首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
硅烷偶联剂对稻草板力学性能的影响   总被引:2,自引:0,他引:2  
贾贞  李国梁 《林业科技》2010,35(1):41-43
以稻草为原料生产人造板,成为高效利用稻草资源、缓解木材供需矛盾的一条有效途径。本文通过硅炕偶联剂(SCA)改善稻草表面润湿性,用脲醛树脂胶黏剂(UF)胶结制戍稻草板,分析SCA用量和UF用量对稻草板力学性能的影响。结果表明:施胶量为16%、SCA添加量为1%时,板子的静曲强度和内结合强度达到GB/T4897.4—2003中A类刨花板优等品的要求。  相似文献   

2.
研究了施胶量对无机杨木碎料板物理力学性能的影响,并通过扫描电镜、红外光谱仪、X射线衍射仪、热重分析仪等分析了施胶量对无机杨木碎料板性能影响机制。结果表明:随着施胶量的增大,板材静曲强度(MOR)、弹性模量(MOE)均先增大后减小,施胶量为57%时板材MOR和MOE分别达到最大值21.5MPa、4 360MPa。而内结合强度(IB)随着施胶量的增大而逐渐增大,24h吸水厚度膨胀率(TS)随着施胶量的增加而减小。  相似文献   

3.
在我国,每年可以产生多达600万t的葡萄藤,它们大多被废弃在田地间,造成了巨大浪费。利用废弃的葡萄藤作为木质刨花板原料的部分替代材料可变废为宝,因此,研究了葡萄藤碎料添加量、施胶量以及等离子体预处理技术对复合刨花板性能的影响。结果表明,由于葡萄藤碎料自身性能较差且无法与木刨花很好地结合,葡萄藤碎料的加入会使得复合刨花板性能下降,在葡萄藤碎料添加量达到25%时葡萄藤/木复合刨花板的静曲强度、弹性模量、内结合强度分别下降了35.9%,35.0%,13.1%,吸水厚度膨胀率增幅为31.2%。施胶量的增大可以改善葡萄藤碎料加入带来的板材性能下降问题。葡萄藤碎料经等离子体预处理改性之后的润湿性能提高,对胶液的吸收能力增强,压制出的葡萄藤/木复合刨花板相比未改性的葡萄藤/木复合刨花板,在施胶量为10%的情况下,其静曲强度、弹性模量、内结合强度分别提升了23.0%,21.6%,10.7%;在施胶量为14%的情况下,分别提升了17.4%,11.8%,7.4%。等离子体处理后葡萄藤碎料与木刨花之间的结合也更加紧密,吸水厚度膨胀率也分别由9.32%和6.85%降至8.68%和5.86%。  相似文献   

4.
以自主研发的无机胶黏剂和稻草碎料为原料,利用冷压成型工艺制备稻草板。通过单因素试验研究了胶黏剂与秸秆比例、稻草形态、板材结构和密度对稻草板物理力学性能的影响规律。试验结果表明,胶黏剂与细料、粗料、粗细混合料的质量比分别为2.2,2.0和2.0时,稻草板的性能最佳,均满足国家标准要求。在同等施胶量的情况下,粗料制备稻草板的静曲强度(MOR)和弹性模量(MOE)最大,混合料制备稻草板的内结合强度(IB)最大,吸水厚度膨胀率(TS)最小。同等细粗料比例下,单层结构稻草板的MOR、MOE、IB和TS均比3层结构稻草板大。稻草板的MOR、MOE、IB和TS与密度均呈密切线性相关,并得回归方程分别为y=19.148x-2.941 1,y=3 711.495x-343.151 2,y=1.902x-1.052 1和y=-2.336x+4.706 0。当密度大于1.0 g/cm3,稻草板的各项物理力学性能均符合GB/T 21723—2008的要求。另外,无机胶黏剂实现了稻草板的高效阻燃和抑烟特性。  相似文献   

5.
芦苇-稻草原料球磨处理生产刨花板   总被引:2,自引:0,他引:2  
选择芦苇和稻草为原料,以脲醛树脂为黏结剂制备了芦苇-稻草刨花板。在芦苇碎料中加入一定量的矿物材料,然后采用机械球磨进行处理,应用正交设计对施胶量、热压压力、碎料球磨处理3个因素对板材各项性能的影响进行了研究。实验结果表明,球磨处理可以明显改善芦苇/树脂的结合强度,提高刨花板的各项性能。在施胶量16%,热压压力3.4MPa,对碎料进行球磨处理后制板,除内结合力较低外,板的静曲强度、弹性模量和握钉力都可以达到GBT 4897.3-2003对在干燥状态下使用的家具及室内装修用板的性能要求。  相似文献   

6.
地质聚合物具有强度高、固化快等特点,作为新型无机胶凝材料在人造板制备中具有巨大的应用潜力。以玉米秸秆皮碎料为原料,偏高岭土基地质聚合物为胶黏剂,均匀组坯后经热压制备地质聚合物-玉米秸秆皮复合碎料板,重点探究了热压时间、热压温度、施胶量及密度对板材力学、耐水、导热及阻燃性能的影响。结果表明:当热压时间为120 s/mm、热压温度为170℃、密度为0.9 g/cm3、施胶量为40%时,所得板材静曲强度、弹性模量、内结合强度分别达到9.20、1 902.50、0.36 MPa,24 h吸水厚度膨胀率达到24.2%,烟密度等级(SDR)达到12.46,静曲强度和内结合强度符合GB/T 24312—2009《水泥刨花板》中合格品要求。  相似文献   

7.
采用硅酸钠/酚醛树脂胶制备玉米秸秆刨花板,考察工艺因子对试板物理力学性能的影响。结果表明:随着施胶量增加、热压温度升高、热压时间延长,试板吸水厚度率逐渐减小,静曲强度、弹性模量和内结合强度呈先增大后减小的趋势。按照优化工艺:施胶量17%、热压温度180℃,热压时间20s/mm,制备试板的吸水厚度膨胀率和力学性能均满足GB/T4897-2015《刨花板》中干燥状态下使用的家具型刨花板的(P2型)的要求。  相似文献   

8.
采用硅酸钠/酚醛树脂胶制备玉米秸秆刨花板,考察工艺因子对试板物理力学性能的影响。结果表明:随着施胶量增加、热压温度升高、热压时间延长,试板吸水厚度率逐渐减小,静曲强度、弹性模量和内结合强度呈先增大后减小的趋势。按照优化工艺:施胶量17%、热压温度180℃,热压时间20 s/mm,制备试板的吸水厚度膨胀率和力学性能均满足GB/T 4897-2015《刨花板》中干燥状态下使用的家具型刨花板的(P2型)的要求。  相似文献   

9.
互花米草碎料板的生产工艺   总被引:1,自引:0,他引:1  
研究以互花米草为原料,以脲醛树脂为胶黏剂制作碎料板的生产工艺。试验表明:在互花米草各部位中以杆部为原料制作出的碎料板性能最好;由于互花米草的表皮存在较高的硅物质,通过加大互花米草茎秆的粉碎程度,使表皮组织尽可能分散,能够显著提高碎料板的性能;互花米草碎料板存在内结合强度和吸水厚度膨胀率性能较差问题,作者尝试通过增加密度和施胶量对性能进行改善,结果表明增加施胶量效果较为明显;将互花米草与木质刨花混合制作木草复合碎料板,容易解决互花米草碎料板内结合强度低的问题,试验中当互花米草的质量分数为35%时,木草复合碎料板的内结合强度超过木质普通刨花板标准要求。  相似文献   

10.
纯稻壳板制造工艺与性能研究   总被引:1,自引:0,他引:1  
为充分利用稻壳资源,以纯稻壳为原料,改性酚醛树脂为胶黏剂,研究了热压温度、热压时间、单位压力以及施胶量对稻壳板性能的影响,结果表明:稻壳板的内结合强度、静曲强度与弹性模量随热压温度、热压时间、单位压力的增加而增加,24 h吸水厚度膨胀率、甲醛释放量相应减低;随着施胶量的增加,内结合强度、静曲强度与弹性模量、甲醛释放量随之增加,24 h吸水厚度膨胀率相应降低。当热压温度采用150℃、热压时间72 s/mm、单位压力1.2 MPa、施胶量为绝干稻壳质量的20%,设计密度0.85 g/cm~3时,10 mm厚稻壳板的物理力学性能指标达到P6型刨花板要求,甲醛释放量满足GB18580—2017标准要求。  相似文献   

11.
Cement-bonded particleboard with a mixture of wheat straw and poplar wood   总被引:1,自引:0,他引:1  
We investigated the hydration behavior and some physical/mechanical properties of cement-bonded particleboard (CBPB) containing particles of wheat straw and poplar wood at various usage ratios and bonded with Portland cement mixed with different levels of inorganic additives. We determined the setting time and compression strength of cement pastes containing different additives and particles, and studied the effects of these additives and particles on thickness swelling, internal bond strength and modulus of rupture of CBPB by using RSM (Response Surface Methodology). The mathematical model equations (second-order response functions) were derived to optimize properties of CBPB by computer simulation programming. Predicted values were in agreement with experimental values (R2 values of 0.93, 0.96 and 0.96 for TS, IB and MOR, respectively). RSM can be efficiently applied to model panel properties. The variables can affect the properties of panels. The cement composites with bending strength > 12.5 MPa and internal bond strength > 0.28 MPa can be made by using wheat straw as a reinforcing material. Straw particle usage up to 11.5% in the mixture satisfies the minimum requirements of International Standard, EN 312 (2003) for IB and MOR. The dose of 4.95% calcium chloride, by weight of cement, can improve mechanical properties of the panels at the minimum requirement of EN 312. By increasing straw content from 0 to 30%, TS was reduced by increasing straw particle usage up to 1.5% and with 5.54% calcium chloride in the mixture, TS satisfied the EN 312 standard.  相似文献   

12.
Gypsum particleboard (GPB) has high thickness swelling (TS), high water absorption (WA), and low mechanical properties compared with cement-bonded particleboard. The properties of GPB were improved by adding cement. The experimental results showed that GPB with the added cement had good physical and mechanical properties compared with those of gypsum particleboard with no added cement. The TS and WA of gypsum particleboard with added cement were reduced by 10%. The mechanical properties of GPB, such as internal bond strength (IB), modulus of rupture (MOR), and modulus of elasticity (MOE), increased when the GPB was made with added cement. The properties of GPB improved relative to the quantity of cement added. With an increase of cement content from 5% to 10%, the TS and WA were reduced, and the IB, MOR, and MOE were increased. In contrast, the TS and WA increased and the IB, MOE, and MOR decreased when the cement content was increased from 15% to 30%. Thus the physical and mechanical properties of GPB were successfully improved when the added cement content was 10%.An outline of this paper was presented at the 47th Annual Meeting of the Japan Wood Research Society in Kochi, April 1997  相似文献   

13.
采用脲醛树脂(UF)/聚合异氰酸酯(PDMI)组合胶黏剂,以不同的组合配比在较低热压温度(160℃)条件下用高含水率(9.0%)杂木刨花制备刨花板,检测其静曲强度、内结合强度以及2h和24h吸水厚度膨胀率。结果表明:聚合异氰酸酯(PDMI)的引入,可以显著提高刨花板的物理力学性能和耐水性能;将刨花终含水率提高至9.0%可节约刨花干燥能耗达13.0%以上;与脲醛树脂胶黏剂(UF)相比,使用PDMI/UF配比为1∶9的(10.0wt%PDMI)组合胶黏剂可以提高刨花板静曲强度80%,提高内结合强度150%;在不添加防水剂的条件下,可以将板材的2h吸水厚度膨胀率由31.0%提高至21.0%。该研究可为刨花板节能环保生产提供新思路。  相似文献   

14.
Density and resin content are two factors that have a signifi- cant effect on the production cost of wood composite. However, particle size affects resin content and density, which suggests that the interaction of these three factors can be manipulated to reduce the board density and resin content of particleboard without adversely influencing its mechani- cal properties. Some mathematical functional forms based on resin con- tent, board density and slenderness ratio were regressed and an appropri- ate form was chosen. According to analysis of the results using SHA- ZAM 9 software, the exponential function best fit the experimental data. Finally, "indifference curves" of mechanical properties were illustrated and analyzed. The results indicated that negative effects of density or resin content reduction on mechanical properties could be compensated for by controlling particles’ slenderness ratio. Interestingly, increases in slenderness ratio compensated for the negative effects of decreases in resin content or board density on module of rupture (MOR) and module of elasticity (MOE). Moreover, this "compensation ratio" intensified as resin content or density decreased and/or as the MOR or MOE increased. On the other hand, reduction in slenderness ratio indicated a comple- mentary effect on reducing internal bond (IB) strength, a result of de- creases in resin content or density. Moreover, this "complementary ratio" was intensified as resin content or density decreased and/or as IB strength increased.  相似文献   

15.
Abstract

Response surface methodology (RSM) based on a three-level, three-variable central composite rotatable design was applied to evaluate the effects of the parameters such as ratio of rice straw (Oryza sativa)/poplar (Populus deltoids) wood particle bonded with urea-formaldehyde resin in panels, species of wood veneer coating these panels and amount of adhesive in glue line on the modulus of rupture (MOR), internal bonding (IB), and thickness swelling (TS) of panels. Mathematical model equations were derived by computer simulation programming to optimize the properties of the particleboard. These equations that are second-order response functions representing MOR, IB, and TS were expressed as functions of three operating parameters of panel properties. Predicted values were found to be in a good agreement with experimental values (R 2 values of 0.96, 0.98 and 0.98 for MOR, IB, and TS, respectively). This study has shown that the RSM could efficiently be applied for modeling panel properties. It was found that the variables affected the properties of panels. Straw usage up to 30% in the mixture did not cause a significant decrease in MOR, IB, and TS. Using beech veneer and 190 g/m2 glue line had the highest MOR and lowest TS.  相似文献   

16.
初步探讨了实验室条件下烟秆/木材刨花板的生产工艺,研究了热压时间、施胶量、密度、木刨花加入量等因素对板材的静曲强度、内结合强度、吸水厚度膨胀率的影响.实验结果表明,烟秆/木材刨花板的静曲强度和吸水厚度膨胀率较纯烟秆刨花板有所提高,内结合强度相差不大.  相似文献   

17.
玻璃纤维束增强刨花板的研究   总被引:1,自引:0,他引:1  
采用玻璃纤维束增强刨花板的试验结果表明,随着玻璃纤维束施加量的增加,刨花板的强度和刚度(MOR和MOE)有显著的提高,但施加量达到一定程度后,升高趋势逐渐平缓;随着玻璃纤维束间距的减小,刨花板的强度和刚度(MOR和MOE)呈直线上升,而内结合强度(IB)变化规律不明显,当间距小到一定程度后,IB很难达到德国室外用刨花板标准DIN 68763 V100的要求;随着琉璃纤维束在刨花板厚度方向上的位置由  相似文献   

18.
Phenol–formaldehyde resin-bonded particleboard (PF board) and isocyanate resin-bonded particleboard (MDI board) were soaked in water at 40, 70 and 100 °C, and the relationships between soaking conditions and board properties were analyzed. The relationships between the deterioration of board properties resulting from water soaking and those arising from outdoor exposure were also analyzed. At 100 °C, the modulus of rupture (MOR) and internal bond strength (IB) of the PF board decreased significantly within the first hour, and subsequently constant values were shown with increasing soaking time. This low constant value was defined as the lower limit. At 70 °C, both the MOR and IB decreased with increasing soaking time, and reached the lower limit. At 40 °C, however, neither decreased significantly with increasing soaking time and neither reached the lower limit. The MOR of the MDI board showed the same trend as the PF board. However, the IB of the MDI board showed a different trend to the PF board, that is, the lower limit of IB required extensive soaking, even at 100 °C. The MOR and IB of both the PF and MDI boards reached the lower limit when thickness change peaked. On the other hand, the MOR and IB for outdoor exposure were lower than those for water soaking, even at the same thickness change. The MOR and IB of water soaking decreased owing to the collapse of the bonding points caused by board swelling. On the other hand, the board properties of outdoor exposure decreased owing to the collapse of the bonding points, and biodegradation also added to the decrease.  相似文献   

19.
利用杨树人工林剩余物生产刨花板可行性研究   总被引:1,自引:0,他引:1  
The composite board industry in Iran is obliged to use residues from forest operation as well as wood industry for competing with paper industry because of shortage of wood. In the present study we investigated the residues from poplar plantation used for particleboard production. Three kinds of wood materials, poplar branches, small diameter poplar wood (3–8 cm) and beech wood, were used in the experiment of particleboard production. The results demonstrated that the characteristic of particleboard made from poplar branches and small diameter wood is comparable to that made from mature beech wood. To avoid too much residual acid in the final board, the properties of boards produced with 1.5% hardener at 175°C press temperature are acceptable, although the properties of particleboard produced with 2% hardener were higher than were higher than that of the board produced with lower hardener (1% or 1.5%).. The MOR, MOE and IB of particleboard made from branches were measured as 14.57, 2015, and 1.32 MPa, respectively, while The MOR, MOE and IB of particleboard produced from small diameter poplar wood were 19.90, 2199, and 1.86 MPa, respectively. The thickness swelling of boards made from branches after 2 and 24 h immersion in water was 20.14% and 31.26%. The utilization of branches and very small diameter wood of poplar is recommended for the survival and developments of particleboard industry in Iran.  相似文献   

20.
生物酶预处理对秸秆中密度纤维板性能的影响   总被引:1,自引:0,他引:1  
针对稻草和麦秸原料的特点,分别用木聚糖酶、漆酶/碳源系统(LCS)和脂肪酶对原料进行生物酶预处理用机械磨浆方法制备纤维,以木质纤维板用脲醛树脂作胶黏剂,压制秸秆中密度板,并探讨酶处理对秸秆纤维板性能的影响。结果表明:各种生物酶预处理对稻草和麦秸纤维板的性能都有一定的改善,同软化处理相比,经三种生物酶处理后的长纤维的比例明显增加,而细小纤维的含量则明显降低,IB均有不同程度的改进,其中木聚糖酶对此两项指标的改进效果更好。经木聚糖酶预处理后压制的密度达到0.8 g/cm3以上的纤维板的性能如下:麦草纤维板的IB为0.75 MPa,MOE为3 960 MPa,MOR为37.60 MPa,TS为21.29%。除TS外,均优于GB/T11718-1999标准要求。而稻草纤维板的IB为0.73 MPa,MOE为2 618 MPa,MOR为21.35 MPa,TS为21.19%,其中MOR与TS均离标准要求还有一定的差距。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号