首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants of the family Brassicaceae contain high levels of glucosinolates. The latter compounds are degraded to isothiocyanates, some of which have been shown to be potent inducers of phase II detoxification enzymes in vitro. In the present study, the ability of six plant-derived isothiocyanates (allyl isothiocyanate, iberverin, erucin, sulforaphane, iberin, and cheirolin) to increase tissue levels of the phase II detoxification enzymes quinone reductase (QR) and glutathione S-transferase (GST) in a variety of rat tissues has been compared. At the low dose level employed (40 micromol/kg/day), cheirolin was without effect in any tissue. All of the other isothiocyanates, however, increased GST and QR activities in the duodenum, forestomach, and/or the urinary bladder of the animals, with the greatest effects being seen in the urinary bladder. With the exception of cheirolin, little difference was observed in the inductive activity of the various isothiocyanates. Phase II enzymes are known to protect against chemical carcinogenesis, and the selectivity of isothiocyanates in inducing such enzymes in the bladder is of interest in view of recent epidemiological studies showing a decreased incidence of cancer of this organ in individuals with a high dietary intake of Brassica vegetables.  相似文献   

2.
Citrus fruits are considered to be functional foods that promote good health. This study was carried out to assess the effect of oroblanco and grapefruit consumption on hepatic detoxification enzymes. Male Sprague-Dawley rats were provided with either regular drinking water (control) or experimental treatments of oroblanco juice, grapefruit juice, or a sugar mix for 6 weeks. After 1 week of treatment, half the animals in each group were injected with the procarcinogen 1,2-dimethylhydrazine. Grapefruit juice significantly increased activity and expression of the hepatic phase I enzyme, cytochrome P450 CYP1A1, with a marked trend toward enhanced NAD(P)H:quinone reductase (QR) activity. Oroblanco juice significantly increased glutathione S-transferase phase II enzyme activity along with CYP1A1 expression and a notable trend toward increased activity of both CYP1A1 and QR. These results suggest that these citrus fruits are bifunctional inducers, modulating both phase I and phase II drug-metabolizing enzymes to enhance hepatic detoxification.  相似文献   

3.
Epidemiological and laboratory studies suggest that dietary broccoli may prevent or delay a variety of cancers. Broccoli and other crucifers contain a relatively unique family of secondary metabolites called glucosinolates. Glucoraphanin, the major glucosinolate in broccoli, is hydrolyzed by an endogenous plant myrosinase to form either the potent anticarcinogen sulforaphane (SF) or sulforaphane nitrile (SF nitrile). The bioactivities of SF and SF nitrile were compared in rats and in mouse hepatoma cells. Male, 4-week-old, Fischer 344 rats were administered SF or SF nitrile (200, 500, or 1000 micromol/kg) by gavage daily for 5 days. Hepatic, colonic mucosal, and pancreatic quinone reductase and glutathione S-transferase activities were induced by high doses of SF, but not by SF nitrile. When Hepa 1c1c7 cells were exposed to increasing levels of each compound for 24 h, quinone reductase showed a 3-fold maximal induction over control at 2.5 microM SF and a 3.5-fold maximal induction over control at 2000 microM SF nitrile, the highest concentration tested. These results demonstrate that SF nitrile is substantially less potent than SF as an inducing agent of phase II detoxification enzymes. Therefore, glucoraphanin hydrolysis directed toward the production of SF rather than SF nitrile could increase the potential chemoprotective effects of broccoli.  相似文献   

4.
A mechanism of action of chemopreventive glucosinolates/isothiocyanates, established largely in vitro, is to modulate carcinogen-metabolizing enzymes. Extrapolation in vivo involves relating in vitro concentrations to plasma/tissue concentrations attained in vivo, thus assuming that even transient exposure modulates enzyme activity. To test this hypothesis, precision-cut rat liver slices were incubated with glucosinolates for up to 24 h, and the O-dealkylation of methoxyresorufin and ethoxyresorufin was determined; increased activities were observed only at incubations of at least 6 h. To evaluate phase II enzymes, isothiocyanates, namely, sulforaphane, erucin, and phenethyl isothiocyanate, were similarly incubated; quinone reductase increased after incubation for 6 h or longer. When glutathione S-transferase was monitored, the phenethyl isothiocyanate-manifested rise necessitated at least a 6 h incubation, whereas in the case of sulforaphane and erucin, the activity was elevated after only 2 h. It is inferred that a rise in carcinogen-metabolizing enzymes by glucosinolates/isothiocyanates necessitates tissue exposure of at least 6 h.  相似文献   

5.
冯尚坤  陈浩  邵志勇  汪俏梅 《核农学报》2021,35(6):1340-1346
为探究红光处理对萝卜芽菜采后营养品质的影响,本试验对采收后的萝卜芽菜进行8 h红光处理,之后置于4℃条件下贮藏,于贮藏0、1、2和3 d对其芥子油苷,叶绿素、花青素等抗氧化物质含量,以及总抗氧化能力进行分析。结果表明,与对照相比,红光处理使萝卜芽菜中的脂肪类芥子油苷(4-甲硫基-3-丁烯基芥子油苷等)和吲哚类芥子油苷(4-甲氧基-吲哚-3-甲基芥子油苷等)含量分别提高9.5%和20.6%,并且延缓了贮藏过程中具有抗癌活性的4-甲硫基-3-丁烯基芥子油苷含量的下降。此外,红光处理提高了萝卜芽菜中叶绿素和花青素的含量,以及贮藏早期的抗氧化能力。本研究结果为通过光照处理维持萝卜芽菜采后品质提供了理论依据,具有潜在的应用价值。  相似文献   

6.
Watercress (Nasturtium officinale R. Br.) is a perennial herb rich in the secondary metabolites of glucosinolates and carotenoids. 2-phenethyl isothiocyanate, the predominate isothiocyanate hydrolysis product in watercress, can reduce carcinogen activation through inhibition of phase I enzymes and induction of phase II enzymes. Sulfur (S) and nitrogen (N) have been shown to influence concentrations of both glucosinolates and carotenoids in a variety of vegetable crops. Our research objectives were to determine how several levels of N and S fertility interact to affect watercress plant tissue biomass production, tissue C/N ratios, concentrations of plant pigments, and glucosinolate concentrations. Watercress was grown using nutrient solution culture under a three by three factorial arrangement, with three S (8, 16, and 32 mg/L) and three N (6, 56, and 106 mg/L) fertility concentrations. Watercress shoot tissue biomass, tissue %N, and tissue C/N ratios were influenced by N but were unaffected by changes in S concentrations or by the interaction of NxS. Tissue pigment concentrations of beta-carotene, lutein, 5,6-epoxylutein, neoxanthin, zeaxanthin, and the chlorophyll pigments responded to changes in N treatment concentrations but were unaffected by S concentrations or through N x S interactions. Watercress tissue concentrations of aromatic, indole, and total glucosinolate concentrations responded to changes in N treatments; whereas aliphatic, aromatic, and total glucosinolates responded to changes in S treatment concentrations. Individual glucosinolates of glucobrassicin, 4-methoxyglucobrassicin, and gluconasturriin responded to N fertility treatments, while gluconapin, glucobrassicin, and gluconasturiin responded to changes in S fertility concentrations. Increases in carotenoid and glucosinolate concentrations through fertility management would be expected to influence the nutritional value of watercress in human diets.  相似文献   

7.
Administration of dietary doses of the isothiocyanate erucin had no effect on rat hepatic cytochrome P450 activity or protein levels, but at higher doses a rise in CYP1A/B1 protein levels was evident. In lung, treatment with erucin, as well as sulforaphane, failed to modulate cytochrome P450 activities but elevated CYP1A/B1 protein levels. In liver, erucin stimulated quinone reductase activity accompanied by a rise in protein. Glutathione S-transferase activity was unaffected, but GSTalpha and GSTmu protein levels increased. In lung, both isothiocyanates increased quinone reductase paralleled by a rise in protein levels; at the higher dose both isothiocyanates elevated moderately GSTalpha levels. Hepatic microsomes converted both isothiocyanates to metabolites that impaired cytochrome P450 activity, which was antagonized by reduced glutathione. It may be concluded that erucin may protect against carcinogens by stimulating the detoxication of quinones but is unlikely to significantly influence reactive intermediate generation through modulation of cytochrome P450 activity.  相似文献   

8.
Rocket (Eruca sativa Mill. or Eruca vesicaria L.) is widely distributed all over the world and is usually consumed fresh (leafs or sprouts) for its typical spicy taste. Nevertheless, it is mentioned in traditional pharmacopoeia and ancient literature for several therapeutic properties, and it does contain a number of health promoting agents including carotenoids, vitamin C, fibers, flavonoids, and glucosinolates (GLs). The latter phytochemicals have recently gained attention as being the precursors of isothiocyanates (ITCs), which are released by myrosinase hydrolysis during cutting, chewing, or processing of the vegetable. ITCs are recognized as potent inducers of phase II enzymes (e.g., glutathione transferases, NAD(P)H:quinone reductase, epoxide hydrolase, etc.), which are important in the detoxification of electrophiles and protection against oxidative stress. The major GL found in rocket seeds is glucoerucin, GER (108 +/- 5 micromol g(-)(1) d.w.) that represents 95% of total GLs. The content is largely conserved in sprouts (79% of total GLs), and GER is still present to some extent in adult leaves. Unlike other GLs (e.g., glucoraphanin, the bio-precursor of sulforaphane), GER possesses good direct as well as indirect antioxidant activity. GER (and its metabolite erucin, ERN) effectively decomposes hydrogen peroxide and alkyl hydroperoxides with second-order rate constants of k(2) = 6.9 +/- 0.1 x 10(-)(2) M(-)(1) s(-)(1) and 4.5 +/- 0.2 x 10(-)(3) M(-)(1) s(-) , respectively, in water at 37 degrees C, thereby acting as a peroxide-scavenging preventive antioxidant. Interestingly, upon removal of H(2)O(2) or hydroperoxides, ERN is converted into sulforaphane, the most effective inducer of phase II enzymes among ITCs. On the other hand, ERN (and conceivably GER), like other ITCs, does not possess any chain-breaking antioxidant activity, being unable to protect styrene from its thermally (37 degrees C) initiated autoxidation in the presence of AMVN. The mechanism and relevance of the antioxidant activity of GER and ERN are discussed.  相似文献   

9.
Brassica vegetables are an important dietary source of glucosinolates (GLs), whose breakdown products exhibit anticancer activity. The protective properties of Brassicaceae are believed to be due to the inhibition of Phase-I or induction of Phase-II xenobiotic metabolizing enzymes (XMEs), thus enhancing carcinogen clearance. To study whether GLs affect XMEs and the role of their chemical structure, we focused on two alkylthio GLs differing in the oxidation degree of the side chain sulfur. Male Sprague-Dawley rats were supplemented (per oral somministration by gavage) with either glucoraphasatin (4-methylthio-3-butenyl GL; GRH) or glucoraphenin (4-methylsulfinyl-3-butenyl GL; GRE), at 24 or 120 mg/kg body weight in a single or repeated fashion (daily for four consecutive days), and hepatic microsomes were prepared for XME analyses. Both GLs were able to induce XMEs, showing different induction profiles. While the inductive effect was stronger after multiple administration of the higher GRH dosage, the single lower GRE dose was the most effective in boosting cytochrome P-450 (CYP)-associated monooxygenases and the postoxidative metabolism. CYP3A1/2 were the most affected isoforms by GRH treatment, whereas GRE induced mainly CYP1A2 supported oxidase. Glutathione S-transferase increased up to approximately 3.2-fold after a single (lower) GRE dose and UDP-glucuronosyl transferase up to approximately 2-fold after four consecutive (higher) GRH doses. In conclusion, the induction profile of these GLs we found is not in line with the chemopreventive hypothesis. Furthermore, the oxidation degree of the side chain sulfur of GLs seems to exert a crucial role on XME modulation.  相似文献   

10.
The fractionation of soy flour directed by a cellular bioassay for induction of phase 2 detoxification enzymes was used to identify quinone reductase (QR) inducing agents. A phospholipid-depleted, 80% methanol-partitioned isolate from a crude ethanol extract of soy flour was resolved using normal phase medium-pressure liquid chromatography (MPLC). Early eluting fractions were found to be the most potent QR inducing agents among the separated fractions. Fraction 2 was the most potent, doubling QR at <2 mug/mL. Further fractionation of this isolate led to the identification of several constituents. Fatty acids and sn-1 and sn-2 monoacylglycerols were identified, but were not highly potent QR inducers. Benzofuran-3-carbaldehyde, 4-hydroxybenzaldeyde, 4-ethoxybenzoic acid, 4-ethoxycinnamic acid, benzofuran-2-carboxylic ethyl ester, and ferulic acid ethyl ester (FAEE) were also identified as QR inducing constituents of this fraction. FAEE was the most potent of the identified constituents, doubling QR specific activity at 3.2 muM in the cellular bioassay.  相似文献   

11.
A murine hepatoma (Hepa 1c1c7) cellular bioassay was used to guide the isolation of phase II enzyme inducers from fermented soy sauce, using quinone reductase (QR) as a biomarker. A crude ethyl acetate extract, accounting for 8.7% of nonsalt soluble solids of soy sauce, was found to double relative QR specific activity at 25 μg/mL (concentration required to double was defined as a "CD value"). Further silica gel column fractionation yielded 17 fractions, 16 of which exhibited CD values for QR induction of <100 μg/mL. The four most potent fractions were subfractionated by column and preparative thin layer chromatography, leading to the isolation and identification of two phenolic compounds (catechol and daidzein) and two β-carbolines (flazin and perlolyrin), with respective CD values of 8, 35, 42, and 2 μM. Western blots confirmed that the increases in QR activity corresponded to dose-dependent increases in cellular levels of NAD[P]H:quinone oxidoreductase 1 protein by these four QR inducers. To the authors' knowledge, this is the first report on the ability of β-carboline-derived alkaloids to induce phase II enzymes.  相似文献   

12.
13.
Brassica vegetables and glucosinolates contained therein are supposed to reduce the risk of cancer and to possess health-promoting properties. The benefits of a Brassica-based diet may be particularly expressed by eating sprouts, in which the glucosinolate content is higher than in mature vegetables. With this in mind, a first objective of this study was to evaluate the antioxidant properties of radish (Raphanus sativus L.) sprouts (Kaiware Daikon) extract (KDE), in which the glucosinolate glucoraphasatin (GRH), showing some antioxidant activity, is present at 10.5% w/w. The contribution of GRH to KDE's antioxidant activity was considered in two chemical assays (Trolox equivalent antioxidant capacity and Briggs-Rauscher methods). The total phenol assay by Folin-Ciocalteu reagent was performed to quantify the reducing capacity of KDE. Finally, on the basis of the putative choleretic properties of antioxidant plant extracts, the effect on the bile flow of KDE administration was investigated in an animal experimental model. The findings showed that KDE has antioxidant properties and significantly induced bile flow in rats administered 1.5 g/kg of body weight for 4 consecutive days.  相似文献   

14.
Free-radical scavenging, reducing, and phase II enzyme-inducing activities of aqueous and 5% aqueous ethanol extracts of freeze-dried root tissue of four beet (Beta vulgaris L.) strains (red, white, orange, and high-pigment (red) phenotypes) were determined. Aqueous and ethanolic tissue extracts of the regular and high-pigment red phenotypes were most capable of inhibiting metmyoglobin/H(2)O(2)-mediated oxidation of 2-2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) (ABTS) and 2,2'-azobis-(2-amidinopropane) dihydrochloride (AAPH)-mediated bleaching of beta-carotene. These same extracts were also most efficient at reducing ABTS radical cation and inducing quinone reductase in murine hepatoma (Hepa 1c1c7) cells in vitro.  相似文献   

15.
16.
Individual glucosinolates (GLS) were determined in vegetables of three Cruciferae species: Brassica oleracea L. (white cabbage, red cabbage, Savoy cabbage, Brussels sprouts, cauliflower, kale, kohlrabi), Brassica rapa L. (turnip), and Raphanus sativus L. (red radish, black radish, and white radish) produced in two years. The cultivars were compared for the contents of total-, indole-, and aliphatic GLS. In both years, the total content of GLS was highest in black radish, and all examined R. sativus vegetables contained the greatest amount of aliphatic GLS. Neither the level nor the identity of GLS differentiated among the vegetables of the other cultivars grown in the same year. Comparison of the GLS contents of the same cultivar in two production years, which differed in temperature and rainfall rate, showed that low average 10-day rainfall and high average temperature during the vegetation period significantly increased the GLS content of vegetables. This suggests that the year x cultivar interaction modified the GLS content of vegetables.  相似文献   

17.
There is high current interest in the chemopreventive potential of Brassica vegetables (cruciferae), particularly due to their content in glucosinolates (GL), which upon myrosinase hydrolysis release the corresponding isythiocyanates (ITC). Some ITCs, such as sulforaphane (SFN) from broccoli ( Brassica oleacea italica), have been found to possess anticancer activity through induction of apoptosis in selected cell lines, as well as indirect antioxidant activity through induction of phase II detoxifying enzymes. Japanese daikon ( Raphanus sativus L.) is possibly the vegetable with the highest per capita consumption within the Brassicaceae family. Thanks to a recently improved gram scale production process, it was possible to prepare sufficient amounts of the GL glucoraphasatin (GRH) as well as the corresponding ITC 4-methylthio-3-butenyl isothiocyanate (GRH-ITC) from its sprouts. This paper reports a study on the cytotoxic and apoptotic activities of GRH-ITC compared with the oxidized counterpart 4-methylsulfinyl-3-butenyl isothiocyanate (GRE-ITC) on three human colon carcinoma cell lines (LoVo, HCT-116, and HT-29) together with a detailed kinetic investigation of the direct antioxidant/radical scavenging ability of GRH and GRH-ITC. Both GRH-ITC and GRE-ITC reduced cell proliferation in a dose-dependent manner and induced apoptosis in the three cancer cell lines. The compounds significantly ( p < 0.05) increased Bax and decreased Bcl2 protein expression, as well as producing caspase-9 and PARP-1 cleavage after 3 days of exposure in the three cancer cell lines. GRH-ITC treatment was shown to have no toxicity with regard to normal human lymphocytes (-15 +/- 5%) in comparison with SFN (complete growth inhibition). GRH and GRH-ITC were able to quench the 2,2-diphenyl-1-picrylhydrazyl radical, with second-order rate constants of 14.0 +/- 2.8 and 43.1 +/- 9.5 M(-1) s(-1), respectively (at 298 K in methanol), whereas the corresponding value measured here for the reference antioxidant alpha-tocopherol was 425 +/- 40 M (-1) s (-1). GRH reacted with H2O2 and tert-butyl hydroperoxide in water (pH 7.4) at 37 degrees C, with rate constants of 1.9 +/- 0.3 x 10(-2) and 9.5 +/- 0.3 x 10(-4) M(-1) s (-1) (paralleling recently developed synthetic antioxidants) being quantitatively (>97%) converted to GRE. It is demonstrated that GRH-ITC has interesting antioxidant/radical scavenging properties, associated with a selective cytotoxic/apoptotic activity toward three human colon carcinoma cell lines, and very limited toxicity on normal human T-lymphocytes.  相似文献   

18.
Epidemiological evidence indicates that a high dietary intake of plants of the Allium family, such as garlic and onions, is associated with a decreased risk of cancer in humans. It has been suggested that this chemopreventative effect involves the ability of the aliphatic sulfides derived from these vegetables to increase tissue activities of phase II detoxification enzymes. Several highly effective inducers from garlic have been identified, but most of the previously studied compounds from onion have proved to be only weakly active. In the present study, the inductive activity of another onion-derived sulfide, diprop-1-enyl sulfide, has been investigated. This substance was a potent inducer of phase II enzymes in rats, showing significant effects in the lungs and in the lower part of the gastrointestinal tract, suggesting that diprop-1-enyl sulfide could be a useful chemopreventative agent at these sites. At high dose levels, diprop-1-enyl sulfide caused hemolytic anemia, which may be due to in vivo conversion of the sulfide to active metabolites.  相似文献   

19.
Crucifer species, which include widely consumed vegetables, contain glucosinolates as secondary metabolites. Cruciferous vegetables are consumed in Japan in salt-preserved or pickled form as well as cooked and raw fresh vegetables. In this study, changes in contents of glucosinolates during the pickling process were investigated. 4-Methylthio-3-butenyl glucosinolate, a major glucosinolate in the root of Japanese radish, daikon (Raphanus sativus L.), was detected in pickled products with a short maturation period but not in those with a long maturation period. As a model pickling experiment, fresh watercress (Nasturtium officinale) and blanched watercress were soaked in 3% NaCl solution for 7 days. The results showed that the ratio of indole glucosinolates to total glucosinolates increased during the pickling process, whereas total glucosinolates decreased. Myrosinase digestion of glucosinolates in nozawana (Brassica rapa L.) indicated that indole glucosinolates, especially 4-methoxyglucobrassicin, were relatively resistant to the enzyme. The effect of pickling on glucosinolate content and the possible mechanism are discussed in view of degradation by myrosinase and synthetic reaction in response to salt stress or compression during the pickling process.  相似文献   

20.
Little is known about whether glucosinolate-derived nitriles have the ability to increase phase 2 detoxication enzymes and glutathione (GSH) in vivo. In this study, the ability of allyl nitrile, a hydrolysis product of the glucosinolate sinigrin, to increase tissue levels of the phase 2 detoxication enzymes glutathione S-transferase and quinone reductase and GSH in a variety of mouse tissues was examined. At the lowest dose level (11.8 mg/kg/day), allyl nitrile showed inductive ability in the stomach and lungs. At 23.6 mg/kg/day, the inductive effect was observed in the stomach, rectum, urinary bladder, and lungs, whereas at 47.2 mg/kg/day, it was recorded in the stomach, rectum, urinary bladder, kidneys, and lungs. These results show that allyl nitrile displays its maximum potency in the stomach and lungs, which is of interest in light of epidemiological studies demonstrating an inverse association between crucifer intake and the incidence of stomach and lung cancers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号