首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Long-term field experiments are expected to provide important information regarding soil properties affected by conservation management practices. Several studies have shown that soil enzyme activities are sensitive in discriminating among soil management effects. In this study we evaluated the long-term effect of direct drilling (DD) under a crop rotation system (cereals–sunflower–legumes), on the stratification of soil organic matter content and on biochemical properties in a dryland in southwest Spain. The results were compared to those obtained under conventional tillage (CT). Soil biochemical status was evaluated by measuring the enzymatic activities (dehydrogenase, β-glucosidase, alkaline phosphatase and arylsulphatase) during the flowering period of a pea crop. Soil samples were collected in May 2007 at three depths (0–5, 5–10 and 10–20 cm).Total organic carbon (TOC) contents and values of soil enzyme activities were higher in soils subjected to DD than to CT, specifically at 0–5 cm depth. Although a slight decrease of TOC and enzymatic activities with increasing soil depth was observed, no significant differences were found among different depths of the same treatment. This could be related to the high clay content of the soil, a Vertisol. Enzyme activities values showed high correlation coefficients (from r = 0.799 to r = 0.870, p < 0.01) with TOC. Values of activity of the different enzymes were also correlated (p < 0.01).Values of stratification ratios did not show significant differences between tillage practices. The high clay content of the soil is responsible for this lack of differences because of the protection by clay mineral of TOC and soil enzymes activities.Long-term soil conservation management by direct drilling in a dryland farming system improved the quality of a clay soil, especially at the surface, by enhancing its organic matter content and its biological status.  相似文献   

2.
《Soil & Tillage Research》2005,80(1-2):201-213
Minimum tillage practices are known for increasing soil organic carbon (SOC). However, not all environmental situations may manifest this potential change. The SOC and N stocks were assessed on a Mollisol in central Ohio in an 8-year-old tillage experiment as well as under two relatively undisturbed land uses; a secondary forest and a pasture on the same soil type. Cropped systems had 51±4 (equiv. mass) Mg ha−1 lower SOC and lower 3.5±0.3 (equiv. mass) Mg ha−1 N in the top 30 cm soil layer than under forest. Being a secondary forest, the loss in SOC and N stocks by cultivation may have been even more than these reported herein. No differences among systems were detected below this depth. The SOC stock in the pasture treatment was 29±3 Mg ha−1 greater in the top 10 cm layer than in cultivated soils, but was similar to those under forest and no-till (NT). Among tillage practices (plow, chisel and NT) only the 0–5 cm soil layer under NT exhibited higher SOC and N concentrations. An analysis of the literature of NT effect on SOC stocks, using meta-analysis, suggested that NT would have an overall positive effect on SOC sequestration rate but with a greater variability of what was previously reported. The average sequestration rate of NT was 330 kg SOC ha−1 year−1 with a 95% confidence interval ranging from 47 to 620 kg SOC ha−1 year−1. There was no effect of soil texture or crop rotation on the SOC sequestration rate that could explain this variability. The conversion factor for SOC stock changes from plow to NT was equal to 1.04. This suggests that the complex mechanisms and pathways of SOC accrual warrant a cautious approach when generalizing the beneficial changes of NT on SOC stocks.  相似文献   

3.
《Soil & Tillage Research》2007,92(1-2):199-206
Long-term tillage and nitrogen (N) management practices can have a profound impact on soil properties and nutrient availability. A great deal of research evaluating tillage and N applications on soil chemical properties has been conducted with continuous corn (Zea Mays L.) throughout the Midwest, but not on continuous grain sorghum (Sorghum bicolor (L.) Moench). The objective of this experiment was to examine the long-term effects of tillage and nitrogen applications on soil physical and chemical properties at different depths after 23 years of continuous sorghum under no-till (NT) and conventional till (CT) (fall chisel-field cultivation prior to planting) systems. Ammonium nitrate (AN), urea, and a slow release form of urea were surface broadcast at rates of 34, 67, and 135 kg N ha−1. Soil samples were taken to a depth of 15 cm and separated into 2.5 cm increments. As a result of lime applied to the soil surface, soil pH in the NT and CT plots decreased with depth, ranging from 6.9 to 5.7 in the NT plots and from 6.5 to 5.9 in the CT plots. Bray-1 extractable P and NH4OAc extractable K was 20 and 49 mg kg−1 higher, respectively, in the surface 2.5 cm of NT compared to CT. Extractable Ca was not greatly influenced by tillage but extractable Mg was higher for CT compared to NT below 2.5 cm. Organic carbon (OC) under NT was significantly higher in the surface 7.5 cm of soil compared to CT. Averaged across N rates, NT had 2.7 Mg ha−1 more C than CT in the surface 7.5 cm of soil. Bulk density (Δb) of the CT was lower at 1.07 g cm−3 while Δb of NT plots was 1.13 g cm−3. This study demonstrated the effect tillage has on the distribution and concentration of certain chemical soil properties.  相似文献   

4.
One aim of conservation tillage is to preserve soil biological properties. This study was conducted to examine the effects of two contrasting tillage treatments on soil biota at different depths. We investigated the population dynamics and vertical distributions of microbes and several soil faunal groups for 2 years in field Andosols in northeastern Japan. The experimental plots were under no tillage (NT) or conventional tillage (CT, rotary tilled to 20 cm) management. In the 0–10-cm soil layer, bacterial and fungal substrate-induced respiration (SIR) and the population density of enchytraeids were higher under NT than under CT, but the population densities of protozoa, mites, and collembolans did not differ significantly. In contrast, at 10–20 cm, both SIR values were higher under CT, where larger populations of mites and collembolans were recorded. At both depths, nematodes were more abundant under CT. Thus, the effects of tillage on these soil organisms differed according to soil depth, and negative impacts of tillage were smaller in the deeper layer. Larger amounts of earthworm casts at the soil surface in NT plots showed a greater biomass of earthworms than in CT. To evaluate the activities of soil biota, we buried litterbags with three different mesh sizes at the two depths and examined the rate of decomposition. The daily decay constant of litter in the surface soil layer (1.5–8.5 cm) was greater under NT. We suppose that the activities of soil biota in this layer were stimulated under NT, and that especially microbes and enchytraeids, which were abundant at 0–10 cm, contributed greatly to the decomposition.  相似文献   

5.
《Applied soil ecology》2007,35(1):35-45
Enzyme activities play key roles in the biochemical functioning of soils, including soil organic matter formation and degradation, nutrient cycling, and decomposition of xenobiotics. Knowledge of enzyme activities can be used to describe changes in soil quality due to land use management and for understanding soil ecosystem functioning. In this study, we report the activities of the glycosidases (β-glucosidase, α-galactosidase, and β-glucosaminidase), acid phosphatase, and arylsulfatase, involved in C (C and N for β-glucosaminidase), P, and S cycling, respectively, as affected by soil order and land use within a watershed in north-central Puerto Rico (Caribbean). Representative surface soil (0–15 cm) samples were taken from 84.6% of the total land area (45,067 ha) of the watershed using a completely randomized design. The activity of α-galactosidase was greater in soils classified as Oxisols than in soils classified as Ultisols and Inceptisols, and it was not affected by land use. The activity of β-glucosidase was greater in Oxisols compared to the Inceptisols and Ultisols, and it showed this response according to land use: pasture > forest > agriculture. The activity of β-glucosaminidase was higher in Oxisols than the other soil orders, and it was higher under pasture compared to forest and agriculture. Acid phosphatase and arylsulfatase activities were greater in Oxisols and Ultisols than in Inceptisols, and they decreased in this order due to land use: forest = pasture > agriculture. As a group, β-glucosaminidase, β-glucosidase, and acid phosphatase activities separated the sites under forest and pasture from those under agriculture in a three-dimensional plot. Thus, enzyme activities in Inceptisols under agriculture could be increased to levels comparable to other soil orders with conservative practices similar to those under pasture and secondary forest growth. Our findings demonstrate that within this watershed, acid and low fertility soils such as Oxisols and Ultisols have in general higher enzyme activities than less weathered tropical soils of the order Inceptisols, probably due to their higher organic matter content and finer texture; and that the activities of these enzymes respond to management with agricultural practices decreasing key soil biochemical reactions of soil functioning.  相似文献   

6.
7.
CQESTR simulates the effect of management practices on soil organic carbon (SOC) stocks. The beta version of the model had been calibrated and validated for temperate regions. Our objective was to evaluate the CQESTR model performance for simulating carbon dynamics as affected by tillage practices in two tropical soils (Ultisol and Oxisol) in southeastern and northeastern Brazil. In the southeast (20.75 S 42.81 W), tillage systems consisted of no tillage (NT); reduced tillage (RT) (one disc plow and one harrow leveling [RT1] or one heavy disc harrow and one harrow leveling [RT2]); and conventional tillage (CT) (two heavy disc harrows followed by one disc plow and two harrow levelings). In the northeast (7.55 S 45.23 W), tillage systems consisted of NT, RT (one chisel plow and one harrow leveling), and CT (one disk plow, two heavy disk harrowings, and two harrow levelings). CQESTR underestimated SOC at both sites, especially under NT systems, indicating that adjustments (e.g., the inclusion of clay mineralogy factor) are necessary for more accurate simulation of SOC in the tropics. In spite of this, measured and simulated values of SOC in the 0–20 cm depth were well correlated (southeast, R2 = 0.94, p < 0.01; northeast, R2 = 0.88, p < 0.05). With respect to initial conditions (native forest), CQESTR estimated a decrease in SOC stocks in plowed and no-tillage systems. In 2006, in the southeast, SOC stocks were 28.8, 23.7, 23.2, and 22.0 Mg ha?1 under NT, RT2, RT1, and CT, respectively; in the northeast, stocks were 36.0, 33.8, and 32.5 Mg ha?1 under NT, RT, and CT, respectively. The model estimated carbon emissions varying from 0.36 (NT) to 1.05 Mg ha?1 year?1 (CT) in the southeast and from 0.30 (NT) to 0.82 (CT) Mg ha?1 year?1 in the northeast. CQESTR prediction of SOC dynamics illustrates acceptable performance for the two tropical soils of Brazil.  相似文献   

8.
Mineral fertilizers, organic amendments, and pesticides are inputs commonly used in conventional farming practices. The aim of this study was to evaluate the effects of single or combined applications of spent grape marc-vermicompost, urea, and/or diuron on soil-enzyme activities and the persistence of this herbicide in soils with low organic carbon content. The application of vermicompost enhanced dehydrogenase (DHase) enzyme activity over time but altered soil urease activity to a very limited extent. The reduction in diuron concentrations and the increase in DHase activity indicated that the soil microorganisms were capable of degrading the ureic herbicide. Treatment with vermicompost and diuron had a stimulatory effect on soil microbial activity. On the whole, the application of diuron and urea to the vermicompost-amended soil raised DHase and urease activity to maximum levels (>3 μg INTF g?1 h?1 and >47 μg NH4+ g?1 h?1, respectively). The application of urea to the unamended and vermicompost-amended soil decreased diuron persistence from 18.8 and 33 d to 12.5 and 15 d, respectively. Our findings show that although vermicompost additions reduce diuron availability, this boosts diuron degradation when combined with urea. These additions, under different soil management conditions, minimize the bioavailability and persistence of diuron and consequently the risk of leaching and seepage into aquifers. Compared with untreated soils, these types of treated soils could also improve agricultural sustainability and the quality of the environment.  相似文献   

9.
Four biostimulants (BS): WCDSs, wheat condensed distiller solubles; PA-HE, hydrolyzed poultry feathers; CGHE, carob germ enzymatic extract; and RB, rice bran extract were applied annually at 4.7 t organic matter (OM) ha−1 for a 3-year period to a Xerollic Calciorthid soil to evaluate their efficiency in soil restoration. Their effects on the plant cover, soil enzymatic activities and the structure of the soil microbial community by analysing phospholipid fatty acids (PLFAs) were determined. Application of BS that contain higher amounts of protein and higher percentage of peptides under 3 kDa had a greater effect on the soil biological properties, possibly due to the low molecular weight protein content can be easily assimilated by soil microorganisms. Following 3 years of successive soil amendment, the dehydrogenase activity was 4.6, 9.6, and 17.6% higher in PA-HE-amended soils than in the RB, CGHE and WCDS-amended soils, respectively. The urease activity was 5.3, 14.5, and 28.8% higher in PA-HE-amended soils than in the RB, CGHE and WCDS-amended soils, respectively. The phosphatase activity was 8, 15.3, and 20.2% higher in PA-HE-amended soils than in the RB, CGHE and WCDS-amended soils, respectively. The arylsulfatase activity was 16, 21.1, and 27.2% higher in PA-HE-amended soils than in the RB, CGHE and WCDS-amended soils, respectively. Total soil phospholipid fatty acid (PLFA) concentration was significantly (p < 0.05) higher in BS-amended soil than control soil. Principal component analysis discriminated between the BS-amended soils, mainly based on content of lower molecular weight peptides. Thus, PA-HE and RB were grouped and differentiated from CGHE and WCDS, respectively. After 3 years of treatment, vegetal cover was 11.4, 17.7, 24.1, and 85.8% higher in PA-HE-amended soils than in the RB, CGHE, WCDS treatments and control soil. These results suggested that under semiarid climatic conditions the application of BS with higher amounts of protein (>50%) and a higher percentage of peptides under 0.3 kDa (>60%) notably increased the soil enzymatic activities, induced changes in microbial community because the protein with lower molecular weight can be more easily absorbed by soil microorganisms, and also favoured the establishment of vegetation, which will protect the soil against erosion and will contribute to its restoration.  相似文献   

10.
《Applied soil ecology》2006,34(3):258-268
The potential negative impact of agricultural practices on soil and water quality is of environmental concern. The associated nutrient transformations and movements that lead to environmental concerns are inseparable from microbial and biochemical activities. Therefore, biochemical and microbiological parameters directing nitrogen (N) transformations in soils amended with different animal manures or inorganic N fertilizers were investigated. Soils under continuous corn cultivation were treated with N annually for 5 years at 56, 168, and 504 kg N ha−1 in the form of swine effluent, beef manure, or anhydrous ammonia. Animal manure treatments increased dehydrogenase activity, microbial biomass carbon (Cmic) and N (Nmic) contents, and activities of amidohydrolases, including l-asparaginase, urease, l-glutaminase, amidase, and β-glucosaminidase. Soils receiving anhydrous ammonia demonstrated increased nitrate contents, but reduced microbiological and biochemical activities. All treatments decreased Cmic:organic C (Corg) ratios compared with the control, indicating reduced microbial C use efficiency and disturbance of C equilibrium in these soil environments. Activities of all enzymes tested were significantly correlated with soil Corg contents (P < 0.001, n = 108), but little correlation (r = 0.03, n = 36) was detected between Cmic and Corg. Activities of amidase and β-glucosaminidase were dominated by accumulated enzymes that were free of microbial cells, while activities of asparaginase and glutaminase were originated predominately from intracellular enzymes. Results indicated that soil microbial and biochemical activities are sensitive indicators of processes involved in N flow and C use efficiency in semiarid agroecosystems.  相似文献   

11.
The response of the soil food web structure to soil quality changes during long-term anthropogenic disturbance due to farming practices has not been well studied. We evaluated the effects of three tillage systems: moldboard plow/rotary harrow (MP), rotary cultivator (RC), and no-tillage (NT), three winter cover-crop types (fallow, FL; rye, RY; and hairy vetch, HV), and two nitrogen fertilization rates (0 and 100 kg N ha−1 for upland rice, and 0 and 20 kg N ha−1 for soybean production) on changes in nematode community structure. Sixty-nine taxa were counted, total nematode abundance (ALL), bacterial feeders (BAC), predators (PRD), omnivores (OMN), and obligatory root feeders (ORF) were more abundant in NT than in MP and RC, but fungal feeders and facultative root feeders (FFR) were more abundant in RC than in NT and MP. Cover crop also influenced nematode community structure; rye and hairy vetch were always higher in ALL, BAC, FFR, ORF, and OMN than fallow. Seasonal changes in nematode community structure were also significant; in particular, as soil carbon increased, nematode abundance also increased. The relationship between nematode indices and soil carbon was significant only in NT, but not in MP and RC. In NT, with increasing soil carbon, enrichment index and structure index (SI) were positive and significant and channel index was negative. Bulk density was significantly negatively correlated with FFR and ORF. Seasonal difference in nematode community between summer and autumn was larger in an upland rice rotation than in a soybean rotation. Over the nine-year experiment, SI increased not only in NT but also in MP and RC, suggesting that repeated similar tillage inversions in agroecosystems may develop nematode community structures adapted to specific soil environmental conditions. Because NT showed the highest values of both SI and soil carbon, the increase of soil carbon in NT is expected to have a great impact on developing a more diverse nematode community structure.  相似文献   

12.
In-field management practices of corn cob and residue mix (CRM) as a feedstock source for ethanol production can have potential effects on soil greenhouse gas (GHG) emissions. The objective of this study was to investigate the effects of CRM piles, storage in-field, and subsequent removal on soil CO2 and N2O emissions. The study was conducted in 2010–2012 at the Iowa State University, Agronomy Research Farm located near Ames, Iowa (42.0°′N; 93.8°′W). The soil type at the site is Canisteo silty clay loam (fine-loamy, mixed, superactive, calcareous, mesic Typic Endoaquolls). The treatments for CRM consisted of control (no CRM applied and no residue removed after harvest), early spring complete removal (CR) of CRM after application of 7.5 cm depth of CRM in the fall, 2.5 cm, and 7.5 cm depth of CRM over two tillage systems of no-till (NT) and conventional tillage (CT) and three N rates (0, 180, and 270 kg N ha−1) of 32% liquid UAN (NH4NO3) in a randomized complete block design with split–split arrangements. The findings of the study suggest that soil CO2 and N2O emissions were affected by tillage, CRM treatments, and N rates. Most N2O and CO2 emissions peaks occurred as soil moisture or temperature increased with increase precipitation or air temperature. However, soil CO2 emissions were increased as the CRM amount increased. On the other hand, soil N2O emissions increased with high level of CRM as N rate increased. Also, it was observed that NT with 7.5 cm CRM produced higher CO2 emissions in drought condition as compared to CT. Additionally, no differences in N2O emissions were observed due to tillage system. In general, dry soil conditions caused a reduction in both CO2 and N2O emissions across all tillage, CRM treatments, and N rates.  相似文献   

13.
It is well known that earthworm populations tend to increase under no-tillage (NT) practices, but abundances tend to be highly variable. In the present study, data from the literature together with those on earthworm populations sampled in six watersheds in SW Paraná State, Brazil, were used to build a classification of the biological soil quality of NT systems based on earthworm density and species richness. Earthworms were collected in 34 farms with NT aging from 3 to 27 yr, in February 2010, using an adaptation of the TSBF (Tropical Soil Biology and Fertility) Program method (hand sorting of five 20 cm × 20 cm holes to 20 cm depth). Six forest sites were also sampled in order to compare abundances and species richness with the NT systems. Species richness in the 34 NT sites and in the 6 forests ranged from 1 to 6 species. Most earthworms encountered were exotics belonging to the genus Dichogaster (D. saliens, D. gracilis, D. bolaui and D. affinis) and native Ocnerodrilidae (mainly Belladrilus sp.), all of small individual size. In a few sites, individuals of the Glossoscolecidae (P. corethrurus, Glossoscolex sp., Fimoscolex sp.) and Megascolecidae (Amynthas gracilis) families were also encountered, in low densities. Urobenus brasiliensis (Glossoscolecidae) were found only in the forest fragments. In the NT farms, earthworm abundance ranged from 5 to 605 ind m−2 and in the forest sites, from 10 to 285 ind m−2. The ranking of the NT soil biological quality, based on earthworm abundance and species richness was: poor, with <25 individuals per m−2 and 1 sp.; moderate, with ≥25–100 individuals per m−2 and 2–3 sp.; good, with >100–200 individuals per m−2 and 4–5 sp.; excellent, with >200 individuals per m−2 and >6 sp. About 60% of the 34 farms fell into the poor to moderate categories based on this classification, so further improvements to the NT farm's management system are needed to enhance earthworm populations. Nevertheless, further validation of this ranking system is necessary to allow for its wider-spread use.  相似文献   

14.
Fertilization generates nutrient patches that may impact soil microbial activity. In this study, nitrogen patches were generated by adding ammonium sulfate or urea to soil columns (length 25 cm; internal diameter 7.2 cm). Changes in nitrogen transformation, soil microbial biomass, and microbial functional diversity with the nitrogen gradients were investigated to evaluate the response of microbial activity to chemical fertilizer nutrient patches. After applying of ammonium sulfate or urea, the added nitrogen migrated about 7 cm. Microbial biomass carbon (MBC) was lower in fertilized soil than in the control (CK) treatment at the same soil layers. MBC increased with soil depth while microbial biomass nitrogen (MBN) decreased. BIOLOG analysis indicated that the average well color development (AWCD) and functional diversity indices of the microbial communities were lower in the 1 cm and 2 cm soil layers after application of ammonium sulfate; the highest values were in the 3 cm soil layer. AWCD and Shannon indices from the 1 to 5 cm soil layers were higher than those from other soil layers under urea application. Both principal component analysis and carbon substrate utilization analysis showed significant separation of soil microbial communities among different soil layers under application of ammonium sulfate or urea. Microbial activity was substantially decreased when NH4+-N concentration was higher than 528.5 mg kg−1 (1–3 cm soil layer under ammonium sulfate application) or 536.8 mg kg−1 (1 cm soil layer under urea application). These findings indicated that changes in soil microbial biomass and microbial functional diversity can occur with a nitrogen gradient. The extent of changes depends on the nitrogen concentration and the form of inorganic fertilizer.  相似文献   

15.
Changes in soil microbial biomass, enzyme activities, microbial community structure and nitrogen (N) dynamics resulting from organic matter amendments were determined in soils with different management histories to gain better understanding of the effects of long- and short-term management practices on soil microbial properties and key soil processes. Two soils that had been under either long-term organic or conventional management and that varied in microbial biomass and enzyme activity levels but had similar fertility levels were amended with organic material (dried lupin residue, Lupinus angustifolius L.) at amounts equivalent to 0, 4 and 8 t dry matter lupin ha?1. Microbial biomass C and N, arginine deaminase activity, fluorescein diacetate hydrolysis, dehydrogenase enzyme activity and gross N mineralisation were measured in intervals over an 81-day period. The community structure of eubacteria and actinomycetes was examined using PCR–DGGE of 16S rDNA fragments. Results suggested that no direct relationships existed between microbial community structure, enzyme activities and N mineralisation. Microbial biomass and activity changed as a result of lupin amendment whereas the microbial community structure was more strongly influenced by farm management history. The addition of 4 t ha?1 of lupin was sufficient to stimulate the microbial community in both soils, resulting in microbial biomass growth and increased enzyme activities and N mineralisation regardless of past management. Amendment with 8 t lupin ha?1 did not result in an increase proportional to the extra amount added; levels of soil microbial properties were only 1.1–1.7 times higher than in the 4 t ha?1 treatment. Microbial community structure differed significantly between the two soils, while no changes were detected in response to lupin amendment at either level during the short-term incubation. Correlation analyses for each treatment separately, however, revealed differences that were inconsistent with results obtained for soil biological properties suggesting that differences might exist in the structure or physiological properties of a microbial component that was not assessed in this study.  相似文献   

16.
《Soil biology & biochemistry》2001,33(7-8):883-891
In order to describe a soil polluted with hydrocarbons, the complementarity of bioassays and microbial activities measurements was studied. The samples of soil were taken from a site which had received oil tank residues over 50 years. Five zones were sampled. Each sample was characterized by chemical analyses, the measurement of dehydrogenase, phosphatase, hydrolysis of FDA and urease activities, soil respiration, and Microtox and Metplate bioassays. The chemical analyses revealed different levels of total hydrocarbon concentrations (from 1.5 to 78.8 mg/kg of dry soil) but also relatively high quantities of nickel (from 14.5 to 841.6 mg/kg of dry soil) and lead (30.9–355.4 mg/kg of dry soil) or cadmium (0–1.2 mg/kg of dry soil) in the different zones. Urease and dehydrogenase were sensitive to the presence of metals (31% inhibition of urease and 50% inhibition of dehydrogenase in the most contaminated soil). Measurements of Substrate Induced Respiration showed that the soil microflora were stressed in the presence of the pollutants. In the zone containing the highest concentration of metals, the microbial activities were low and the bioassays revealed a high potential toxicity (e.g. IC50 for Microtox obtained with a 15% dilution of soil, 90% inhibition of β-galactosidase activity). In the other zones, the soil microbial activities were not depressed in comparison to the reference zone whereas the bioassays revealed the presence of toxic compounds extracted with the solvent used.  相似文献   

17.
《Applied soil ecology》2006,31(3):215-225
The effect of forest fire on soil enzyme activity of spruce (Picea balfouriana) forest in the eastern Qinghai-Tibetan Plateau was assessed. Six specific enzymes were chosen for investigation: invertase, acid phosphatase, proteinase, catalase, peroxidase and polyphenoloxidase. It was found that the activities of invertase and proteinase were reduced by burning, but the activities of acid phosphatase, polyphenoloxidase and peroxidase increased. Meanwhile, burning significantly (P < 0.05) resulted in the decrease of concentrations of available N and K of 0–20 cm depth layer soil, and significantly (P < 0.05) decreased concentrations of organic matter content, total N and P, as well as available N, P and K in soil at both 20–40 and 40–60 cm depths except for available P at 20–40 cm soil depth. These results illustrated that burning could influence the enzyme activities and chemical properties of soil not only of upper but also lower soil layers. Correlation analysis indicated that invertase activities in 0–20 cm depth layer soil were significantly positively correlated with organic matter, total N and P, as well as available N and P. Furthermore, all six enzymes studied were sensitive to fire disturbance, and thus could be used as indicators of soil quality. Our study also showed that soil enzyme activities were associated with soil depth, decreasing from top to bottom in both burned and unburned spruce forests. The distribution pattern of soil enzyme activities suggested that the rate of organic matter decomposition and nutrient cycling depended on soil depth, which had important structural and functional characteristics in nutrient cycling dynamics and implications in plantation nutrient management. The finding that burning effects on enzyme activities and soil properties between different soil layers were homogenized was attributed to the 8-years’ regeneration of forest after burning.  相似文献   

18.
Earthworms are important soil animals in grassland ecosystems and are considered to be important to soil quality. The overall impact of earthworms on soil properties and plant diversity, however, depends on earthworm species, functional group and the type of ecosystem. The primary purpose of this study was to document the relationship among earthworms, key soil properties and native and exotic plant diversity in the little studied, Palouse prairie grassland (Idaho, USA). A secondary objective was to determine the effectiveness of three methods commonly used to sample earthworms. A hillslope characterized by Palouse prairie vegetation, well-expressed, hummocky (mounded) topography and known to support both exotic and native earthworm species was selected for study. The hillslope was divided into three zones [annual-dominated (AD), mixed (MX) and perennial-dominated (PD)] based on characteristics of the inter-mound plant communities described in previous research. Total earthworm biomass in the MX zone (53.5 g m−2) was significantly greater than in the PD zone (14.7 g m−2) (P = 0.0384), but did not differ from the AD zone. Earthworm density ranged from 52 to 81.1 individuals m−2 but was not significantly different across zones. Total C and N at 0 to 10 and 30 to 50 cm depths were significantly greater in the AD and PD zones as compared to the same depths in the MX zone. Soil textural class was silt loam within all zones and the soil silt fraction was positively correlated with total exotic earthworm density (R = 0.783, P = 0.0125) and biomass (R = 0.816, P = 0.0072). Native earthworms were only found in the zone with the greatest total and native plant diversity (PD). Total soil C and N were not correlated to earthworm density, but soil total C and N were significantly negatively correlated with exotic plant density, which indicates that invasive plants may be decreasing soil total C (R = −0.800) and N (R = −0.800). Calculated earthworm densities using data from the electroshocker were generally lower than those based on the hand-sorting method. Electroshocking, however, created lower disturbance and was the only method that resulted in the collection of the deep-burrowing, native species Driloleirus americanus.  相似文献   

19.
《Soil & Tillage Research》2007,96(1-2):348-356
Agricultural soils can be a major sink for atmospheric carbon (C) with adoption of recommended management practices (RMPs). Our objectives were to evaluate the effects of nitrogen (N) fertilization and cropping systems on soil organic carbon (SOC) and total N (TN) concentrations and pools. Replicated soil samples were collected in May 2004 to 90 cm depth from a 23-year-old experiment at the Northwestern Illinois Agricultural Research and Demonstration Center, Monmouth, IL. The SOC and TN concentrations and pools, soil bulk density (ρb) and soil C:N ratio were measured for five N rates [0 (N0), 70 (N1), 140 (N2), 210 (N3) and 280 (N4) kg N ha−1] and two cropping systems [continuous corn (Zea mays L.) (CC), and corn–soybean (Glycine max (L.) Merr.) rotation (CS)]. Long-term N fertilization and cropping systems significantly influenced SOC concentrations and pools to 30 cm depth. The SOC pool in 0–30 cm depth ranged from 68.4 Mg ha−1 for N0 to 75.8 Mg ha−1 for N4. Across all N treatments, the SOC pool in 0–30 cm depth for CC was 4.7 Mg ha−1 greater than for CS. Similarly, TN concentrations and pools were also significantly affected by N rates. The TN pool for 0–30 cm depth ranged from 5.36 Mg ha−1 for N0 to 6.14 Mg ha−1 for N4. In relation to cropping systems, the TN pool for 0–20 cm depth for CC was 0.4 Mg ha−1 greater than for CS. The increase in SOC and TN pools with higher N rates is attributed to the increased amount of biomass production in CC and CS systems. Increasing N rates significantly decreased ρb for 0–30 cm and decreased the soil C:N ratio for 0–10 cm soil depth. However, none of the measured soil properties were significantly correlated with N rates and cropping systems below 30 cm soil depth. We conclude that in the context of developing productive and environmentally sustainable agricultural systems on a site and soil specific basis, the results from this study is helpful to strengthening the database of management effects on SOC storage in the Mollisols of Midwestern U.S.  相似文献   

20.
《Soil biology & biochemistry》2001,33(4-5):483-489
Two soils of contrasting texture, organic matter content and pH were treated with CdSO4 solutions to give a Cd concentration range of 0–4000 mg kg−1 soil. The content of ATP and dehydrogenase and urease activities of soils were assayed after 3 h, and 7 and 28 days of Cd contamination. The relative ED50 values were calculated by two kinetic models (model 1 and model 2) used by Speir et al. (1995) and by the sigmoidal dose–response model (model 3) employed by Haanstra et al. (1985). Model 1 was the most successful in calculating the ED50 values for the ATP content, urease and dehydrogenase activities when both soils were contaminated by Cd. Similar ED50 values were predicted by model 1 (describing the full inhibition) and model 3 only when the correlation coefficients r2 were higher than 0.9. The ED50 values of ATP calculated by model 1 were markedly higher than those calculated by model 2 (describing partial inhibition) when both models gave correlation coefficients higher than 0.9. This behavior was due to the high asymptote values obtained using model 2. According to model 2, some of the enzyme activities responsible for the ATP synthesis were probably not inhibited at the highest Cd concentrations. The inhibitory effect of Cd on the ATP content and both enzymatic activities was lower in the Castelporziano soil, which had the highest total organic carbon content.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号