results

Plants in dark tubes (20 and 10 % light transmissivity) had less above- and belowground growth and more than two times greater leaf to protruding roots mass ratio, with shoot growth response of Q. ilex being less plastic. Ratio of leaf area/protruding roots area decreased when light transmissivity increased, although no differences were found at ≥40 % transmissivity. Xylem water potential indicated lack of water stress, and high maximum photosynthetic efficiency (F v/F m) values show no photoinhibition symptoms irrespective of light transmissivity.

Conclusion

Shelter transmissivity ≥40 % promotes rapid and vigorous root growth immediately after planting for these species. This minimum transmissivity should be considered as a target when designing shelters to help root development and improve water balance of Mediterranean seedlings.  相似文献   

17.

Context

Waterlogging is predicted to become more common in boreal forests during winter and early spring with climate change. So far, little is known about the waterlogging tolerance of boreal tree species during their winter dormancy.

Aim

The aim was to quantify the degree of waterlogging tolerance of 1-year-old dormant Norway spruce (Picea abies (L.) Karst.) seedlings.

Methods

The seedlings were exposed to waterlogging in a growth chamber at temperature of 2 °C for 4 weeks and then allowed to recover for 6 weeks during the growth stage. Shoot and root responses were monitored by physiological and growth measurements.

Results

No effect was found in the seedling biomass, but root mortality increased slightly during the early growth stage following waterlogging. The water potential of the needles became less negative at the end of the waterlogging and the early growth stage. The ratio of apoplastic to symplastic electrical resistance (R e/R i) of the needles was lower after waterlogging, indicating changes in the proportions of symplastic and apoplastic space. No differences were found between the treatments in the dark-acclimated chlorophyll fluorescence (F v/F m) of the needles. Slightly greater accumulation of starch and temporary reductions of some mineral nutrients in needles were found after waterlogging.

Conclusions

We conclude that in late winter and early spring, Norway spruce seedlings potentially tolerate short periods of waterlogging.  相似文献   

18.
Ophiostomatoid fungi are carried by various bark beetles. However, very little is known about the role of these fungi in conifer roots. We studied ophiostomatoid fungi in roots of dying and dead Pinus sylvestris trees and tested the potential phytotoxicity of some isolates using a sensitive bioassay with Lepidium sativum in Poland. Fungi were identified based on their morphology and DNA sequencing. Three ophiostomatoid fungi, Leptographium procerum, Sporothrix inflata and Ophiostoma pallidulum, were isolated from the roots. The most abundant soil‐borne fungus, S. inflata, and relatively rare O. pallidulum were isolated for the first time from roots of dying and dead pine trees. The frequency of S. inflata and O. pallidulum correlated with tree decline. The fungi were isolated more frequently from roots of dead than dying trees. Sporothrix inflata and O. pallidulum slightly reduced the stem and root growth of L. sativum. Leptographium procerum reduced more significantly root than stem growth. This species reduced root elongation 32–54% after 10–17 days of incubation.  相似文献   

19.

Context

Excessive recruitment in post-fire regeneration of Pinus halepensis can require pre-commercial thinning. The 1994 Moratalla fire (Spain) and the thinning applied there since 2004 provided good conditions for testing pre-commercial thinning effectiveness.

Aims

To analyse pre-commercial thinning effects on tree size, reproductive potential, stem biomass and annual growth in 15-year-old saplings.

Methods

Twenty nine circular plots (5 m radius) were established based on (1) years since thinning and (2) aspect. Non-thinned plots were included as controls. Sapling variables were measured and pine cones were counted and classified according to maturity. Three saplings per plot were felled, five sample disks were extracted from each and tree rings were analysed with Windendro® software.

Results

Sapling size, annual growth and stem biomass were higher in thinned plots than in control plots 2–4 years after thinning. Annual growth declined five years after thinning. Cone counts were higher 2–5 years after thinning, depending on the cone type. Aspect influenced some variables.

Conclusion

Thinning accelerated stand maturity but positive effects were indiscernible until 2–5 years later. Serotinous cones, which are fundamental to regeneration after fire, increased in number after 5 years. The effects of aspect were inconclusive due to interactions with years since thinning.  相似文献   

20.

Context

Although drought is generally considered the main environmental constraint in Mediterranean environments, the ability to acclimate to and tolerate frost in early developmental stages can be a determinant for seedling survival of many Mediterranean tree species like stone pine (Pinus pinea L.).

Aims

The aim of this study was to assess the impact of the developmental stage of naturally regenerated stone pine individuals on tolerance to low temperature (LT) from summer to late autumn and in spring, at a highly continental site in central Spain. Specifically, we tested to what extent the differences in tolerance are related to shoot heteroblasty.

Methods

We assessed LT tolerance of needles from individuals at three age classes (class C1: seedlings, class C2: 4- to 8-year-old saplings and class C3: >9-year-old saplings) over nine dates from summer to spring.

Results

LT tolerance displayed severe seasonal trends and differed between age classes. It usually increased with sapling age. Such differences were tightly related to heteroblasty of the shoots. Our results point to a higher LT tolerance associated with larger leaf dry mass per unit area (LMA) values. No impact of late frosts on shoot growth rates was detected during this study.

Conclusions

Developmental changes during early plant growth seem to play a role in frost tolerance of stone pine seedlings, a finding which furthers our understanding of regeneration dynamics in this species in areas with continental influence.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号