首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

? Context

A clear understanding of the genetic control of wood properties is a prerequisite for breeding for higher wood quality in Populus tomentosa Carr. hybrid clones.

? Aims

The experiments aimed at unraveling genetic and environmental effects on wood properties among triploid hybrid clones of P. tomentosa.

? Methods

We used 5-year-old clonal trials established in Northern China to assess the heritability of wood density and fiber traits. Two hundred seventy trees from nine clones were sampled in five sites.

? Results

Site had a very significant effect on all recorded traits. Despite this large site effect, a tight genetic control was detected and clonal repeatability varied between 0.53 and 0.95. Significant genotype?×?environment interactions were detected for most of the traits. Moderate to tight correlation were evidenced among traits but they were not consistent with that in several cases that were site-dependent.

? Conclusions

Our results revealed a tight genetic control over several wood properties and therefore breeding programs might be able to improve wood density, fiber length, and coarseness in these hybrids.  相似文献   

2.
  • ? Juvenile wood quality in Pinus radiata is affected by factors such as low density, stiffness, and high microfibril angle, spiral grain, and shrinkage. Adverse genetic correlations between growth and wood quality traits remain as one of the main constraints in radiata pine advanced generation selection breeding program.
  • ? Juvenile wood property data for this study were available from two progeny tests aged 7 and 6 y. We estimated the genetic correlations between stiffness, density, microfibril angle, spiral grain, shrinkage in the juvenile core and DBH growth in radiata pine, and) to evaluated various selection scenarios to deal with multiple objective traits.
  • ? Negative genetic correlations were found for modulus of elasticity (MoE) and density with microfibril angle, spiral grain, shrinkage, and DBH. We observed low to moderate unfavourable genetic correlations between all wood quality traits and DBH growth.
  • ? These low to moderate genetic correlations suggest that there may be some genotypes which have high DBH growth performance while also having high wood stiffness and density, and that the adverse correlation between DBH and MoE may not entirely prohibit the improvement of both traits. Results indicate that, in the short term, the optimal strategy is index selection using economic weights for breeding objective traits (MAI and stiffness) in radiata pine.
  • ? In the long-term, simultaneously purging of the adverse genetic correlation and optimizing index selection may be the best selection strategy in multiple-trait selection breeding programs with adverse genetic correlations.
  •   相似文献   

    3.

    Key message

    Growth and wood chemical properties are important pulpwood traits. Their narrow-sense heritability ranged from 0.03 to 0.49 in Eucalyptus urophylla × E. tereticornis hybrids, indicating low to moderate levels of genetic control. Genetic correlations were mostly favorable for simultaneous improvement on growth and wood traits. Additive and non-additive genetic effects should be considered in making a hybrid breeding strategy.

    Context

    Eucalypt hybrids are widely planted for pulpwood production purposes. Genetic variations and correlations for growth and wood chemical traits remain to be explored in Eucalyptus interspecific hybrids.

    Aims

    Our objectives were to clarify the heritability of growth and wood chemical traits and determine the genetic correlations between traits and between trials in E. urophylla × E. tereticornis hybrids.

    Methods

    Two trials of 59 E. urophylla × E. tereticornis hybrids derived from an incomplete factorial mating design were investigated at age 10 for growth (height and diameter) and wood chemical properties (basic density, cellulose content, hemi-cellulose content, lignin content, and syringyl-to-guaiacyl ratio). Mixed linear models were used to estimate genetic parameters.

    Results

    Narrow-sense heritability estimates were 0.13?0.22 in growth and 0.03?0.49 in wood traits, indicating low to moderate levels of additive genetic control. Genetic correlations were mostly positively significant for growth with basic density and cellulose content but negatively significant with hemi-cellulose and lignin contents, being favourablefavorable for pulpwood breeding purpose. Type-B correlations between sites were significant for all the traits except diameter and lignin content.

    Conclusion

    Hybrid superiority warrants the breeding efforts. An appropriate breeding strategy should be able to capture both additive and non-additive genetic effects.
      相似文献   

    4.

    ? Introduction

    There has been an increasing interest in very early selection of radiata pine to reduce the breeding cycle for solid wood products. For such selection, new approaches are required to assess wood quality in wood from very young stems.

    ? Methods

    Nursery seedlings of clones of radiata pine were grown in leant condition using two leaning strategies for 18–20 months. Opposite wood and compression wood were isolated from the leaning stems and tested for dynamic modulus of elasticity, density, longitudinal shrinkage, volumetric shrinkage and compression wood area using new methods evolved for testing small size samples quickly and reliably. The methods were tested for their efficiency in differentiating clones by their wood properties.

    ? Results

    Leaning of stems provided distinct opposite and compression wood for testing. Automated image analysis method used for compression wood area assessment was found to be a quick and effective method for processing large number of samples from young stems. Compression wood was characterised by high basic density, high longitudinal shrinkage and low volumetric shrinkage than that of opposite wood. Acoustic velocity in opposite wood had a strong negative association with longitudinal shrinkage. The study signifies the importance of preventing mixing of opposite wood with compression wood while assessing wood quality in young stems thus making leaning a critical strategy. The comparison of wood properties of opposite wood revealed significant differences between clones. Opposite wood of the clone with the lowest dynamic modulus of elasticity exhibited the highest longitudinal shrinkage.

    ? Conclusion

    Significant differences in measurable wood properties between clones suggest the prospects of early selection for solid wood products.  相似文献   

    5.

    Aims

    The objective of this study was to compare the merit of the Colombian landrace relative to the various Australian native races of Eucalyptus globulus Labill. ssp. globulus and study the genetic control of key traits such as growth, wood density, and leaf phase change in the unique conditions of the Colombian highlands.

    Methods

    The genetic study was based on open-pollinated families from native Australian and Colombian landrace origin, tested across four trials spanning two generations of breeding. A multisite mixed linear model with genetic groups was fitted to the data to estimate race merit and the variance and covariances between traits, ages, and sites.

    Results

    Race effects for growth were small and only significant at the older site. In contrast, races differ significantly for height to phase change and density. The Colombian landrace and South and NE Tasmania races changed leaf type at a higher tree height. King Island and Recherche Bay had low density values, whereas the Colombian landrace had the highest. Heritability was moderate for growth traits (between 0.09 and 0.40), high for height to phase change (between 0.42 and 0.69), and moderate for wood density (0.28). The genetic correlation between growth and height to phase change was in general positive, but variable across sites. There was no correlation between growth and density. Despite large differences in growth between trials, pairwise genetic correlations suggest that genotype-by-site interaction is negligible. However, there was a poor correspondence between first-generation (ex-native stands) and second-generation families (ex-multi-provenance progeny trial). This suggests that breeding value estimates based on native open-pollinated material are unreliable.

    Conclusion

    Results confirm negligible race differences for growth, but not for wood density. Future breeding efforts should include the various genetic backgrounds including the Colombian landrace which constitutes a very important source, especially because of its high density. Despite a low Genotype by Environment interaction, the poor genetic correspondence between the first- and second-generation trials indicates that selections for growth should be based on information coming mainly from the advanced-generation trials.  相似文献   

    6.

    ? Context

    There is evidence that Nothofagus nervosa (= N. alpina) is suitable for timber production in temperate regions due to its wood quality and fast growth. However, high intra-specific variability in the architectural traits of this species limits its usefulness.

    ? Aims

    This study was aimed at evaluating intra-specific variability in the architecture of N. nervosa trees at the population level, with emphasis on traits related to the suitability of trees for timber production.

    ? Methods

    The size of 13-year-old trees installed in an experimental field population and the extent of differentiation between trunk and branches were compared among families (trees derived from different mother trees).

    ? Results

    The large majority of trees exhibited architectural features indicative of high suitability for timber production: clear differentiation between trunk and main branches and few occurrences of permanent trunk forks, apex deaths, and sylleptic branching. Trees belonging to different families differed in height and trunk diameter. Micro-environmental conditions had a very significant effect on most architectural traits, including the trunk differentiation.

    ? Conclusions

    N. nervosa emerges as a suitable option for timber production in temperate regions. Trunk growth seems to be under both environmental and genetic control in this species.  相似文献   

    7.

    Context

    Wood density is an important component of wood quality, and it is therefore important to assess whether it can be subject to genetic improvement.

    Aim and methods

    We assessed the potential for genetic improvement of wood density in Larix kaempferi by recording components of annual growth rings. A full diallel mating test based on six plus L. kaempferi trees was used. Trees were 29 years old. Wood density was recorded by soft X-ray densitometry, and genetic parameters and genetic gains were computed.

    Results

    Wood density of mature wood was highly heritable, and the largest heritability (0.78) was reached at age 25. Specific combining ability and reciprocal effects displayed very low variance. The age–age correlation of overall wood density was very high (>0.94). The genetic correlation between overall wood density and basal cross-sectional area was positive after age 10. Early selection at age 6 would account for 69 % of the genetic gain from direct selection at age 28 in terms of wood density.

    Conclusion

    Genetic improvement of wood density could be achieved by mass selection and a simultaneous selection for radial increment in L. kaempferi; early selection for wood density can be achieved in this species.  相似文献   

    8.

    Context

    The requirement for rebuilding forecrop stands besides replacement of meadow vegetation with forest plants and formation of soil humus is the presence of a compatible ectomycorrhizal (ECM) fungal community.

    Aims

    This study aims to assess ectomycorrhizal fungi diversity associated with silver fir (Abies alba Mill.) seedlings regenerating in silver fir stands and Scots pine forecrops.

    Methods

    One-year-old seedlings were sampled in six study sites: three mature fir forests and three pine forests. ECM fungi were identified by polymerase chain reaction amplification and sequencing of the internal transcribed spacer of rDNA.

    Results

    The mean mycorrhizal colonization exceeded 90 %. Thirty-six ectomycorrhizal taxa were identified in fir stands and 23 in pine forecrops; ten out of these species were common to both stands. The fungal communities were different between study sites (R?=?0.1721, p?=?0.0001). Tomentella stuposa was the only species present at all sites.

    Conclusion

    Silver fir seedlings in Scots pine forecrops supported smaller ECM fungal communities than communities identified in mature silver fir stands. Nevertheless, fungal colonization of seedling roots was similar in both cases. This suggests that pine stands afforested on formerly arable land bear enough ECM species to allow survival and growth of silver fir seedlings.  相似文献   

    9.

    ? Context

    The rising demand of energy wood for heating purposes in Germany leads to concerns regarding the overexploitation of forests. A major aspect is the impact of whole-tree harvesting on long-term productivity of forest soils.

    ? Aims

    This study aimed to analyze the effects of nutrient removal on productivity using the historically prevalent practice of litter raking. Since there is a lack of controlled whole-tree harvesting experiments in Germany, we used litter raking as a surrogate management practice entailing the removal of nutrients from forest stands.

    ? Methods

    We used three sites with documented litter raking to analyze the effects of nutrient removal on productivity using dendroecological methods: two recent litter removal experiments in two Scots pine stands (Siegenburg and Burglengenfeld) and one oak stand (Eichhall) with documented historic litter raking. Basal area increment (BAI) and tree-ring characteristics were compared between periods with litter raking and the preceding periods for both treatment and control plots.

    ? Results

    For the two Scots pine sites with a relatively short litter raking period, no effects of litter raking on BAI could be ascribed to nutrient removal. On the oak site with a longer history of litter utilization, the loss in BAI due to litter raking amounts to 22 % during the period with active raking and to still 17 % in the recovery period.

    ? Conclusions

    These results contribute to the still very limited understanding about the impact of whole-tree harvesting on forest productivity in Germany by laying down an upper limit of possible effects due to nutrient removal, as nutrient loss by litter raking tends to be higher than nutrient loss by whole-tree harvesting.  相似文献   

    10.
  • ? Each annual ring in pines consists of earlywood and latewood with considerable difference in density and width. To get a better determination of the genetic regulation of total wood density in Scots pine (Pinus sylvestris L.), density and width of those ring sections were measured in annual ring numbers 12 to 21 of Scots pines in a full-sib progeny test. Tree height and stem diameter were also measured.
  • ? Heritabilities for the annual ring sections increased with age for earlywood density from 0.08 to approximately 0.25; latewood density showed similar reductions. Heritability over all 10 annual rings was 0.25 for earlywood density, 0.22 for latewood density, 0.29 for height and 0.10 for stem diameter. Genetic correlations between earlywood and latewood density and growth traits were negative, while they were strongly positive between densities of adjacent annual rings (0.70–1.0).
  • ? Despite the higher heritability of earlywood density, the strong positive genetic correlation between those traits indicates little benefit from focusing solely on earlywood density when selecting for wood density. Analysing earlywood and latewood separately does not benefit from including the width of the corresponding ring section as a covariate. Juvenile wood may possibly turn into mature wood 15–20 y from the pith.
  •   相似文献   

    11.
  • ? If selective breeding is to be successful, significant genetic variation must be present in the traits targeted for improvement (i.e. “objective traits”).
  • ? This study aimed to quantify genetic variation in Eucalyptus globulus pulpwood and sawn-timber objective traits (rotation-age whole-tree volume, survival, whole-tree basic density, sawn-board Janka hardness and sawn-board internal checking) and estimate additive genetic correlations between these and inexpensively-assessed “selection traits”.
  • ? Significant genetic variation was identified in all objective traits at the subrace and/or family within subrace level.
  • ? Selection-age diameter at breast height (1.3 m, DBH) was strongly genetically correlated with rotation-age volume (0.78) and survival (0.82). Subrace and additive genetic correlations of selectionage Pilodyn penetration with rotation-age 12-×-12-mm-sample basic density (?0.70 and ?0.75 respectively) and whole-tree basic density (?0.83 and ?0.91 respectively) were also strong.
  • ? No significant subrace or additive genetic correlation between wood-sample gross shrinkage and sawn-board internal checking was detected. However, subrace and additive genetic correlations of sawn-board Janka hardness with Pilodyn penetration (?0.75 and ?0.58 respectively) and sample gross shrinkage (?0.77 and ?0.73 respectively) were significantly different from zero.
  • ? These findings suggest that genetic improvement of the examined objective traits is possible through selective breeding, although none of the assessed selection traits were strongly correlated with internal checking.
  •   相似文献   

    12.

    ? Context

    Teak??s wood color is considered an important attribute in the marketing phase and it has been influenced by environmental setting, stand conditions and management, plant genetic source, and age. However, there is a lack of understanding about how the environmental factors might affect the teak??s wood color planted in short-rotation forest plantations.

    ? Aims

    The aim of this study is to understand the relationship, gathered from generated information, between edaphic and climatic variables and their effects in the wood color variation of Tectona grandis from trees in forest plantations.

    ? Methods

    Twenty-two plots were grouped in five cluster sites that shared similar climatic and soil conditions. Data about soil??s physical?Cchemical properties and climatic variables were collected and analyzed. Representative trees were harvested next to each plot in order to obtain a wood sample per tree at a diameter breast height. Wood color was measured using standardized CIELab??s chromaticity system.

    ? Results

    After comparing the wood change color index (?E*) in the five studied clusters, it was found that heartwood produced from drier and fertile sites had more yellowish-brown color. The heartwood b* color index resulted with significant correlations (R?>?0.5, P?<?0.05) among nine climatic and eight edaphic variables.

    ? Conclusion

    It was concluded that climatic variables should be considered as the first-order causal variables to explain wood color variation. Hence, darker b* wood color was associated with dry climates; also, with deeper and fertile sites.  相似文献   

    13.

    Context

    Bark beetles are known to be associated with fungi, especially the ophiostomatoid fungi. However, very little is known about role of pine weevils, e.g., Hylobius abietis, as a vector of these fungi in Europe.

    Aims

    The aims of our study were to demonstrate the effectiveness of H. abietis as a vector of ophiostomatoid fungi in Poland and to identify these fungi in Scots pine seedlings damaged by weevil maturation feeding.

    Methods

    Insects and damaged Scots pine seedlings were collected from 21 reforestation sites in Poland. The fungi were identified based on morphology, DNA sequence comparisons for two gene regions (ITS, β-tubulin) and phylogenetic analyses.

    Results

    Sixteen of the ophiostomatoid species were isolated and identified. In all insect populations, Leptographium procerum was the most commonly isolated fungus (84 %). Ophiostoma quercus was also found at a relatively high frequency (16 %). Other ophiostomatoid fungi were found only rarely. Among these rarer fungi, four species, Leptographium lundbergii, Ophiostoma floccosum, Ophiostoma piliferum and Sporothrix inflata, were isolated above 3 %. L. procerum was isolated most frequently and was found in 88 % of the damaged seedlings. S. inflata was isolated from 26 %, while O. quercus occurred in 10 % of the seedlings.

    Conclusion

    This study confirmed that L. procerum and O. quercus were common associates of H. abietis, while others species were found inconsistently and in low numbers, indicating causal associations. H. abietis also acted as an effective vector transmitting ophiostomatoid species, especially L. procerum and S. inflata, to Scots pine seedlings.  相似文献   

    14.

    ? Context

    The correlation between tree ring width and density and short-term climate fluctuations may be a useful tool for predicting response of wood formation process to long-term climate change.

    ? Aims

    This study examined these correlations for different radiata pine genotypes and aimed at detecting potential genotype by climate interactions.

    ? Methods

    Four data sets comprising ring width and density of half- and full-sib radiata pine families were used. Correlations with climate variables were examined, after the extraction of the effect of cambial age.

    ? Results

    Cambial age explained the highest proportion of the ring to ring variation in all variables. Calendar year and year by family interaction explained a smaller but significant proportion of the variation. Rainfall had a positive correlation with ring width and, depending on test site, either a negative or positive correlation with ring density. Correlations between temperature during growing season and ring density were generally negative.

    ? Conclusion

    Climate variables that influence ring width and wood density can be identified from ring profiles, after removing the cambial age effect. Families can be selected that consistently show desirable response to climate features expected to become prevalent as a result of climate change.  相似文献   

    15.

    Key message

    Multiple lines of evidence suggest acoustic wave velocity (AWV) would provide a rapid and efficient method to indirectly select for superior pulp yield in Eucalyptus globulus breeding programs.

    Context

    Eucalyptus globulus is one of the most widely planted hardwood species in temperate regions of the world and is primarily grown for pulpwood.

    Aims

    To determine if acoustic wave velocity (AWV) can be used to indirectly select for kraft pulp yield in E. globulus.

    Methods

    Genetic group effects, additive and non-additive variance components, and genetic correlations were estimated for AWV and pulpwood traits, including Kraft pulp yield. In a separate trial, the relative position of quantitative trait loci (QTL) for these traits was compared.

    Results

    Estimated narrow-sense heritabilities for AWV and pulp yield were both 0.26, and these traits were strongly genetically correlated (0.84). Furthermore, co-located QTL for these traits were identified. Further evidence that AWV could be used to indirectly select for pulp yield was provided by the ranking of genetic groups—Otways and King Island had the highest AWV and pulp yield and Strzelecki and Tasmania the lowest. There was no evidence of dominance variation in wood property traits.

    Conclusion

    Together, these findings suggest that AWV could be used as a selection criterion for kraft pulp yield in E. globulus breeding programs.
      相似文献   

    16.
    Models for predicting microfibril angle variation in Scots pine   总被引:1,自引:0,他引:1  

    Context

    Microfibril angle (MFA) is one of the key determinants of solid timber performance due to its strong influence on the stiffness, strength, shrinkage properties and dimensional stability of wood.

    Aims

    The aim of this study was to develop a model for predicting MFA variation in plantation-grown Scots pine (Pinus sylvestris L). A specific objective was to quantify the additional influence of growth rate on the radial variation in MFA.

    Methods

    Twenty-three trees were sampled from four mature Scots pine stands in Scotland, UK. Pith-to-bark MFA profiles were obtained on 69 radial samples using scanning X-ray diffractometry. A nonlinear mixed-effects model based on a modified Michaelis–Menten equation was developed using cambial age and annual ring width as explanatory variables.

    Results

    The largest source of variation in MFA (>90 %) was within trees, while between-tree variation represented just 7 % of the total. Microfibril angle decreased rapidly near the pith before reaching stable values in later annual rings. The effect of ring width on MFA was greater at higher cambial ages.

    Conclusion

    A large proportion of the variation in MFA was explained by the fixed effects of cambial age and annual ring width. The final model is intended for integration into growth, yield and wood quality simulation systems.  相似文献   

    17.

    ? Context

    While historical increases in forest growth have been largely documented, investigations on historical wood density changes remain anecdotic. They suggest possible density decreases in softwoods and ring-porous hardwoods, but are lacking for diffuse-porous hardwoods.

    ? Aims

    To evaluate the historical change in mean ring density of common beech, in a regional context where a ring-porous hardwood and a softwood have been studied, and assess the additional effect of past historical increases in radial growth (+50 % over 100 years), resulting from the existence of a positive ring size–density relationship in broadleaved species.

    ? Methods

    Seventy-four trees in 28 stands were sampled in Northeastern France to accurately separate developmental stage and historical signals in ring attributes. First, the historical change in mean ring density at 1.30 m (X-ray microdensitometry) was estimated statistically, at constant developmental stage and ring width. The effect of past growth increases was then added to assess the net historical change in wood density.

    ? Results

    A progressive centennial decrease in mean ring density of ?55 kg?m?3 (?7.5 %) was identified (?10 % following the most recent decline). The centennial growth increase induced a maximum +25 kg?m?3 increase in mean ring density, whose net variation thus remained negative (?30 kg?m?3).

    ? Conclusions

    This finding of a moderate but significant decrease in wood density that exceeds the effect of the positive growth change extends earlier reports obtained on other wood patterns in a same regional context and elsewhere. Despite their origin not being understood, such decreases hence form an issue for forest carbon accounting.  相似文献   

    18.

    Context

    Wood quality traits are important to balance the negative decline of wood quality associated with selection for growth attributes in gymnosperm breeding programs. Obtaining wood quality estimates quickly is crucial for successful incorporation in breeding programs.

    Aims

    The aims of this paper are to: (1) Estimate genetic and phenotypic correlations between growth and wood quality attributes, (2) Estimate heritability of the studied traits, and (3) Assess the accuracy of in situ non-destructive tools as a representative of actual wood density.

    Methods

    Wood density (X-ray densitometry), tree height, diameter, volume, resistance drilling, acoustic velocity, and dynamic modulus of elasticity were estimated, along with their genetic parameters, for 1,200, 20-year-old trees from 25 open-pollinated families.

    Results

    Individual tree level heritabilities for non-destructive evaluation attributes were moderate ( $ {\widehat{h}}_i^2=0.37-0.42 $ ), wood density and growth traits were lower ( $ {\widehat{h}}_i^2=0.23-0.35 $ ). Favorable genetic and phenotypic correlations between growth traits, wood density, and non-destructive evaluation traits were observed. A perfect genetic correlation was found between resistance drilling and wood density (r G ?=?1.00?±?0.07), while acoustic velocity and dynamic modulus of elasticity showed weaker genetic correlations with wood density (r G ?=?0.25?±?0.24;?0.46?±?0.21, respectively).

    Conclusion

    This study confirmed that resistance drilling is a reliable predictor of wood density in western larch, while the weak genetic correlations displayed by acoustic velocity and dynamic modulus of elasticity suggest limited dependability for their use as fast in situ wood density assessment methods in this species.  相似文献   

    19.

    Context

    Pinus pinaster Ait. is found in the Iberian Peninsula under Mediterranean and Atlantic conditions. Both climates encounter each other in Galicia (NW Spain), where two bioclimatic regions can be differentiated: coastal and inland. A breeding program was launched in the coastal area, with two breeding and deployment areas delimited.

    Aims

    We analyse plasticity patterns across regions in a coastal breeding population to assess the suitability of current breeding areas and how genetic material will likely respond to future climate.

    Methods

    Total height at ages 3 and 8?years was assessed in 16 trials established along the coast and in inner Galicia. Clustering of environments with similar genotypic performance, family sensitivities to climatic factors and stability analyses were performed.

    Results

    Sizeable genetic variation in plasticity was found among families, and crossover genotype-by-environment interactions were detected within and between regions. It was unfeasible to regionalize Galicia into alternative areas of stable genotypic performance. Only the cold regime was found to noticeably underlie the array of phenotypic responses to changing environmental conditions.

    Conclusions

    Results suggest that previous delimitation in two breeding areas is pointless and indicate reduced effects of a changing climate towards Mediterranean conditions on decreasing population fitness.  相似文献   

    20.
    Ecology and evolution of pine life histories   总被引:1,自引:0,他引:1  

    Introduction

    Pinus is a diverse genus of trees widely distributed throughout the Northern Hemisphere. Understanding pine life history is critical to both conservation and fire management.

    Objectives

    Here I lay out the different pathways of pine life history adaptation and a brief overview of pine evolution and the very significant role that fire has played.

    Results

    Pinus originated ~150?Ma in the mid-Mesozoic Era and radiated across the northern continent of Laurasia during the Cretaceous Period. Pines have followed two evolutionary strategies interpreted as responses to competition by the newly emerging angiosperms. The Strobus lineage mostly has radiated into stressful sites of low nutrient soils and extremes in cold or heat. The Pinus (subgenus) lineage has radiated into fire-prone landscapes with diverse fire regimes. Examination of life history traits illustrates syndromes associated with fire-avoider, fire-tolerater, fire-embracer, and fire-refuge strategies.

    Conclusion

    Understanding the current pattern of pine distribution requires interpreting their evolution in terms of climate, geology, and fire. All three of these factors have played a role since the Mesozoic origin of the genus. All are important to the appropriate management of these resources.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号