首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract

Crops can be effectively grown on hardpan soils and water effectively used from deep in the profile if hard layers in soils can be penetrated or if they are broken up by tillage. Addition of gypsum to the soil or exploitation of genetic differences in root penetrability may help improve root penetration through hard layers with less need to depend on the energy requirements of deep tillage. To test this theory, a single‐grained Ap horizon of Norfolk loamy sand soil was compacted into soil columns to compare root penetrability of soybean [Glycine max (L.) Merr.] genotypes Essex and PI 416937 in the presence and absence of gypsum and at two soil compaction levels (columns with uniform compaction at 1.4 g cm‐1 and columns with increasing compaction with depth from 1.4 to 1.75 g cm‐1). Compaction treatments were imposed by constructing soil columns composed of 2.5‐cm‐deep, 7.5‐cm‐diameter cylindrical cores compacted to predetermined bulk densities (1.40,1.55,1.65,and 1.75 g cm.3). Soil penetration resistances were measured on duplicate cores using a 3‐mm‐diameter cone‐tipped penetrometer. Columns were not watered during the study; soybean genotypes were grown in the columns until they died. Both genotypes lived one day longer in columns with lower bulk density and penetration resistance. Although root growth was more abundant for Essex than for PI 416937, root growth of PI 416937 was not decreased by compaction as much as it was for Essex. These results suggest that PI 416937 may possess the genetic capability to produce more root growth in soils with high penetration resistance. This study suggests that genetic improvement for root growth in soils with hard or acidic layers may potentially reduce our dependence on tillage. Gypsum did not affect root growth in this study.  相似文献   

2.
K.I Peverill  L.A Douglas 《Geoderma》1976,16(3):193-199
Undisturbed soil cores 10 cm long were collected using a precisely constructed 8.5-cm diameter soil sampler. To study the loss of sulphur and phosphorus from these cores due to leaching, a technique was developed for encasing the walls of the cores in a microcrystalline wax.Distilled water was applied to the surface of the cores at the rate of 2 ml/min and the loss of native plus applied sulphur and phosphorus was determined for successive 20 ml aliquots that percolated through the soil. When water equivalent to 90 mm of rainfall was added to the soil cores, losses of 2.0 kg S/ha and 0.30 kg P/ha occurred due to leaching.  相似文献   

3.
Column experiments on phytolith transport were conducted to assess the partial contributions of water percolation and earthworm activity to phytolith transport in loamy and sandy soils. Six intact cores of a loamy sandy Haplic Cambisol and nine cores of a silty loamy Stagnic Luvisol were excavated. With the Luvisol, three treatments were perfomed: a percolation treatment with periodic irrigation, but without earthworms, a percolation and earthworm treatment with periodic irrigation and earthworms (Aporrectodea caliginosa) and a control. The Cambisol cores did not contain earthworms and hence only percolation and control treatments were tested. The phytoliths of common reed (Phragmites australis) were labelled with the fluorescent dye fluorescein isothiocyanate and applied to the soil surface of each core. Except for the control treatment, 3600 mm of water was applied over 6 months. In the Cambisol, the weighted mean transport distance of phytoliths was significantly greater with percolation (2.2 ± 0.1 cm) than in the control (0.9 ± 0.3 cm), indicating that water percolation is a driving mechanism of phytolith transport. In the Luvisol, the difference in mean transport depth between control and percolation treatments (1.0 ± 0.2 and 1.5 ± 0.3 cm) was not significant. The earthworms did not affect the mean transport distance of phytoliths in the Luvisol, but the phytolith concentrations in the leachates were significantly greater and their size distribution did not change with soil depth as observed in the percolation treatment without earthworms. Further studies are required to quantify the effect of earthworms on phytolith transport.  相似文献   

4.
The leaching of nutrients from the plow layer by water percolation and their accumulation in the subsoil observed in a Japanese paddy field (Katoh et al. 2004: Soil Sci. Plant Nutr., 50, 721-729) were determined semi-quantitatively in a soil column experiment. Ca2+, Mg2+, K+, Mn2+, Fe2+, and phosphate in percolating water from the plow layer soil column were retained in the subsoil columns that were connected to the plow layer soil column. Fe2+, K+, and phosphate accumulated in the uppermost part of the subsoil. Accumulation of Fe2+ in the uppermost part of the subsoil was presmnably due to the cation exchange process with concomitant desorption of Ca2+. In contrast, Ca2+ and Mg2+ in percolating water from the plow layer soil colmnn accumulated once in the subsoil, and translocated downwards slowly with successive water percolation. Considerable amounts of inorganic carbon (IC) and dissolved organic carbon (DOC) in percolating water from the plow layer soil column were also retained in the subsoil columns. IC did not accumulate a gaseous form.  相似文献   

5.
Summary Studies were performed to assess the influence of percolating water and an advancing wetting front on the transport of Bradyrhizobium japonicum in sand and silt loam soils, and to assess the influence of clay content on water-facilitated dispersal of these bacteria in a sand amended with various amounts of kaolin. The data obtained showed that movement of B. japonicum in soil was dependent upon water movement and that both percolating water and an advancing wetting front readily transported bacteria in coarse-textured soils. Percolation with the equivalent of 10 cm of rainfall dispersed B. japonicum throughout 40-cm columns containing sand and silt loam soils. Percolation with 5 cm of water was sufficient to disperse B. japonicum throughout 20-cm columns of these soils but did not transport these bacteria below the surface 4 cm of a sand amended with 12% kaolin. Our finding that cells of B. japonicum are readily transported by an advancing wetting front indicates that non-saturated flow of soil water contributes to dispersal of inoculum in soils.  相似文献   

6.
Following soil fertilization, nitrogen (N) is partially lost. The objective of this study was to evaluate leaching and recovery of N after addition of fertilizers to the soil. Two experiments were conducted in leaching columns submitted to frequent water percolations. In the leaching experiment, urea, ammonium nitrate, and six coated N fertilizers were utilized; in the N recovery experiment, treatments consisted of urea, potassium nitrate, ammonium sulfate, and ammonium nitrate, combined or not with percolation. Percolations were performed weekly with quantification of ammonium and nitrate in the percolated. The recovered N was obtained by summing total N percolated with N in the soil. Nitrate leaching was highest from amide-N fertilizers, with no differences between them showing that coating urea was not efficient to decrease N leaching. Nitric fertilizers had the lowest recovery of N, probably due to the occurrence of denitrification caused by the frequent water percolation.  相似文献   

7.
Bacillus subtilis endospores (resistant to rifampicin) irrigated on the surface of intact soil cores (20 cm diameter × 8 cm length) which were equilibrated under selected suctions, i.e. 0, 0.5, 2, 5, 10 kPa, were then percolated by saturated water flow. The bacterial retention and percolation percentage were significantly correlated with the suctions. The higher retention with higher suction was explained by micropore storage, attachment to static air-water interface (AWI), and irreversible adsorption to soil particles. The bacterial percolation was mainly controlled by initial replacement of pore water storage, and following reversible detachment process. Another sensitivity experiment with four replicates using lincomycin-resistant B. subtilis at 0 and 0.5 kPa suctions revealed that small increase (0 to 0.5 kPa) in soil matric suction incurred a substantial higher level of bacterial retention. Based on our experimental results, soil matric suction was proposed as a comprehensive parameter to monitor bacterial transport and fate for animal waste disposal (irrigation) and subsurface bioremediation.  相似文献   

8.
容重对土壤水分蓄持能力影响模拟试验研究   总被引:22,自引:0,他引:22  
通过人工改变土壤颗粒级配,并设置不同容重水平,测定土壤水分特征参数,研究了容重对土壤水分蓄持能力的定量影响。结果表明:(1)容重对土壤水分特征曲线、比水容量有较大影响,试验土壤各吸力段水分蓄持能力均随容重增大递减,比水容量也随容重增大递减。(2)容重对试验土壤饱和含水量、田间持水量、凋萎系数有较大影响,此3个水分参数均随容重增大递减。饱和含水量与容重呈幂函数负相关关系,田间持水量及凋萎系数均与容重呈指数负相关关系。(3)容重对试验土壤有效水、易效水、迟效水含量有较大影响,此3水分参数均随容重增大递减,分别与容重呈指数、幂函数、对数负相关关系。  相似文献   

9.
Earthworm growth is affected by fluctuations in soil temperature and moisture and hence, may be used as an indicator of earthworm activity under field conditions. There is no standard methodology for measuring earthworm growth and results obtained in the laboratory with a variety of food sources, soil quantities and container shapes cannot easily be compared or used to estimate earthworm growth in the field. The objective of this experiment was to determine growth rates of the endogeic earthworm Aporrectodea caliginosa (Savigny) over a range of temperatures (5–20 °C) and soil water potentials (−5 to−54 kPa) in disturbed and undisturbed soil columns in the laboratory. We used PVC cores (6 cm diameter, 15 cm height) containing undisturbed and disturbed soil, and 1 l cylindrical pots (11 cm diameter, 14 cm height) with disturbed soil. All containers contained about 500 g of moist soil. The growth rates of juvenile A. caliginosa were determined after 14–28 days. The instantaneous growth rate (IGR) was affected significantly by soil moisture, temperature, and the temperature×moisture interaction, ranging from −0.092 to 0.037 d−1. Optimum growth conditions for A. caliginosa were at 20 °C and −5 kPa water potential, and they lost weight when the soil water potential was −54 kPa for all temperatures and also when the temperature was 5 °C for all water potentials. Growth rates were significantly greater in pots than in cores, but the growth rates of earthworms in cores with undisturbed or disturbed soil did not differ significantly. The feeding and burrowing habits of earthworms should be considered when choosing the container for growth experiments in order to improve our ability to extrapolate earthworm growth rates from the laboratory to the field.  相似文献   

10.
 Changes in precipitation and soil water availability predicted to accompany global climate change would impact grasslands, where many ecosystem processes are influenced by water availability. Soil biota, including microarthropods, also are affected by soil water content, although little is known about how climate change might affect their abundance and distribution. The goal of this study was to examine soil microarthropod responses to altered soil water availability in tallgrass prairie ecosystems. Two separate experiments were done. The first utilized control and irrigated plots along a topographic gradient to examine the effects of soil water content on microarthropod densities. Microarthropods, mainly Acari, were significantly less abundant in irrigated plots and were generally less abundant at the wetter lowland sites. The second study utilized reciprocal core transplants across an east-west regional precipitation gradient. Large, intact cores were transplanted between a more mesic tallgrass site (Konza Prairie) and a more arid mixed-grass site (Hays) to determine the effects of different soil water regimes on microarthropod abundance and vertical distribution. Data from non-transplanted cores indicated greater total microarthropod densities at the drier Hays site, relative to the wetter Konza Prairie site. Data from the transplanted cores indicated significant effects of location on Acari densities in cores originating from Hays, with higher densities in cores remaining at Hays, relative to those transplanted to Konza. Acari densities in cores originating from Konza were not affected by location; however, oribatid mite densities generally were greater in cores remaining at Konza Prairie. These results confirm the importance of soil water content in affecting microarthropod densities and distributions in grasslands, and suggest complex, non-linear responses to changes in water availability. Received: 14 April 1998  相似文献   

11.
The scope of stable strontium migration in the light-textured soddy-podzolic soils was determined in columns in a series of simulation experiments. The amount of leached strontium was found to depend on its initial content in the soils, the humus content, and the volume of percolated moisture. The artificial enrichment of soils with strontium increases the losses of this element due to its leaching. However, strontium is not completely removed even upon repeated water percolation.  相似文献   

12.
Two laboratory experiments were used to investigate the effect of the earthworm Lumbricus terrestris on transport of genetically marked Pseudomonas fluorescens inocula through soil microcosms. The microcosms comprised cylindrical cores of repacked soil with or without earthworms. Late log-phase cells of P. fluorescens, chromosomally marked with lux genes encoding bioluminescence, were applied to the surface of soil cores as inoculated filter paper discs. In one experiment, 5 and 10 days after inoculation, cores were destructively harvested to determine concentrations of marked pseudomonads with depth relative to the initial inoculum applied. Transport of the bacteria occurred only in the presence of earthworms. In a second experiment cores were subjected to simulated rainfall events 18 h after inoculation with lux-marked bacteria at 3-day intervals over a 24-day period. Resulting leachates were analysed for the appearance of the marked bacteria, and after 28 days cores were destructively harvested. Although some marked cells (less than 0.1% of the inoculum applied) were leached through soil in percolating water, particularly in the presence of earthworms, the most important effect of earthworms on cell transport was through burial of inoculated litter rather than an increase in bypass flow due to earthworm channels.  相似文献   

13.
The ingrowth core method can be used to measure root gross growth (i.e. root production). A mesh bag filled with root free soil is buried into the root zone. After about 14 days, the bag is pulled out and root length inside the core can be determined. An objection against this method is the inability to obtain the same soil conditions inside the bag as outside, which can result in different root growth pattern in the ingrowth core compared to the bulk soil. To study this, mesh bags were buried in a stand of oilseed rape and were filled with soil at different nitrate, phosphate, moisture, and bulk density levels. Results showed that root growth was only influenced by a high nitrate content and a high soil density in the cores, which resulted in higher and lower root length densities (RLD), respectively. In a long‐term ingrowth experiment similar root length densities in the cores and in the bulk soil were measured, indicating that there were no root growth enhancing or impeding conditions inside the ingrowth cores. The conclusion is drawn, that the ingrowth core method gives reliable results, provided the N content and the soil density inside the bags are comparable to the bulk soil.  相似文献   

14.
Summary In the Netherlands, the dung beetleTyphaeus typhoeus (Col., Geotrupidae) is confined to sandy and loamy sandy soils. Experiments were carried out in the laboratory and in the field to ascertain the effects of soil bulk density and soil moisture on various aspects of the reproductive behaviour and development of this dung beetle. Some of the results were validated under natural field conditions. The nesting burrows were shown not to penetrate beyond the upper level of the soil moisture saturation zone. The depth of the burrows was not influenced by the bulk density in moist and free-drained sandy soils. Lower bulk densities of the soil were shown to result in fewer dung sausages being made, even when sufficient dung was availabe to provide for the larvae. This phenomenon was attributed to a behavioural response from the dung beetles. The critical bulk density in the field appeared to be approximately 1.40 × 103 kg/m3. The survival rate of eggs and larvae was shown to be adversely affected by conditions of high soil moisture (> 20% by volume) at the depths where the larvae develop. Evidence is given for a low survival rate of larvae at conditions of low soil moisture (pF > 2.7) at these depths. The impact of certain other soil factors is discussed.Communication no. 280 of the Biological Station, Wijster, The Netherlands  相似文献   

15.
灰色关联及非线性规划法构建传递函数估算黑土水力参数   总被引:2,自引:2,他引:0  
土壤水分特征曲线和饱和导水率是重要的水力参数,为了简便准确获取这些参数,以松嫩平原黑土区南部为研究区域,采集136个采样点土样用于测定不同土层土壤水分特征曲线、饱和导水率以及土壤理化性质,并运用灰色关联分析确定影响土壤水力参数的主要土壤理化性质,采用非线性规划构建土壤分形维数、有机质、干容重、土壤颗粒组成与土壤水分特征曲线、饱和导水率之间的土壤传递函数,并通过与现有土壤传递函数对比分析进行精度验证。结果表明:1)土壤分形维数是估算土壤水分特征曲线模型参数和饱和导水率的主要参数之一,同时,干容重和有机质含量也在不同土层土壤传递函数中起到重要的作用;2)通过验证分析,不同土层各参数平均绝对误差接近于0,均方根误差值也都较小,其中在不同土层土壤传递函数估算的土壤含水率均方根误差分别为0.022、0.017cm~3/cm~3;3)对比分析其他已存的土壤水分特征曲线和饱和导水率的土壤传递函数,该文构建的土壤传递函数均方根误差值均较小,决定系数值都在0.66以上,表明估算精度较高,均好于其他方法估算精度,具有良好的区域适应性。综上,所构建的土壤水分特征曲线和饱和导水率土壤传递函数可以用于松嫩平原黑土区土壤水力参数估算。  相似文献   

16.
Soil compaction is a main cause of soil degradation in the world and the information of soil compaction in subtropical China is limited. Three main Ultisols (quaternary red clay, sandstone and granite) in subtropical China were homogenized to pass through 2 mm sieve and recompacted into soil cores at two bulk densities (1.25 and 1.45 g cm−3). The soil cores were equilibrated at different matric potential values (−3, −6 and −30 kPa) before subjected to multi-step compaction tests. Objectives of this study were to determine how different initial soil conditions and loading time intervals influence pre-compression stress and to evaluate an easy measure to determine soil vulnerability to compaction. It became evident that the soil strength indicator, pre-compression stress, was affected by soil texture, initial soil bulk density and matric potential. The coarser the soil texture, the lower the bulk density and the higher the matric potential, the lower was the pre-compression stress. The pre-compression stress decreased exponentially with increasing initial soil water content. Soil water content and air permeability decreased after compaction. The amount of water loss was affected not only by soil texture, bulk density and initial water content but also by loading time interval. These results indicate soil pore structure and hydraulic conductivity changed during compactions. The applied stress corresponding to the highest changes of pore water pressure during compaction had a significant linear relationship with the pre-compression stress (R=0.88, P<0.001). The correlation was ascribed to that the changes in pore water pressure describe the dynamics of the interactive effects of soil pore characters and soil water movement during compaction. The results suggested the evaluation of soil vulnerability to compaction have to consider the initial soil condition and an easy method to measure the changes in pore water pressure can be applied to compare soil strength and soil vulnerability to compaction.  相似文献   

17.
Summary Pot experiments were carried out to study the influence of bulk density (D b), soil water tension (pF) and presence of plants (spring wheat) on denitrification in a low-humus Bt-horizon of a udalf. Pots of only 5-cm depth were found to be most suitable for the experiments when using the acetylene inhibition method. Almost homogeneous soil compaction between 1.1 and 1.6g soil cm–3 was achieved by a Proctor tamper. Water tensions were adjusted by means of ceramic plates on which negative pressure was applied. No denitrification was detected in unplanted pots. With planted pots and increasing bulk density denitrification increased more in pots with 14-day-old plants than in pots with 7-day-old plants. With 14-day-old plants N2O emission pot–1 increased steadily from 2 mol at D b 1.1 to 8 mol at D b 1.6, when soil moisture was adjusted to pF 1.5, although root growth was impaired by higher bulk density. From an experiment with different bulk densities and water tensions it could be deduced that the air-filled porosity ultimately determined the rate of denitrification. When low water tension was applied for a longer period, water tension had an overriding effect on total denitrification. Denitrification intensity, however, i.e. the amount of N2O g–1 root fresh weight, was highest when low water tension was accompanied by high bulk density. The results suggest that the increase in denitrification intensity at oxygen stress is partly due to higher root exudation.  相似文献   

18.
Four strains of bacteria, Rhizobium leguminosarum biovar trifolii, Pseudomonas fluorescens, Pseudomonas cepacia, and Flavobacterium sp., were introduced into loamy sand and then transported by earthworms of the species Lumbricus rubellus to uninoculated soil. Cell densities recovered from the earthworm gut and casts (both expressed per gram dry material) were significantly lower (up to 3 log units) than cell densities recovered from the inoculated soil. Total bacterial counts in casts were similar to those in the inoculated soil. In casts excreted into a sterile environment numbers of colony-forming units (CFU) increased, suggesting a favourable environment for growth. In casts excreted in a non-sterile environment, cell densities of introduced strains decreased. Casts therefore did not offer the introduced bacteria a protective micro-environment for survival in the bulk soil. Transport by worms of R. leguminosarum biovar trifolii and of P. fluorescens appeared to occur mostly by means of cast production; with the Flavobacterium sp. and P. cepacia a large proportion of the cells was possibly transported on the skin of earthworms.  相似文献   

19.
原状土与装填土热特性的比较   总被引:2,自引:2,他引:0  
土壤热特性是研究土壤—植物—大气系统中能量传输的必要参数。目前的研究集中在室内装填土柱上热特性与含水率、质地、温度和体积质量(容重)等因素的关系,田间条件下土壤结构对热特性影响的报道很少。该研究通过比较2种质地土壤田间原状土和室内装填土热特性的差异,初步探讨了不同含水率范围内结构形成对土壤热特性的影响。采集田间原状土,在室内利用热脉冲技术测定其热容量、热导率和热扩散率;然后将样品磨碎、过2mm土筛,填装后得到相同体积质量和含水率的装填土壤样品,并测定其热特性。结果表明,装填土和原状土的热容量基本一致;在中等含水率区域(砂壤土:0.07~0.24m3/m3;壤土:0.15~0.31m3/m3),重新装填后砂壤土和壤土的热导率分别降低了9.7%和9.8%。另外,结构形成增加了土壤热扩散率,在中等含水率区域尤其明显;在接近饱和区域,原状土与装填土的热扩散率趋于一致。因此,土壤结构形成对土壤热容量没有显著影响,但提高了中等含水率区域土壤的热导率和热扩散率。  相似文献   

20.
体积置换法直接测量土壤质量含水率及土壤容重   总被引:8,自引:6,他引:2  
土壤含水率直接测量是相关研究和应用的基础,在土壤力学、作物栽培、农田灌溉、生态环境等研究和实践中十分重要。该文提出了一种与传统烘干称质量法相当的体积置换法直接测量土壤质量含水率及土壤容重。该方法在假设一定土壤颗粒密度的前提下,用一定体积的标准取样环刀取得土样后,通过向待测量土体补充水分使土壤达到饱和,用一定体积的水置换土壤中的充气空隙,直到土样达到饱和状态;再通过测量得到的初始/原始土样质量、饱和后土壤的质量以及已知土壤颗粒密度和水密度,计算得到被置换的充气空隙的体积,进而由此计算得到土壤质量含水率和土壤容重。采用3种不同土壤,即陕西杨凌黏黄土、北京粉壤土和江西黏红土,分别预配制成7种不同初始土壤体积含水率,含水率约为:风干土(含水率2%~3%)、5%、10%、15%、25%、30%和饱和含水率,以及3种不同土壤容重:1.25、1.35和1.45g/cm3进行室内试验。用类似的土样,采用传统方法烘干土样8、12、24、48h后,测量确定土壤的质量含水率,通过延长烘干时间测得数据表明,传统方法烘干8h所测得的质量含水率仍有1%~3.2%的含水率误差。最终试验结果表明体积置换方法测得的土壤含水率比传统烘干土样8h所测得的结果大2%~3%,比烘干土样48h所测得的结果大1%左右。体积置换方法测量操作过程简单,耗时较少,节约能源,测量结果具有较高精度。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号