首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
With the objective to identify new sources of resistance to wheat stem rust, a collection of 169 accessions ofAegilops tauschii, obtained from the IPK genebank at Gatersleben, Germany, were screened for resistance undercontrolled conditions. Fourteen (8%) accessions were resistant to stem rust among which 10 were highly resistant(IT 5 ; and 1) and four exhibited a moderately resistance reaction (IT 5 2). From the synthetic hexaploids whichwere produced by hybridizing resistant Ae. tauschii with susceptible Triticum durum, six synthetics expressed ahigh level of stem rust resistance similar to their corresponding diploid parents, while five displayed either areduced or complete susceptibility compared to their Ae. tauschii parents. This suppression of resistance at thehexaploid level suggests the presence of suppressor genes in the A and/ or B genomes of the T. durum parents.Inheritance of resistance from crosses of five stem rust resistant synthetic hexaploids with two susceptible T.aestivum genotypes revealed that three of the synthetics (syn 101, syn 601 and syn 801) possessed one dominantgene each, syn 111 has two different dominant genes and syn 116 has two complementary interacting genes forstem rust resistance. Intercrosses among the four stem rust resistant synthetic hexaploids indicated that the putativegenes conferring stem rust resistance in each of the synthetics are neither allelic nor closely linked to each other.  相似文献   

2.
The recent emergence of wheat stem rust race Ug99 (TTKSK) and related strains threaten Ethiopian as well as world wheat production because they overcome widely used resistance genes that had been effective for many years. The major cause which aggravates the ineffectiveness of Ethiopian wheat varieties against stem rust is the narrow genetic base on which the breeding for resistance has been founded, however, little is known about the resistance genotypes of Ethiopian durum wheat varieties and tetraploid wheat landraces. The objective of the study was to identify stem rust resistance genes that are present in the Ethiopian tetraploid wheat landraces and improved durum wheat varieties using molecular markers and assess which genes are effective for current Ethiopian stem rust races of Puccinia graminis f. sp. tritici including Ug99. The investigated 58 tetraploid wheat accessions consisted of 32 (Triticum durum s.l. incl. Triticum aethiopicum Jakubz., Triticum polonicum) landraces and 22 registered T. durum varieties released in Ethiopia between 1966 and 2009 and four T. durum varieties from ICARDA. A total of 17 molecular markers (SSR, EST and InDel) linked or diagnostic for stem rust resistance genes Sr2, Sr13, Sr22 and Sr35 were used for genotyping. Haplotype analysis indicated that only few of the Ethiopian durum wheat varieties carried Sr13. The resistant variety ‘Sebatel’ showed a haplotype for Sr2 and Sr22 and variety ‘Boohai’ for Sr22, however further evaluation is needed for the diagnostic value of these haplotypes. This study is the first report on the presence of stem rust resistance (Sr) genes in Ethiopian durum wheat varieties and tetraploid wheat landraces based on linked or associated molecular markers. Thus it might help in the identification of varieties carrying resistant alleles that provide valuable genetic material for the development of new improved varieties in further breeding programmes.  相似文献   

3.
Phenolic acid intake through the consumption of whole-wheat foods provides important health benefits associated with reduced risks of cardiovascular diseases and colon cancer. The genetic variation for phenolic acids was extensively studied in common wheat, but a comprehensive survey in tetraploid wheat is lacking. In this study we evaluated the genetic variability for individual and total phenolic acids concentration existing in a large collection of tetraploid wheat (Triticum turgidum L.). A 2-year evaluation was undertaken on the whole-meal flour of 111 genotypes belonging to seven T. turgidum subspecies including cultivars, landraces and wild accessions. Durum cultivars [T. turgidum subsp. durum (Desf.) MacKey], had the highest average concentration of total phenolic acids (828.7 μg g?1 dm in 2012; 834.5 μg g?1 dm in 2013) with amounts varying from 550.9 μg g?1 dm to 1701.2 μg g?1 dm, indicating a variation of greater than threefold fold. The lowest concentration of phenolic acids was found in T. turgidum subsp. dicoccum (Schrank ex Schübler) Thell. Rivet wheat (T. turgidum L. subsp. turgidum) had phenolic acid concentrations similar to those in durum, but less variation was noted among the accessions. On the other hand, the accessions of the four remaining subspecies showed lower phenolic acid concentrations and variation among the accessions as compared to durum. A total of six phenolic acids were identified across the wheat genotypes. The effects of genotype, year and year × genotype were estimated by ANOVA and resulted significant for all phenolic acids. The ratio of genotypic variance to total variance suggested the possibility of improving phenolic acid content in elite wheat germplasm through appropriate breeding programs. Moreover, significant correlations between phenolic acids and other quality characteristics of the grain were detected.  相似文献   

4.
Seedlings of 41 emmer (Triticum dicoccon Schrank) and 56 durum (T. durum Desf.) wheat accessions were evaluated for their response to stem rust (Puccinia graminis f. sp. tritici) infection under greenhouse condition at Kulumsa Agricultural Research Center, Ethiopia. The objectives were to identify tetraploid wheat accessions that could serve as sources of resistance to stem rust, and postulate the stem rust (Sr) resistance genes through multipatotype testing. The test included screening of accessions for stem rust resistance and multipatotype testing. To ensure vigorous screening, a mixture of six isolates (Si-1a, Am-2, Ku-3, Dz-4a, Ro-4 and Na-22) that were collected from severely infected emmer, durum, and bread wheat (Triticum aestivum L.) varieties of major wheat growing areas of Ethiopia was used as inocula. Out of the tested accessions, 18 emmer and 6 durum accessions exhibited low infection types (0–2) response and hence selected as a source of resistance to stem rust infection. Multipatotype testing was done to postulate Sr genes in the selected accessions. In the test, 10 different stem rust races (A2, A9, A11, A14, A16, A17, B3, B7, B15, and B21), 33 stem rust differential lines, and a universal susceptible check variety, Morocco were used, The high (3–4) and low infection type reaction patterns of the tested accessions and differential lines were used to postulate the genes that exhibit gene-for-gene relationship. The presence of Sr 7b, 8b, 9a, 9b, 10, 14, 24, 27, 28, 29, 30, 31, 32 and Tt-3+10 genes were postulated in 16 selected emmer and 5 durum wheat accessions. Efforts to transfer these valuable Sr genes from cultivated tetraploid wheats could be rewarding to get stem rust resistant varieties and boost wheat production.  相似文献   

5.
Summary During the winters of 1990/91 and 1991/92, 181 accessions of Triticum dicoccon Schrank from the CIMMYT gene-bank were screened in the field for resistance to Russian wheat aphid, Diuraphis noxia (Kurdjumov). Accessions were sown in hill plots of 10 seeds and artificially infested with D. noxia at the two-leaf growth stage. Hills were visually assessed for damage at tillering, booting and heading. Entries differed significantly in their reaction to D. noxia, and severity of symptoms increased with time. Twenty four of the entries were highly resistant to the aphid. In winter 1991/92, 807 accessions of wild and cultivated wheats (26 species) and synthetic hexaploids were screened similarly for resistance to D. noxia. A large number of A-genome species were resistant, while few D-genome species were identified as resistant. These newly discovered sources of resistance can be used to expand the genetic base of resistance to D. noxia in both bread (T. aestivum L.) and durum wheats (T. turgidum L. convar. durum (Desf.) Mackey).  相似文献   

6.
In this study we report the identification and location of Quantitative Trait Loci (QTL) associated with free-threshing character in a set of Recombinant Inbred (RI) lines, derived from a cross between the cv. 'Messapia' of durum wheat and the accession MG4343 of the T. dicoccoides characterised for 259 genetic and molecular markers. Significant differences were detected for threshability in the three environments examined, while the pattern of variability observed was that of a quantitative trait. Regression analysis of marker loci and free-threshing index indicated, as expected, that chromosome 2B and 5A have genetic systems for free-threshing habit. An additional region on chromosome 5AL and on 6BS was shown to have effects on threshability at P 0.001 and P 0.01 respectively.  相似文献   

7.
Variability of acid phosphatase (ACP), esterase (EST), and superoxide dismutase (SOD) isoenzymes among 660 accessions of wild diploid wheats Triticum boeoticum (475) and T. urartu (185) and among 35 accessions of wild tetraploid wheats T. araraticum (21) and T. dicoccoides (14) was studied with the use of polyacrylamide gel electrophoresis. The wild diploids are differentiated by the electrophoretic variants of ACP-B, ACP-C, EST-A, EST-B, EST-C, EST-D, and SOD-B. Triticum urartu matches the A genome of wild tetraploid wheats T. araraticum and T. dicoccoides by allozymes of ACP-B, ACP-C and SOD-B, but differs distinctly by the monomorphic allozyme EST-A66. Triticum boeoticum fits the A genome of polyploid wheats by allozymes of EST-A and EST-B, but differs in allozymes of ACP-B and SOD-B. Thus, none of the two contemporary diploid wheats corresponds exactly to the A genome of wild tetraploid wheats by all diagnostic isoenzymes. Triticum boeoticum and T. arararicum share EST-C46 and EST-D71, whereas T. urartu and T. dicoccoides are fixed for silent EST-C0 and share EST-D73, suggesting independent origin of the two tetraploid wheats with a contribution from ancestral forms of both diploids.  相似文献   

8.
Inheritance of genes for hairy auricles and hairy leaf sheath of Ae. tauschii in hexaploid wheat backgrounds (synthetic hexaploid wheat and common wheat varieties) was analyzed. The results indicated that hairy auricles and hairy leaf sheath of Ae. tauschii can be transferred and are expressed in hexaploid wheat. In a synthetic hexaploid wheat ('Ae. tauschii' 188) hairy auricles was proved to be controlled by a single dominant gene derived from Ae. tauschii, which was different from the Pa gene located on chromosome 4BS of common wheat. The hairy leaf sheath phenotype of 'Altar 84/Ae. tauschii 188' was also controlled by a single dominant gene derived from Ae. tauschii, which is obviously different from the Hls gene in T. dicoccoides. We suggest to designate the Ae. tauschii genes for hairy auricles and hairy leaf sheath as Pa2 and Hls2, respectively; such genes could be used as useful genetic markers in common wheat.  相似文献   

9.
Stripe rust is one of the most serious diseases of wheat in China. Two new stripe rust physiological strains CYR30 (Inter. name: 175 E 191) and CYR31 (Inter. name: 239 E 175) have become the dominant and epidemic physiological strains since 1994 in China. Resistance to these strains of 48 Ae. tauschii accessions was evaluated at the seedling and adult stages. Out of 48, 28 accessions displayed seedling and adult resistance. All of the Chinese Ae. tauschii accessions were susceptible at seedling and adult stages. Seedling resistance was highly related to adult resistance in Ae. tauschii. The new genetic resources of resistance to CYR30 and CYR31 could be incorporated into commercial wheat varieties for wheat resistance breeding by direct hybridization.  相似文献   

10.
A collection of 164 Aegilops tauschii accessions, obtained from Gatersleben, Germany, was screened for reaction to leaf rust under controlled greenhouse conditions. We have also evaluated a selection of synthetic hexaploid wheats, produced by hybridizing Ae. tauschii with tetraploid durum wheats, as well as the first and second generation of hybrids between some of these resistant synthetic hexaploid wheats and susceptible Triticum aestivum cultivars. Eighteen (11%) accessions of Ae. tauschii were resistant to leaf rust among which 1 was immune, 13 were highly resistant and 4 were moderately resistant. Six of the synthetic hexaploid wheats expressed a high level of leaf rust resistance while four exhibited either a reduced or complete susceptibility compared to their corresponding diploid parent. This suppression of resistance at the hexaploid level suggests the presence of suppressor genes in the A and/or B genomes of the T. turgidum parent. Inheritance of leaf rust resistance from the intercrosses with susceptible bread wheats revealed that resistance was dominant over susceptibility. Leaf rust resistance from the three synthetics (syn 101, syn 701 and syn 901) was effectively transmitted as a single dominant gene and one synthetic (syn 301) possessed two different dominant genes for resistance.  相似文献   

11.
A set of 77 markers was used to describe the genetic diversity in a group of 58 tetraploid wheat accessions. Analysis was performed using 31 neutral SSR markers, 31 SSR/STS markers linked with reported major stem rust resistance genes and 15 SSR markers linked with QTL identified for resistance to Ethiopian stem rust races of Puccinia graminis Pers. f. sp. tritici Eriks. et E. Henn. (Pgt),including Ug99. The material consisted of 32 (Triticum durum s.l. incl. T. aethiopicum Jakubz., Triticum turgidum and Triticum polonicum) landraces and 22 registered T. durum varieties from Ethiopia that were released 1966–2009 and four T. durum varieties from ICARDA. A total of 720 alleles were detected. Considering the three marker sets, the mean number of alleles was higher for major stem rust resistance gene linked markers (9.9) followed by neutral SSR markers (9.2) and markers linked with QTL for stem rust resistance (8.5). Dendrograms derived from UPGMA analysis grouped the accessions into two major clusters. The principal component analysis based on the combination of the three marker sets formed three groups. The 1st group was composed of all the improved varieties, whereas the 2nd and the 3rd group contained the landraces. All the landraces that formed the 3rd group were susceptible to Ethiopian stem rust races of Pgt including Ug99. The information on the extent of the genetic diversity of the improved varieties obtained in this investigation will be helpful for developing appropriate breeding strategies to broadening the genetic base of durum wheat varieties in further breeding programmes.  相似文献   

12.
A germplasm collection of red clover (Trifolium pratense L.) and seven related species was evaluated in greenhouse tests for resistance to Meloidogyne arenaria (Neal) Chitwood, M. hapla Chitwood, M. incognita (Kofoid & White) Chitwood, and M. Javanica (Treub) Chitwood. Plants were rated for root galling severity and nematode egg production at eight weeks after inoculation with 1500 nematode eggs. A resistance index, RI = (gall2; + egg2;), was generated to assess the plants' reaction to nematode infection as immune, highly resistant, resistant, moderately resistant, intermediate, moderately susceptible, susceptible, or highly susceptible. More than 98% of red clover accessions were intermediately to highly susceptible to all four root-knot nematode species. Only one accession, PI 271627 introduced from India, had a moderate resistance level to the four nematodes tested. About one third of the T. medium accessions were resistant or highly resistant to M. arenaria, M. incognita, and M. javanica whereas more than 50% of the T. alpestre accessions were highly resistant or immune to all four nematodes species. Genetic factors for resistance to root-knot nematode could be introduced into T. pratense through interspecific hybridization with T. medium and/or T. alpestre  相似文献   

13.
Summary A total of 59 diploid Aegilops tauschii Coss. (syn. Aegilops sguarrosa auct. non L.) and 39 synthetic hexaploid wheat accessions were evaluated for reaction to Pyrenophora tritici-repentis (Died.) Drechs. in a controlled environment, and classified using a disease rating system based on lesion type. 27 Ae. tauschii and 20 synthetic wheats were found to be resistant to tan spot disease. The overall mean disease ratings of Ae. tauschii and the synthetic wheat lines scored on a scale of 1 (resistant) to 5 (susceptible) were 1.80 and 2.38, respectively. Synthetic wheats generally showed a decrease in resistance, although several lines of synthetic wheat expressed a higher resistance than the diploid parents. Five synthetic wheat lines exhibited higher resistance than the standard resistant common wheat cultivar Red Chief.  相似文献   

14.
Summary A collection of 400 Ae. tauschii (syn. Ae. squarrosa) Coss. accessions were screened for powdery mildew resistance based on the response patterns of 13 wheat cultivars/lines possessing major resistance genes to nine differential mildew isolates. 106 accessions showed complete resistance to all isolates, and 174 accessions revealed isolate-specific resistance, among which were 40 accessions exhibiting an identical response pattern as wheat cultivar Ulka/*8Cc which is known to possess resistance gene Pm2. Expression of both complete and isolate-specific resistance from Ae. tauschii was observed in some synthetic hexaploid wheats derived from four mildew susceptible T. durum Desf. parents, each crossed with five to 38 resistant diploid Ae. tauschii accessions. Synthetic amphiploids involving different combinations of T. durum and Ae. tauschii generally showed a decrease in resistance compared with that expressed by the Ae. tauschii parental lines.  相似文献   

15.
The main goal of this study is to gain insight into the relationship between the genetic profile of cultivated rice (Oryza spp.) accessions and their resistance to rice blast. Therefore, the genetic and phenotypic variability of a set of 350 cultivated rice accessions originating from Africa (Benin, Mali and Nigeria, Ivory Coast etc.) was examined. Seventy-seven fluorescent amplified fragment polymorphism (AFLP) markers were used to gain insight into the genetic variation and to classify the germplasm collection. In addition, the rice germplasm was assessed for its resistance to blast disease caused by Pyricularia oryzae in upland field conditions. Huge differences in responses of rice accessions to P. oryzae were observed, ranging from highly susceptible to highly resistant. Twelve percent of all accessions were highly resistant to P. oryzae. Based on their AFLP marker profile these highly resistant accessions could be separated from the other accessions. Stepwise regression revealed that the best prediction of the blast resistance level was achieved with a maximum number of 13 AFLP markers. Marker CTA22 was the most important for accurate prediction of blast resistance, this marker was present in all highly resistant accessions. It can be concluded that AFLP markers are a valuable tool to screen rice accessions for their susceptibility towards blast disease and that, based on a subset of markers, it is possible to predict the resistance to rice blast.  相似文献   

16.
Forty-four Asparagus officinalis cultivars, gene bank accessions and breeding lines as well as thirty-four accessions of wild relatives of Asparagus were evaluated for resistance to Asparagus virus 1. Three different test strategies were developed for the assessment of individual plants: (1) natural infection under field conditions, or two vector-mediated infection assays using the green peach aphid Myzus persicae (2) in an insect-proof gauze cage or (3) in a climate chamber. The AV-1 infections were verified by DAS-ELISA and RT-PCR approaches. All tested 660 individual plants of A. officinalis germplasm were susceptible to AV-1 infection. In contrast, in 276 plants of 29 Asparagus wild accessions no virus infection could be detected. These resistant accessions comprised of nineteen diploid, tetraploid and hexaploid species of both the Eurasian clade and the African clade of the asparagus germplasm. Data of the AV-1 resistance evaluation are discussed in relation to the genetic distance of the resistance carrier and potential application in breeding.  相似文献   

17.
Hessian fly, Mayetiola destructor (Say), Russian wheat aphid (RWA), Diuraphis noxia (Kurdjumov), and Sunn pest, Eurygaster integriceps (Puton), are among the most important insect pests of wheat in North Africa, West and Central Asia. Host plant resistance is the most economical, environmentally friendly and practical means of controlling insect pests. Through field and greenhouse screening, several sources of resistance to Hessian fly, RWA and Sunn pest have been identified in wheat and its wild relatives. To further broaden the genetic base of resistance to these pests, 914 fixed lines of synthetic hexaploid wheat (SHW) commonly designated as primary synthetic wheat were evaluated for resistance to Hessian fly, RWA and Sunn pest. The initial screenings for RWA and Sunn pest were carried out in the field at Tel Hadya, Aleppo, Syria, and for Hessian fly in the greenhouse at Tel Hadya during the 2009 and 2010 seasons. Promising accessions from the initial screening for Hessian fly, RWA and Sunn pest were evaluated for confirmation in replicated trials in the greenhouse and field. Fifteen SHWs showed high levels of resistance to Hessian fly and four showed moderate resistance. A wheat line derived from the cross (Triticum turgidum/T. dicoccoides) also showed a high level of resistance to Hessian fly. The level of resistance to RWA in SHW was considerably lower; only one SHW and one durum wheat ‘Altar 84’ exhibited a high level of resistance, while four SHW were moderately resistant. There were 21 SHW genotypes and one durum wheat ‘Langdon’ found resistant to Sunn pest feeding at the vegetative stage. Crosses between these potentially novel resistance sources and elite bread wheat were initiated. Genetic and genomic studies using these accessions are ongoing to identify and characterize the resistance genes and reveal potentially new resistance genes, which will be useful in breeding programs to develop wheat germplasm with multiple resistances to these pests.  相似文献   

18.
The tetraploid relatives (subspecies) of commercial durum wheat (Triticum turgidum L. subsp. turgidum conv. durum (Desf.) MacKey) offer a source of economically useful genes for the genetic improvement of durum cultivars. Tetraploid wheat subspecies show a wide diversity in grain protein composition and content, which are major factors determining the pasta-making quality of durum cultivars. In this study, the specific focus was the identification of accessions expressing one or more superior pasta-making traits. In all, 33 accessions were surveyed representing five different subspecies; var. durum (13 accessions), polonicum (7 accessions), persicum (3 accessions), turanicum (6 accessions), and turgidum (4 accessions). These accessions and the durum cultivars Wollaroi and Kamilaroi (in both years) and Yallaroi (in 1998 only) were grown at Tamworth, Australia in 1997 and 1998. Grain, semolina, and spaghetti cooking quality were evaluated using a range of tests. Several accessions were identified with larger grain size and protein content and higher semolina extraction. Although many of the accessions were weaker in dough strength, a few were equal to the commercial cultivars and produced pasta of comparable quality. The main disadvantage with these accessions was the low yellow color. These quality defects can be corrected by conventional breeding.  相似文献   

19.
The tetraploid relatives (subspecies) of commercial durum wheat (Triticum turgidum L. subsp. turgidum conv. durum (Desf.) MacKey) offer a source of economically useful genes for the genetic improvement of durum cultivars. Thirty‐two accessions, representing five different subspecies: var. durum (13 accessions), polonicum (7), persicum (3), turanicum (5), and turgidum (4) were grown at Tamworth, Australia, in 1997 and 1999. These accessions were compared with three durum cultivars: Wollaroi and Kamilaroi (in both years) and Yallaroi (in 1998 only). In this study, the glutenin subunit composition and molecular weight distribution, together with starch properties of these accessions, were studied. A much wider range in both the glutenin subunit composition and the starch RVA paste viscosities and gelatinization profiles were found in the accessions compared with the cultivated durum wheats. Most of the accessions had lower gluten strength and the presence of poor quality LMW alleles, and low proportions of unextractable polymeric protein could explain this. For starch, RVA peak viscosity correlated strongly with cooking loss of pasta, the only significant correlation between starch properties and measured aspects of pasta quality.  相似文献   

20.
The higher carotenoid content (commonly referred as "yellow pigment content") of tritordeum seeds as compared to wheat and the potential of this species as a donor of useful traits to wheat led us to investigate the detailed carotenoid composition of 53 accessions of hexaploid tritordeums originating from different stages of the tritordeum breeding program developed at IAS-CSIC. In addition, seven durum wheat accessions were also studied for comparison. Lutein was the unique carotenoid detected, either free or esterified with fatty acids. On average, tritordeum had 5.2 times more carotenoids than durum wheat, which suggests a high potential of this species to become a functional food. In addition, the most outstanding result of this work is the high esterification degree of lutein found in tritordeums as compared to durum wheat. This difference may indicate the differential esterification ability between tritordeum and durum wheat species. The implications of this high level of lutein esterification on both carotenoid accumulation and stability are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号