首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Summary A selected group of 42 guayule (Parthenium argentatum Gray) lines were evaluated on the basis of various morphological characteristics and compared to a total population of 234 lines. The objective of this study was to determine the amount of variation that existed both within and among guayule lines over a 2-year period. The parental lines all reproduced apomictically, and as expected, many lines exhibited a high degree of uniformity for every measured character. However, many other lines were extremely variable for varying numbers of characters. This appears to be due to varying degrees and combinations of apomeiosis, thus establishing a long-term source of genetic variation. The high amount of variability existing among and within these guayule lines indicates that significant progress by selection for both rubber percentage and yield is feasible.  相似文献   

2.
以自主选育的5个工业大麻品种(系)为研究对象,采用随机区组试验,对纤维产量与产量构成因素进行相关和通径分析,分析参试品种(系)纤维产量、产量构成因素的变化及关系。结果表明,参试工业大麻品种(系)的单株纤维产量及产量构成因素差异显著;单株原茎重与单株纤维产量呈极显著相关,茎粗、单株干茎重、全麻率与单株纤维产量呈显著相关,相关系数的大小依次为单株原茎重(0.962)>全麻率(0.943)>茎粗(0.917)>单株干茎重(0.912)>株高(0.808)>干茎制成率(0.725);单株纤维产量与单株原茎重、单株干茎重、全麻率、株高、干茎制成率的回归方程达显著水平,通径分析结果表明,对单株纤维产量直接贡献最大的是单株原茎重,其次是全麻率,而株高、单株干茎重、干茎制成率其对单株纤维产量的影响主要是通过影响单株原茎重和全麻率的间接作用而产生的。  相似文献   

3.
Two experiments were conducted in the Rift Valley, Ethiopia (8°N and 39°E) to determine associations between eight plant traits and seed yield, and to obtain estimates of narrow sense heritability for the traits. Experiment I evaluated seven dry edible bean cultivars/lines at two locations to simulate different soil moisture stress, including, Debre Zeit(non-stress) and Dera (moderate-stress). Experiment II evaluated 25 cultivars/lines in three environments including, Melkassa early planted (non-stress), Melkassa late planted (high-stress), and Dera (moderate-stress). A randomized-complete-block design with three replicates was used in both experiments. Plant traits evaluated were seed yield, pods plant-1, seeds pod-1, 100 seed weight, root dry weight, hypocotyl diameter, plant biomass, plant height and days to flowering. Plant traits that were significantly associated with seed yield were included in a stepwise-regression model to determine which trait or combination of traits provided the best model to estimate seed yield in each environment. An analysis of variance was conducted to test main effects and interactions between plant traits and environments. Significant variation among lines occurred for seed yield and all plant traits in both experiments. Strong positive correlations were observed between plant biomass and seed yield in all environments. Seed yield and pods plant-1 were also highly associated in four of the five environments. Stepwise regression models indicated that the combination of pods plant-1 and plant biomass consistently contributed to seed yield prediction, while other traits did not. Because both plant biomass and pods plant-1 had moderate to high narrow sense heritability estimates and low GE interactions, they should be useful as indirect selection criteria to improve and stabilize seed yield in a breeding program. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

4.
Summary Crosses of wild barley (Hordeum vulgare ssp. spontaneum and Hordeum vulgare ssp. agriocrithon) with Hordeum vulgare ssp. vulgare were used to select high yielding grain types under dryland Mediterranean conditions. No special difficulties were faced in making the crosses, in eliminating the brittle rachis genes from the grain types or in selecting 6-rowed types in crosses between 2-rowed wild barley and 6-rowed ssp. vulgare varieties. Brittle rachis genotypes, present in the segregating populations were used in developing self-reseeding permanent pastures for dry areas. The best selections were tested in seven trials during 1989–92 and some of them outyielded their parents and also the best improved check variety by 13–22%. Indications for transgressive segregation were obtained for grain yield, straw yield, total biological yield, harvest index and volume weight. The crude protein content of some of the selections was significantly higher than that of the checks. For breeding programs aiming at large seeds, special ssp. spontaneum lines should be used as parents. High grain yield was positively correlated with high straw yield, total biological yield, earliness in heading date, high harvest index and negatively with volume weight. It was concluded that unexploited useful genes, even when not directly observed in wild barley, could be transfered easily into high yielding genotypes by breeding.  相似文献   

5.
Summary Immature inflorescences of smooth bromegrass were cultured on MS agar media supplemented with varying combinations of 2,4-D and kinetin. Callus was initiated from segments of young inflorescences on each medium. All of the calli were subcultured monthly for 5–6 times and transferred onto hormone-free MS medium for plant regeneration. Addition of kinetin to the basal medium stimulated shoot initiation in the callus cultures. Plantlets were regenerated only from calli grown on media containing 2 and 6 mg I-1 2,4-D with a supplement of 0.2 mg I-1 kinetin. No albino plantlets were produced. Morphological characteristics and dry matter yield of ten somaclones and the parental plant (SBG7) were studied in the greenhouse in a randomized complete block experiment with five replications. There was significant variation (P>0.01) among genotypes for all morphological characteristics studied. Although all somaclone heights and leaf widths were lower than those of the parental plant, the somaclone F9A, F10A, and F10B had larger tiller numbers, and leaf/stem ratio by dry weight than the parental plant. Only somaclone F9B gave higher specific leaf area and leaf area ratio than the parental plant. Almost all somaclones had the same leaf length, total dry weight, and specific leaf weight as the parental plant. The variation found in somaclones should permit selection for desirable agronomic traits.  相似文献   

6.
华南主栽高产籼稻根系形态特征及其与产量构成的关系   总被引:7,自引:0,他引:7  
为探明不同类型高产籼稻的根系形态特征差异及其与产量的关系,以7个目前在华南地区大面积推广应用的主导品种(组合)合美占、桂农占、玉香油占、粤晶丝苗2号、五优308、天优998、天优122为材料,在2010-2011年进行两年盆栽试验,分别考查分蘖盛期、抽穗期及成熟期的单株、单茎及单条不定根形态性状,利用WinRhizo根系分析系统分析抽穗期的根系分枝特征,并计算根系形态特征与产量的相关性。结果表明: (1)杂交籼稻组合各生育时期的单株根数、单株根长、单茎根长及单条根长均显著大于常规籼稻品种;单株和单茎的根体积与干重差异不明显;常规稻单条根质量则普遍高于杂交稻。(2)抽穗期不同级别根的表面积和体积均为不定根>粗分枝根>细分枝根,杂交稻不同级别根的总长度为粗分枝根>不定根>细分枝根,常规稻则为不定根>粗分枝根>细分枝根;杂交稻的分枝根总长度及粗分枝根和细分枝根的长度、表面积、体积都显著大于常规稻;常规稻的平均根直径则显著大于杂交稻。(3)杂交稻与常规稻根系特征的主要差异是单株根数和长度的差异,分蘖数和单条根长度的差异是两者根系特征差异的重要原因。(4)单株不定根数、不定根总长、根干重等12个根系性状分别与产量显著或极显著正相关;单株不定根数和分枝根总表面积分别是影响产量的主要因素。这些结果为水稻根系遗传改良和超高产育种及栽培提供了参考。  相似文献   

7.
Summary Diverse landraces of wheat, collected from the semi-arid (150 to 250 mm of total annual rainfall) Northern Negev desert in Israel were considered as a potential genetic resource of drought resistance for wheat breeding. These materials were therefore evaluated for their reponses to drought stress in agronomical and physiological terms. Up to 68 landraces, comprising of Triticum durum, T. aestivum, and T. compactum were tested in two field drought environments, in one favourable field environment, under post-anthesis chemical plant desiccation which revealed the capacity for grain filling from mobilized stem reserves, under a controlled drought stress in a rainout shelter and in the growth chamber under polyethylene glycol (PEG)-induced water stress. Biomass, grain yield and its components, harvest index, plant phenology, canopy temperatures, kernel weight loss by chemical plant desiccation, growth reduction by PEG-induced drought stress and osmotic adjustment were evaluated in the various experiments.Landraces varied significantly for all parameters of drought response as measured in the different experiments, which was in accordance to their documented large morphological diversity. Variation in grain yield among landraces under an increasing drought stress after tillering was largely affected by spike number per unit area. Kernel weight contributed very little to yield variation among landraces under stress, probably because these tall (average of 131 cm) landraces generally excelled in their capacity to support kernel growth by stem reserve mobilization under stress. Yield under stress was reduced with a longer growth duration of landraces only under early planting but not under late planting. Landraces were generally late flowering but they were still considered well adapted phenologically to their native region where they were always planted late.Landraces differed significantly in canopy temperature under drought stress. Canopy temperature under stress in the rainout shelter was negatively correlated across landraces with grain yield (r=0.67**) and biomass (r=0.64**) under stress. Canopy temperature under stress in the rainout shelter was also positively correlated across landraces (r=0.50**) with canopy temperature in one stress field environment. Osmotic adjustment in PEG-stressed plants was negatively correlated (r=–0.60**) with percent growth reduction by PEG-induced water stress. It was not correlated with yield under stress in any of the experiments. In terms of yield under stress, canopy temperatures and stem reserve utilization for grain filling, the most drought resistant landrace was the Juljuli population of T.durum.  相似文献   

8.
Summary Seventy-three determinate and 93 indeterminate random F9 lines from a cross between determinate and indeterminate soybean [Glycine max (L.) Merr.] parents were evaluated for seed yield, mature plant height, and lodging. Regression analyses indicated that among the determinate lines, seed yield increased by 350 kg/ha and lodging score increased by 0.008 for every 10 cm increase in plant height. Among indeterminate lines seed yield increased by 112 kg/ha and lodging score by 0.3 for every 10 cm increase in plant height. The highest yielding indeterminate lines were tall and very susceptible to lodging. The tall determinate lines had the best combination of high seed yield and excellent lodging resistance.Cooperative Investigations of the Science and Education Administration, U.S. Department of Agriculture and the Purdue University Agricultural Experiment Station.  相似文献   

9.
Summary This study analyzes the components of phenotypic variation for abscisic acid (ABA) content in maize (Zea mays L.) leaves and the correlations with drought sensitivity index (DSI) and silk delay (SD), involved in the reaction to water deficit. Eight early- and seven medium-maturity inbreds were examined in field trials: in 1990 with low irrigation volume and in 1991 with low and high irrigation volumes. ABA concentration and DSI were investigated at growth stages (S) corresponding to stem elongation (S3), appearance of the first husks (S4), and mid-end of silking (S5). The ABA concentration was significantly higher in conditions of water deficit and in the later growth stage. The genetic component for ABA concentration attained higher relative values than those shown by DSI in the same growth stages and by SD; moreover, it increased from growth stage 3 to stage 5. The genotype × year and genotype × irrigation volume interactions were smaller for ABA concentration than for DSI and SD. The broad sense heritability on a plant basis, estimated in drought conditions, for ABA concentration ranged from 21.4 to 55.1% according to maturity group and growth stage. A wide variation was observed among lines for ABA concentration: the medium-maturity group showed a three-fold range (from 219 to 605 ng ABA g–1 dry weight). No clear relationships between ABA concentration, DSI and SD were found. These results indicate the feasibility of a selection for ABA concentration within segregating populations derived from crosses between the inbred lines herein tested.Abbreviations ABA - abscisic acid - DSI - drought sensitivity index - DW - dry weight - SD - silk delay  相似文献   

10.
Earlier studies showed that the ratio of the weight of the wheat ear to stem at anthesis (ear:stem ratio) may give a better indication of potential yield than harvest index because it is determined early in the life cycle and is not affected by post anthesis stress. These studies concluded that selection for high ear:stem ratio at anthesis may lead to further improvement in grain yield of wheat. The present work was undertaken in the field to identify lines varying in ear:stem ratio in breeding populations and to study its implications for yield improvement.At anthesis stem length, ear length, tiller number, dry weight of stem and ear and ear:stem ratio were measured in 14 crosses on F2 single plants and F2 derived lines grown in the F3, F4, and F5 at three locations in Western Australia over four seasons. In addition, biomass, grain yield and yield components were measured on selected crosses at two locations on F2 derived lines grown in the F4 and F5. There was a considerable range of ear:stem ratio between and within the crosses studied. Although ear:stem ratio was strongly correlated with stem length, there was substantial variation within stem length classes. Ear:stem ratio had a high mean broad sense heritability (82%), whereas HI, grain yield and above ground biomass had lower heritabilities, 68, 55 and 35% respectively. Ear:stem ratio was strongly correlated between generations and sites indicating stability of this character. Ear:stem ratio had a significant positive correlation with grain yield, HI, grains per ear and per m2. The correlation of grain yield with HI was equal or slightly higher than that of grain yield with ear:stem ratio.Ear:stem ratio offers promise as a predictor of HI and yield potential where post-anthesis moisture stress can influence HI. Ear:stem ratio measurement is unlikely to be adopted for selection purposes in routine breeding programs, as it is laborious and time consuming. However, ear:stem ratio could be used to identify superior parental genotypes and early generation selections from special crosses in terms of its ability to partition assimilate.  相似文献   

11.
The beginning and duration of the seed set in the growth cycle determine the level and stability of the yield of a pea (Pisum sativum L.) genotype. The objective of the present study was to identify criteria for selecting genotypes, both in terms of timing of seed set and productivity. Genotypes were initially compared in field experiments for two different levels of inter-plant competition, but using the same photo-thermal conditions. These experiments showed that the initiation and, particularly, the duration of seed set were affected by plant growth rates, indicating that selection on these variables must be done by comparing genotypes under regular cropping conditions. When measuring seed production of the whole plant, we found that mean dry seed weight per podded node all over the plant and the number of podded nodes on any fertile stem were similar to those on the main stem. These results confirmed that branches and main stems have a similar reproductive pattern, and thus that any podded stem of the canopy is representative of every stem of the plant. Lastly, we showed that, when associated, the number of podded nodes, the mean dry seed weight per podded node on the main stem (or on any reproductive stem of the canopy), and the number of basal branches per plant are suitable criteria for selecting for productivity among genotypes with a similar duration of seed set. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

12.
Seventy nine genotypes of tomato (15 lines, four testers and their 60 F1 hybrids produced in line × tester fashion) were evaluated under normal (E1) and late planting (E2) conditions in the Department of Vegetable Crops, Punjab Agricultural University, Ludhiana, India, to determine the nature of gene action controlling yield, quality and shelf life characteristics and to identify a few good combiner genotypes which may be used in further breeding programmes to extend the fruit availability period of tomato in North Indian plains. The lines were significantly different from testers for most of the characters thereby justifying the choice of testers. Additive gene action was predominant for days to ripening, total yield per plant, marketable yield per plant, number of fruits per plant, average fruit weight, fruit shape index and lycopene in both the environments, whereas non-additive genetic variance predominated in controlling firmness index, number of locules, pericarp thickness, alcohol insoluble solids (AIS), dry matter, total soluble solids (TSS), titratable acidity, TSS:Acid ratio, pH, ascorbic acid and shelf life, under both normal and late planting conditions. The best general combining ability (gca) effects, among females, in respect of yield per plant were shown by Spectrum in E1 and by LT-42 in E2. Among the testers, the best gca values in both the environments were possessed by nor-RM-1 for total yield per plant, marketable yield per plant, number of fruits per plant, dry matter and TSS; by rin-RM-2 for firmness index, pericarp thickness and alcohol insoluble solids; by alc-IIHR-2050 for average fruit weight, number of locules and shelf life and by alc-IIHR-2052 for lycopene. The gca of ripening mutants had a nice consonance with their per se performance for most of the characters indicating that additive gene action was operative in these mutants for majority of the traits.  相似文献   

13.
Summary Ten hexaploid winter triticale lines were grown for two cropping periods at three locations in western Switzerland. Averaged across the six environments, the differences between lines were statistically significant (P=0.05) for grain yield, above-ground biomass, N uptake, grain N yield, nitrogen harvest index, grain N concentration and straw N concentration. There were significant line x environment interactions for all traits. Grain yield and grain N concentration were inversely related (r=–0.74**). Diagrams in which grain yields were plotted against grain N concentration were used to identify lines with a consistently unusual combination of grain yield and grain N concentration. Despite comparable grain yields, Line 3 had a high grain N concentration, while that of Line 7 was low. Line 3 was superior to Line 7 in both N uptake and N harvest index. Averaged across environments and lines, the N harvest index was 0.73 which corresponds to N harvest indices reported for bread wheat in the same region. We considered the feasibility of developing triticale lines which would outperform the best recent ones in N uptake and partitioning. However, we doubted that this would bring about a marked increase in grain N concentration, because, in the long run, the expected genetic progress in grain yield will lead to a dilution of grain protein by grain carbohydrate increments.Abbreviations GNC grain N concentration - GNY grain N yield - GY grain yield - HI above-ground dry matter harvest index - NHI nitrogen harvest index - SNC straw N concentration - TB total above-ground biomass - TPN total plant N  相似文献   

14.
Although many screening criteria have been suggested to distinguish between genotypes for their salt tolerance under controlled environmental conditions, there is a need to test these criteria in the field. Saline soils are often complex and, therefore, unlikely to show a simple relationship to controlled conditions. To address this deficit, different agronomic and physiological screening criteria for salt tolerance in wheat at different stages were examined under both field and controlled conditions. Four wheat genotypes differing in their salt‐tolerance levels were grown in salt‐affected soil at two different locations and also under greenhouse conditions. Dry weight and leaf area of the upper and lower two leaves of the main stem and total dry weight at Zadoks scale 47 were measured in plants grown under field conditions. The concentrations of Cl?, Na+, K+ and Ca2+ in the upper and lower two leaves of the main stem at Zadoks scale 47 and different yield components were measured in plants grown under both conditions. Our results indicate that measurements derived from the upper two leaves of the main stem were generally more effective as screening criteria than those from the lower two leaves. Correlation coefficients between grain yield and either dry weight or leaf area of the upper two leaves of the main stem indicated that dry weight is inferior to leaf area as a screening criterion under field conditions. Number of sterile spikelets per plant performed well under both conditions, whereas the number of spikelets per plant and 1000‐grain weight failed to distinguish the differences of salt‐tolerance levels among genotypes accurately. Weight and number of grains per plant and number of fertile spikes per plant were poor criteria under controlled conditions, but effective under field conditions. The maintenance of low Cl? and Na+ concentrations in the upper two leaves offered the best guide to salt tolerance under both conditions. Potassium concentration was a poor criterion compared with the selectivity of K+ over Na+, which was useful under both field and controlled conditions. Calcium concentration and Ca2+ over Na+ selectivity in the upper and/or lower two leaves of the main stem were also effective in ranking genotypes according to their salt tolerance under both field and controlled conditions. Therefore, we conclude that simple measurements of the upper two leaves of the main stem including a straightforward measurement of leaf area, visually estimating the number of sterile spikelets, and a quick, practical determination of Na+ and Ca2+ concentration constitute effective criteria to screen wheat genotypes for salt tolerance under both field and controlled conditions.  相似文献   

15.
Summary Three S1-recurrent selection programs (designated HG, HP, and HGP) for increasing protein yield of oat (Avena sativa L.) were conducted for five cycles of selection. The selection criteria in each program (line of descent) emphasized different components of protein yield; high grain yield in HG, both high protein concentration of the groats (caryopsis) and high grain yield in HP, and high protein yield per se in HGP. Heading date and height were restricted to no net change. The objectives of this study were to evaluate the agronomic performance of these three lines of descent and the correlated responses in agronomic traits due to selection. Thirty to sixty random S0-derived lines from each cycle and ten check lines were grown in hill-plot experiments at two locations in 1989. Grain yield increased in all three lines of descent; HG showed the greatest rate of gain followed by HGP and then HP (0.20, 0.10, and 0.07 Mg ha-1 per cycle, respectively). Test weight decreased in HGP by 2.6 kg m-3 per cycle and in HP by 4.0 kg m-3 per cycle, but remained constant in HG. Cycle 5 (C5) means for straw yield, height, and seed weight were not significantly different from the C0 means for any line of descent. Groat percent remained unchanged in HGP, increased from 70.1 to 71.7% in HG, and decreased from 69.9 to 67.6% in HP. Heading date decreased by 3 d in HG and HGP, but remained unchanged in HP. HG compares most favorably with commercial cultivars because of its high yield and acceptable agronomic traits, while HP tends to be low in test weight, seed weight, and groat percent.Abbreviations BM- above ground biomass - GP- groat (caryopsis) percent, fraction of average seed weight that is groat rather than hulls - GPC- groat-protein concentration - GPY- groat-protein yield - GTY- groat yield - GY- grain yield - HD- heading date - HG- selection for protein yield through high grain yield - HGP- selection for protein yield per se - HP- selection for protein yield through high grain yield and high groat-protein concentration - HT- height - PY- protein yield - SDWT- seed weight - SY- straw yield - TWT- test weight  相似文献   

16.
Irrigated field experiments were conducted in the Marmara region of Turkey in 2002 and 2003 to compare alternate 40 : 25 cm row spacings and conventional 65 cm with four different plant densities (65 000, 85 000, 105 000 and 125 000 plants ha−1) of three corn hybrids (DK-585, ADA 95–10 and C-955) in some morphological traits and forage and dry matter yield. Morphological traits such as plant height, leaf per plant, stem diameter, ear per plant and ear percentage were measured, forage and dry matter yield was also determined in this study. Hybrids, row spacings and plant densities significantly affected some morphological traits, forage and dry matter yield at 0.01 level. Later maturing hybrids tended to produce taller and thicker stemmed plants. Row spacings and plant densities did not affect plant height. Average stem diameter increased significantly with population density. Row spacings did not influence leaf number, whereas leaf number increased slightly with plant density. On average, all corn plants had slightly more than 1.0 ear per plant in our experiment. Row spacings and plant densities did not affect significantly number of ear per plant. Early maturing DK-585 had the highest ear percentage whilst late maturing C-955 lowest. Yields usually increased with hybrid maturity. When averaged across years, row spacings and plant densities, late maturing C-955 performed significantly better in forage and dry matter yield in all experimental years and combined years. The studies showed favourable advantage for alternate 40 : 25 cm rows over conventional 65 cm row spacings at all plant densities. Average forage and dry matter yields were greater for alternate 40 : 25 cm row spacings than for 65 cm row spacings. However, strong hybrid × row spacing interactions for both forage and dry matter yield were detected.  相似文献   

17.
Summary The effects of 1000-grain weight, its stability and the correlation coefficients with other traits of 50 barley varieties were studied at 18–20 environments. Additional material was used to study genotypic correlations among traits. Significant differences in stability of 1000-grain weight were found among varieties. Two-row varieties were on average more stable than 6-row varieties. The 1000-grain weight was among the most stable and grain yield the most variable traits. This was discussed in connection with stem reserves translocation to the grain. Consistently high yielding varieties had around average stability of 1000-grain weight. Regression coefficient, b, for 1000-grain weight was positively correlated with variance of log transformed data, both valid estimates for stability of 1000-grain weight. The correlation coefficient of 1000-grain weight with grain yield was positive or non-significant, with number of grains per tiller mainly negative and with volume weight it was positive. In 6-row barley, 1000-grain weight was positively correlated with grain yield, straw yield, total biological yield, and plant height, and negatively with number of tillers per m2 and number of grains per tiller.  相似文献   

18.
Summary The relationship between the genetic distance of parents and both the heterosis of F1 hybrids and the variance of F5 lines was investigated in 72 crosses of pea (Pisum sativum L.). The genetic distance between each pair of parents was estimated, using isozyme (GDi), morphological (GDm) or quantitative (GDq) markers and finally a combination of isozyme and morphological markers (GDi+m). GDm was poorly correlated with the other measures of genetic distance, which in turn were strongly correlated with each other. Genetic distance was moderately correlated with the level of heterosis for yield over midparent in the F1 generation, with the highest correlation obtained from GDi+m. GD was not significantly correlated with heterosis for yield over the better or best parent but it was significantly correlated with all three measures of heterosis for pods per plant and hundred seed weight. There was no correlation between genetic distance and the level of heterosis for yield and total dry matter in the F2 generation, but GDi, GDi+m and GDq were predictive for the level of inbreeding depression in grain yield and total dry matter. When parents were high in genetic distance, crosses produced highly transgressive segregants for basal branches per plant, hundred seed weight, harvest index and onset of flowering. Genetic distance between parents was thus a useful measure for predicting a portion of hybrid performance and also of the variance of derived inbred lines. It was concluded that when choosing parents for a cross, consideration should be given to their genetic distance as well as their overall adaptation and their yield. There is considerable potential for optimising choice of parental combinations in the development of improved pea cultivars.  相似文献   

19.
For a better understanding of the inheritance of seed yield traits in Quinoa (Chenopodium quinoa) Willd., a half-diallelic crossing experiment with six diverse but uniform breeding lines was conducted. True hybrid plants were detected by means of differences in panicle colour in 14 out of the 15 crosses performed. The agronomic performance of 14 F2 populations and six parental lines was evaluated in field trials on fertile clay soil. General and specific combining ability of the lines (GCA and SCA) were estimated. Highly significant differences in GCA effects were found between the lines for plant height at maturity, early flowering, early maturity, seed yield and thousand seed weight. Significant SCA effects were only found for plant height at maturity. However, SCA effects were rather small and accounted for 7% of the total variance. The finding of large GCA effects and low SCA effects suggests that best selection results could be expected from crosses between the agronomic best performing genotypes. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

20.
Seven tetraploid watermelon lines developed by colchicine treatments were compared with their diploid counterpart for plant, flower, fruit, seed and qualitative characteristics. Tetraploid genotypes attained statistically higher vine thickness (8.04 mm), leaf area (298.9 cm2) and chlorophyll content (55.6) while internode length and chlorophyll fluorescence was similar to their corresponding diploid. Both pistillate and staminate flower organs (pedicel, anther, ovary, stigma, petals) were larger in tetraploid plants; however, the percent increase in flower components varied across the tetraploid lines. Fruit weight and total sugar content (Brix) in both ploidy fruits was similar. Rind thickness in fruits varied significantly and averaged 12.7 and 17.2 mm in diploid and tetraploid fruits, respectively. Tetraploid genotypes showed sterility, yielded lower number of seed per fruit (37.9), and tetraploid seed was larger and thicker than diploid seed. Overall β-carotene (0.89), lycopene (1.16), fructose (5.43%) and glucose (2.38%) contents were higher in tetraploid than diploid fruits.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号