首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 602 毫秒
1.
Understanding the role of competing states in the cuprates is essential for developing a theory for high-temperature superconductivity. We report angle-resolved photoemission spectroscopy experiments which probe the 4a0 x 4a0 charge-ordered state discovered by scanning tunneling microscopy in the lightly doped cuprate superconductor Ca2-xNaxCuO2Cl2. Our measurements reveal a marked dichotomy between the real- and momentum-space probes, for which charge ordering is emphasized in the tunneling measurements and photoemission is most sensitive to excitations near the node of the d-wave superconducting gap. These results emphasize the importance of momentum anisotropy in determining the complex electronic properties of the cuprates and places strong constraints on theoretical models of the charge-ordered state.  相似文献   

2.
High-resolution angle-resolved photoemission spectroscopy of the electron-doped high-temperature superconductor Nd(2-x)Ce(x)CuO4 (x = 0.15, transition temperature T(c) = 22 K) has found the quasiparticle signature as well as the anisotropic d(x2-y2)-like superconducting gap. The spectral line shape at the superconducting state shows a strong anisotropic nature of the many-body interaction. The result suggests that the electron-hole symmetry is present in the high-temperature superconductors.  相似文献   

3.
We report that the doping and temperature dependence of photoemission spectra near the Brillouin zone boundary of Bi(2)Sr(2)CaCu(2)O(8+delta)exhibit unexpected sensitivity to the superfluid density. In the superconducting state, the photoemission peak intensity as a function of doping scales with the superfluid density and the condensation energy. As a function of temperature, the peak intensity shows an abrupt behavior near the superconducting phase transition temperature where phase coherence sets in, rather than near the temperature where the gap opens. This anomalous manifestation of collective effects in single-particle spectroscopy raises important questions concerning the mechanism of high-temperature superconductivity.  相似文献   

4.
Detailed data on the momentum-resolved temperature dependence of the superconducting gap of Bi(2)Sr(2)CaCu(2)O(8+x) are presented, complemented by similar data on the intensity of the photoemission superconducting condensate spectral area. The gap anisotropy between the Gamma-Mand Gamma-X directions increases markedly with increasing temperature, contrary to what happens for conventional anisotropic-gap superconductors, such as lead. Specifically, the size of the superconducting gap along the Gamma-X direction decreases to values indistinguishable from zero at temperatures for which the gap retains virtually full value along the Gamma-M direction. These data rule out the simplest type of d-wave order parameter.  相似文献   

5.
Detailed studies indicate a superconducting gap in the high-temperature superconductor Bi(2)Sr(2)CaCu(2)O(8). Photoemission measurements with high energy and angle resolution isolate the behavior of a single band as it crosses the Fermi level in both the normal and superconducting states, giving support to the Fermi liquid picture. The magnitude of the gap is 24 millielectron volts.  相似文献   

6.
Analysis of the interlayer infrared conductivity of cuprate high-transition temperature superconductors reveals an anomalously large energy scale extending up to midinfrared frequencies that can be attributed to formation of the superconducting condensate. This unusual effect is observed in a va- riety of materials, including Tl2Ba2CuO6+x, La2-xSrxCuO4, and YBa2Cu3O6.6, which show an incoherent interlayer response in the normal state. Midinfrared range condensation was examined in the context of sum rules that can be formulated for the complex conductivity. One possible interpretation of these experiments is in terms of a kinetic energy change associated with the superconducting transition.  相似文献   

7.
The temperature-dependent redistribution of the spectral weight of the CuO2 plane-derived conduction band of the YBa2Cu3O6.9 high-temperature superconductor (superconducting transition temperature = 92.7 kelvin) was studied with wide-band (0.01- to 5.6-electron volt) spectroscopic ellipsometry. A superconductivity-induced transfer of the spectral weight involving a high-energy scale in excess of 1 electron volt was observed. Correspondingly, the charge carrier spectral weight was shown to decrease in the superconducting state. The ellipsometric data also provide detailed information about the evolution of the optical self-energy in the normal and superconducting states.  相似文献   

8.
Identifying the mechanism of superconductivity in the high-temperature cuprate superconductors is one of the major outstanding problems in physics. We report local measurements of the onset of superconducting pairing in the high-transition temperature (Tc) superconductor Bi2Sr2CaCu2O8+delta using a lattice-tracking spectroscopy technique with a scanning tunneling microscope. We can determine the temperature dependence of the pairing energy gaps, the electronic excitations in the absence of pairing, and the effect of the local coupling of electrons to bosonic excitations. Our measurements reveal that the strength of pairing is determined by the unusual electronic excitations of the normal state, suggesting that strong electron-electron interactions rather than low-energy (<0.1 volts) electron-boson interactions are responsible for superconductivity in the cuprates.  相似文献   

9.
Quantum confinement of itinerant electrons in atomically smooth ultrathin lead films produces strong oscillations in the thickness-dependent film energy. By adding extra electrons via bismuth alloying, we showed that both the structural stability and the superconducting properties of such films can be tuned. The phase boundary (upper critical field) between the superconducting vortex state and the normal state indicates an anomalous suppression of superconducting order just below the critical temperature, Tc. This suppression varies systematically with the film thickness and the bismuth content and can be parametrized in terms of a characteristic temperature, Tc* (less than Tc), that is inversely proportional to the scattering mean free path. The results indicate that the isotropic nature of the superconductive pairing in bulk lead-bismuth alloys is altered in the quantum regime.  相似文献   

10.
The x-ray diffraction of the nonsuperconducting ternary fulleride Li(2)CsC(60) reveals at room temperature a face-centered-cubic (Fm3m) disordered structure that persists to a temperature of 13 Kelvin. The crystal structure is best modeled as containing quasispherical [radius of 3.556(4) angstroms] C(60)(3-) ions, in sharp contrast to their orientational state in superconducting face-centered-cubic K(3)C(60) (merohedral disorder) and primitive cubic Na(2)CsC(60) (orientational order). The orientational disorder of the carbon atoms on the C(60)(3-) sphere was analyzed with symmetry-adapted spherical-harmonic functions. Excess atomic density is evident in the <111> directions, indicating strong bonding Li(+)-C interactions, not encountered before in any of the superconducting alkali fullerides. The intercalate-carbon interactions and the orientational state of the fullerenes have evidently affected the superconducting pair-binding mechanism in this material.  相似文献   

11.
The Cooper pairing mechanism that binds single electrons to form pairs in metals allows electrons to circumvent the exclusion principle and condense into a single superconducting or zero-resistance state. We present results from an amorphous bismuth film system patterned with a nanohoneycomb array of holes, which undergoes a thickness-tuned insulator-superconductor transition. The insulating films exhibit activated resistances and magnetoresistance oscillations dictated by the superconducting flux quantum h/2e. This 2e period is direct evidence indicating that Cooper pairing is also responsible for electrically insulating behavior.  相似文献   

12.
Optical spectra of high-transition-temperature superconductors in the mid-infrared display a gap of in-plane conductivity whose role for superconductivity remains unresolved. Femtosecond measurements of the mid-infrared reflectivity of YBa(2)Cu(3)O(7-delta) after nonequilibrium optical excitation are used to demonstrate the ultrafast fill-in of this gap and reveal two gap constituents: a picosecond recovery of the superconducting condensate in underdoped and optimally doped material and, in underdoped YBa(2)Cu(3)O(7-delta), an additional subpicosecond component related to pseudogap correlations. The temperature-dependent amplitudes of both contributions correlate with the antiferromagnetic 41-millielectronvolt peak in neutron scattering, supporting the coupling between charges and spin excitations.  相似文献   

13.
The oxide superconductors, particularly those recently discovered that are based on La(2)CuO(4), have a set of peculiarities that suggest a common, unique mechanism: they tend in every case to occur near a metal-insulator transition into an odd-electron insulator with peculiar magnetic properties. This insulating phase is proposed to be the long-sought "resonating-valence-bond" state or "quantum spin liquid" hypothesized in 1973. This insulating magnetic phase is favored by low spin, low dimensionality, and magnetic frustration. The preexisting magnetic singlet pairs of the insulating state become charged superconducting pairs when the insulator is doped sufficiently strongly. The mechanism for superconductivity is hence predominantly electronic and magnetic, although weak phonon interactions may favor the state. Many unusual properties are predicted, especially of the insulating state.  相似文献   

14.
Strong magnetic fluctuations can provide a coupling mechanism for electrons that leads to unconventional superconductivity. Magnetic order and superconductivity have been found to coexist in a number of magnetically mediated superconductors, but these order parameters generally compete. We report that close to the upper critical field, CeCoIn5 adopts a multicomponent ground state that simultaneously carries cooperating magnetic and superconducting orders. Suppressing superconductivity in a first-order transition at the upper critical field leads to the simultaneous collapse of the magnetic order, showing that superconductivity is necessary for the magnetic order. A symmetry analysis of the coupling between the magnetic order and the superconducting gap function suggests a form of superconductivity that is associated with a nonvanishing momentum.  相似文献   

15.
We report the presence of two disconnected superconducting domes in the pressure-temperature phase diagram of partially germanium-substituted CeCu2Si2. The lower density superconducting dome lies on the threshold of antiferromagnetic order, indicating magnetically mediated pairing, whereas the higher density superconducting regime straddles a weakly first-order volume collapse, suggesting a pairing interaction based on spatially extended density fluctuations. Two distinct pairing mechanisms thus appear to operate in the single, wide, superconducting range of stoichiometric CeCu2Si2, both of which might apply more generally to other classes of correlated electron systems.  相似文献   

16.
Wu XL  Zhang Z  Wang YL  Lieber CM 《Science (New York, N.Y.)》1990,248(4960):1211-1214
The structural and electronic effects of lead substitution in the high-temperature superconducting materials Pb(x)Bi(2-x)Sr(2)CaCu(2)O(8) have been characterized by scanning tunneling microscopy (STM) and scanning tunneling spectroscopy (STS). Large-area STM images of the Bi(Pb)-O layers show that lead substitution distorts and disorders the one-dimensional superlattice found in these materials. Atomic-resolution images indicate that extra oxygen atoms are present in the Bi(Pb)-O layers. STS data show that the electronic structure of the Bi(Pb)-O layers is insensitive to lead substitution within +/-0.5 electron volt of the Fermi level; however, a systematic decrease in the density of states is observed at approximately 1 electron volt above the Fermi level. Because the superconducting transition temperatures are independent of x(Pb) (x 相似文献   

17.
Wang MX  Liu C  Xu JP  Yang F  Miao L  Yao MY  Gao CL  Shen C  Ma X  Chen X  Xu ZA  Liu Y  Zhang SC  Qian D  Jia JF  Xue QK 《Science (New York, N.Y.)》2012,336(6077):52-55
Three-dimensional topological insulators (TIs) are characterized by their nontrivial surface states, in which electrons have their spin locked at a right angle to their momentum under the protection of time-reversal symmetry. The topologically ordered phase in TIs does not break any symmetry. The interplay between topological order and symmetry breaking, such as that observed in superconductivity, can lead to new quantum phenomena and devices. We fabricated a superconducting TI/superconductor heterostructure by growing dibismuth triselenide (Bi(2)Se(3)) thin films on superconductor niobium diselenide substrate. Using scanning tunneling microscopy and angle-resolved photoemission spectroscopy, we observed the superconducting gap at the Bi(2)Se(3) surface in the regime of Bi(2)Se(3) film thickness where topological surface states form. This observation lays the groundwork for experimentally realizing Majorana fermions in condensed matter physics.  相似文献   

18.
The layer-structure cuprates with high superconducting transition temperatures T(c) exhibit a number of anomalous electronic properties in both superconducting and normal states. These anomalies are ascribed to the existence of independent spectra of excitations for charge and for spin, signaling a collective state, a "quantum protectorate."  相似文献   

19.
In high-temperature superconductivity, the process that leads to the formation of Cooper pairs, the fundamental charge carriers in any superconductor, remains mysterious. We used a femtosecond laser pump pulse to perturb superconducting Bi(2)Sr(2)CaCu(2)O(8+δ) and studied subsequent dynamics using time- and angle-resolved photoemission and infrared reflectivity probes. Gap and quasiparticle population dynamics revealed marked dependencies on both excitation density and crystal momentum. Close to the d-wave nodes, the superconducting gap was sensitive to the pump intensity, and Cooper pairs recombined slowly. Far from the nodes, pumping affected the gap only weakly, and recombination processes were faster. These results demonstrate a new window into the dynamical processes that govern quasiparticle recombination and gap formation in cuprates.  相似文献   

20.
A comprehensive inelastic neutron scattering study of magnetic excitations in the near optimally doped high-temperature superconductor YBa(2)Cu(3)O(6.85) is presented. The spin correlations in the normal state are commensurate with the crystal lattice, and the intensity is peaked around the wave vector characterizing the antiferromagnetic state of the insulating precursor, YBa(2)Cu(3)O(6). Profound modifications of the spin excitation spectrum appear abruptly below the superconducting transition temperature T(c), where a commensurate resonant mode and a set of weaker incommensurate peaks develop. The data are consistent with models that are based on an underlying two-dimensional Fermi surface, predicting a continuous, downward dispersion relation connecting the resonant mode and the incommensurate excitations. The magnetic incommensurability in the YBa(2)Cu(3)O(6+)(x) system is thus not simply related to that of another high-temperature superconductor, La(2-)(x)Sr(x)CuO(4), where incommensurate peaks persist well above T(c). The temperature-dependent incommensurability is difficult to reconcile with interpretations based on charge stripe formation in YBa(2)Cu(3)O(6+x) near optimum doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号