首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Electronic phases with symmetry properties matching those of conventional liquid crystals have recently been discovered in transport experiments on semiconductor heterostructures and metal oxides at millikelvin temperatures. We report the spontaneous onset of a one-dimensional, incommensurate modulation of the spin system in the high-transition-temperature superconductor YBa2Cu3O6.45 upon cooling below approximately 150 kelvin, whereas static magnetic order is absent above 2 kelvin. The evolution of this modulation with temperature and doping parallels that of the in-plane anisotropy of the resistivity, indicating an electronic nematic phase that is stable over a wide temperature range. The results suggest that soft spin fluctuations are a microscopic route toward electronic liquid crystals and that nematic order can coexist with high-temperature superconductivity in underdoped cuprates.  相似文献   

2.
The spin response of a nested Fermi surface represented by a tight binding energy band is found to exhibit scaling in frequency divided by temperature within a restricted regime close to half-filling of the band. Computations of the spin susceptibility reveal a surprising momentum variation at various temperatures and frequencies. Neutron scattering data on the high-temperature superconductor YBa(2)Cu(3)O(6+x) are analyzed for scaling near a momentum vector that spans nested regions of the orbit. Changes in the Fermi energy remove the scaling properties and reduce the susceptibility to the conventional Fermi liquid behavior of ordinary metals. These results imply that pairing mechanisms of superconductivity need to cope with competing spin density wave and charge density wave instabilities.  相似文献   

3.
A new superconductor that displays onset behavior near 120 K has been identified as Bi(2)Sr(3-x)Ca(x)Cu(2)O(8+y), with x ranging from about 0.4 to 0.9. Single crystal x-ray diffraction data were used to determine a pseudo-tetragonal structure based on an A-centered orthorhombic subcell with a = 5.399 A, b= 5.414A, and c = 30.904 A. The structure contains copper-oxygen sheets as in La(2)CuO(4) and YBa(2)Cu(3)O(7), but the copper-oxygen chains present in YBa(2)Cu(3)O(7) do not occur in Bi(2)Sr(3-x)Ca(x)Cu(2)O(8+y). The structure is made up of alternating double copper-oxygen sheets and double bismuth-oxygen sheets. There are Ca(2+) and Sr(2+) cations between the adjacent Cu-O sheets; Sr(2+) cations are also found between the Cu-O and Bi-O sheets. Electron microscopy studies show an incommensurate superstructure along the a axis that can be approximated by an increase of a factor of 5 over the subcell dimension. This superstructure is also observed by x-ray diffraction on single crystals, but twinning can make it appear that the superstructure is along both a and b axes. Flux exclusion begins in our samples at about 116 K and is very strong by 95 K. Electrical measurements on a single crystal of Bi(2)Sr(3-x)Ca(x)Cu(2)O(8+y) show a resistivity drop at about 116 K and apparent zero resistivity at 91 K.  相似文献   

4.
Nuclear magnetic resonance (NMR) and nuclear quadrupole resonance (NQR) results for copper-63, oxygen-17, and yttrium-89 nuclei in the superconducting composition range of YBa(2)Cu(3)O(6+x) (0.4 相似文献   

5.
Optical spectra of high-transition-temperature superconductors in the mid-infrared display a gap of in-plane conductivity whose role for superconductivity remains unresolved. Femtosecond measurements of the mid-infrared reflectivity of YBa(2)Cu(3)O(7-delta) after nonequilibrium optical excitation are used to demonstrate the ultrafast fill-in of this gap and reveal two gap constituents: a picosecond recovery of the superconducting condensate in underdoped and optimally doped material and, in underdoped YBa(2)Cu(3)O(7-delta), an additional subpicosecond component related to pseudogap correlations. The temperature-dependent amplitudes of both contributions correlate with the antiferromagnetic 41-millielectronvolt peak in neutron scattering, supporting the coupling between charges and spin excitations.  相似文献   

6.
The concept that superconductivity competes with other orders in cuprate superconductors has become increasingly apparent, but obtaining direct evidence with bulk-sensitive probes is challenging. We have used resonant soft x-ray scattering to identify two-dimensional charge fluctuations with an incommensurate periodicity of ~3.2 lattice units in the copper-oxide planes of the superconductors (Y,Nd)Ba(2)Cu(3)O(6+)(x), with hole concentrations of 0.09 to 0.13 per planar Cu ion. The intensity and correlation length of the fluctuation signal increase strongly upon cooling down to the superconducting transition temperature (T(c)); further cooling below T(c) abruptly reverses the divergence of the charge correlations. In combination with earlier observations of a large gap in the spin excitation spectrum, these data indicate an incipient charge density wave instability that competes with superconductivity.  相似文献   

7.
For some time now, there has been considerable experimental and theoretical effort to understand the role of the normal-state "pseudogap" phase in underdoped high-temperature cuprate superconductors. Recent debate has centered on the question of whether the pseudogap is independent of superconductivity. We provide evidence from zero-field muon spin relaxation measurements in YBa2Cu3O6+x for the presence of small spontaneous static magnetic fields of electronic origin intimately related to the pseudogap transition. Our most significant finding is that, for optimal doping, these weak static magnetic fields appear well below the superconducting transition temperature. The two compositions measured suggest the existence of a quantum critical point somewhat above optimal doping.  相似文献   

8.
The temperature-dependent redistribution of the spectral weight of the CuO2 plane-derived conduction band of the YBa2Cu3O6.9 high-temperature superconductor (superconducting transition temperature = 92.7 kelvin) was studied with wide-band (0.01- to 5.6-electron volt) spectroscopic ellipsometry. A superconductivity-induced transfer of the spectral weight involving a high-energy scale in excess of 1 electron volt was observed. Correspondingly, the charge carrier spectral weight was shown to decrease in the superconducting state. The ellipsometric data also provide detailed information about the evolution of the optical self-energy in the normal and superconducting states.  相似文献   

9.
The incommensurate modulation evident in the diffraction pattern of the superconductor Bi(2)Sr3-xCa(x)Cu(2)O8+y consists of almost sinusoidally varying displacements of up to 0.4A of the Bi and Sr atoms in the a-and c-directions of the unit cell, and of up to 0.3 A of the Cu atoms in the c direction only. Thus, a newly discovered feature of the Bi(2)Sr3-xCaxCu(2)O8+y structure is sizable Cu displacement, which is related to static wave formation in the Cu-O sheets. Reported thermal parameters give evidence that similar distortions occur on cooling of the thallium-containing superconductors.  相似文献   

10.
High-resolution angle-resolved photoemission spectroscopy of the electron-doped high-temperature superconductor Nd(2-x)Ce(x)CuO4 (x = 0.15, transition temperature T(c) = 22 K) has found the quasiparticle signature as well as the anisotropic d(x2-y2)-like superconducting gap. The spectral line shape at the superconducting state shows a strong anisotropic nature of the many-body interaction. The result suggests that the electron-hole symmetry is present in the high-temperature superconductors.  相似文献   

11.
Neutron scattering is used to characterize the magnetism of the vortices for the optimally doped high-temperature superconductor La(2-x)Sr(x)CuO4 (x = 0.163) in an applied magnetic field. As temperature is reduced, low-frequency spin fluctuations first disappear with the loss of vortex mobility, but then reappear. We find that the vortex state can be regarded as an inhomogeneous mixture of a superconducting spin fluid and a material containing a nearly ordered antiferromagnet. These experiments show that as for many other properties of cuprate superconductors, the important underlying microscopic forces are magnetic.  相似文献   

12.
Copper K-edge x-ray absorption data indicate that an axial oxygen-centered lattice instability accompanying the 93 K superconducting transition in YBa(2)Cu(3)O(7) is of a pseudo-(anti)ferroelectric type, in that it appears to involve the softening of a double potential well into a structure in which the difference between the two copper-oxygen distances and the barrier height have both decreased. This softer structure is present only at temperatures within a fluctuation region around the transition. A similar process involving the analogous axial oxygen atom also accompanies the superconducting transition in T1Ba(2)Ca(3)Cu(4)O(11), where the superconducting transition temperature T(c) is ~120 K. The mean square relative displacement of this oxygen atom in YBa(2)Cu(3)O(7) is also specifically affected by a reduction in the oxygen content and by the substitution of cobalt for copper, providing further evidence for the sensitivity of the displacement to additional factors that also influence the superconductivity. On the basis of the implied coupling of this ionic motion to the superconductivity, a scenario for high-temperature superconductivity is presented in which both phonon and electronic (charge transfer) channels are synergistically involved.  相似文献   

13.
The high-transition-temperature superconducting ceramic material YBa(2)Cu(3)O(7-x) (0< x < 0.5) has been examined by field ion microscopy. Specimens from nominally superconducting and nonsuperconducting samples(determined by magnetic susceptibility measurements) were studied by field ion microscopy and significant differences were found. Preferential imaging of atomic or molecular layers, due to preferential field evaporation, field ionization, or both, was found in the superconducting phase below the transition temperature and is interpreted as possible evidence for the occurrence of relatively highly conducting layers in the YBa(2)Cu(3)O(7-x) unit cell perpendicular to the orthorhombic c-axis. Similar results were obtained for YbBa(2)Cu(3)(7-x).  相似文献   

14.
DC and RF Superconducting QUantum Interference Devices (SQUIDs) fabricated from low transition temperature (T(c)) superconductors and operated at liquid (4)He temperatures are routinely used as ultrasensitive detectors in many applications, for example, as magnetometers, magnetic gradiometers, voltmeters, and motion detectors. SQUIDs fabricated from high T(c) superconductors such as YBa(2)Cu(3)O(7) and operated in liquid nitrogen at 77 K offer a greater convenience in operation at the expense of a poorer noise performance, particularly at low frequencies. The resolution of SQUID-based magnetometers is compared with that of other types of magnetometers operatng at ambient temperatures.  相似文献   

15.
Understanding the role of competing states in the cuprates is essential for developing a theory for high-temperature superconductivity. We report angle-resolved photoemission spectroscopy experiments which probe the 4a0 x 4a0 charge-ordered state discovered by scanning tunneling microscopy in the lightly doped cuprate superconductor Ca2-xNaxCuO2Cl2. Our measurements reveal a marked dichotomy between the real- and momentum-space probes, for which charge ordering is emphasized in the tunneling measurements and photoemission is most sensitive to excitations near the node of the d-wave superconducting gap. These results emphasize the importance of momentum anisotropy in determining the complex electronic properties of the cuprates and places strong constraints on theoretical models of the charge-ordered state.  相似文献   

16.
We report the observation of magnetic superstructure in a magnetization plateau state of SrCu2(BO3)2, a frustrated quasi-two-dimensional quantum spin system. The Cu and B nuclear magnetic resonance (NMR) spectra at 35 millikelvin indicate an apparently discontinuous phase transition from uniform magnetization to a modulated superstructure near 27 tesla, above which a magnetization plateau at 1/8 of the full saturation has been observed. Comparison of the Cu NMR spectrum and the theoretical analysis of a Heisenberg spin model demonstrates the crystallization of itinerant triplets in the plateau phase within a large rhomboid unit cell (16 spins per layer) showing oscillations of the spin polarization. Thus, we are now in possession of an interesting model system to study a localization transition of strongly interacting quantum particles.  相似文献   

17.
The effect of oxygen isotope substitution on the superconducting transition temperature, T(c), has been measured for BaBi(0.25)Pb(0.75)O(3) (T(c), approximately 11 K) and Lal(1.85) Ca(0.15)CuO(4) (T(c) approximately 20 K), and is compared to the shifts observed for La(1.85)Sr(0.15)CuO(4) (T(c) approximately 37 K) and YBa(2)Cu(3)O(7) (T(c) approximately 92 K). For all four materials, the transition temperature is shifted to lower temperature upon substitution of oxygen-18 for oxygen-16. The observed shifts demonstrate that phonons are involved in the electron-pairing mechanism in these oxide superconductors.  相似文献   

18.
The study of magnetic phase transitions in insulating molecular solids provides new insights into mechanisms of magnetic coupling in the solid state and into critical phenomena associated with these transitions. Only a few such materials are known to display cooperative magnetic properties. The use of high-spin molecular components would enhance intermolecular spin-spin interactions and thus a series of chargetransfer (CT) salts have been synthesized that utilize the spin S = 1 molecular cation, [Mn(C(5)(CH(3))(5))(2)](+) (decamethylmanganocenium). The structure and cooperative magnetic behavior of [Mn(C(5)(CH(3))(5))(2)](+)[TCNQ(-) (decamethylmanganocenium 7,7,8,8-tetracyano-p-quinodimethanide) are reported. This salt is a bulk molecular ferromagnet with the highest critical (Curie) temperature (T(c) = 6.2 K) and coercive field (3.6 x 10(3) gauss), yet reported for such a material.  相似文献   

19.
Evidence suggests that superconducting, orthorhombic YBa(2)Cu(3)O(6+x)+ (x greater, similar 0.5) is always produced by oxidation of the oxygen-deficient, tetragonal form (x less, similar 0.5) of this phase (commonly referred to as 123). A synthetic route whereby solution-derived, carbon-free precursors are decomposed at 650 degrees to 700 degrees C in inert atmosphere to yield tetragonal 123 is now available. Appropriate precursors include hydrated oxides derived from the hydrolysis of organometallic solutions and aqueous solution-derived hyponitrites. Subsequent oxidation of the tetragonal phase at 400 degrees C results in submicrometer particles of orthorhombic 123. Superconductivity (T(c) onset approximately 87 K) has been confirmed in these materials by both Meissner effect and specific-heat measurements.  相似文献   

20.
Identifying the mechanism of superconductivity in the high-temperature cuprate superconductors is one of the major outstanding problems in physics. We report local measurements of the onset of superconducting pairing in the high-transition temperature (Tc) superconductor Bi2Sr2CaCu2O8+delta using a lattice-tracking spectroscopy technique with a scanning tunneling microscope. We can determine the temperature dependence of the pairing energy gaps, the electronic excitations in the absence of pairing, and the effect of the local coupling of electrons to bosonic excitations. Our measurements reveal that the strength of pairing is determined by the unusual electronic excitations of the normal state, suggesting that strong electron-electron interactions rather than low-energy (<0.1 volts) electron-boson interactions are responsible for superconductivity in the cuprates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号