首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
为提高塑膜与薄木之间的界面胶合特性,采用低温等离子体分别对塑膜和装饰薄木的胶合面进行改性处理,制备塑膜增强红栎柔性装饰薄木。优化工艺参数为:等离子体处理速度4 m/min,热压压力0.6 MPa、温度120℃、时间150 s;柔性装饰薄木的剥离强度达0.52 k N/m,横向抗拉强度达4.13 MPa,柔韧性卷曲钢棒直径可小至4 mm,浸渍剥离强度达到I类试验要求,同时热压温度明显降低,减少了能耗。  相似文献   

2.
为提高珍贵木材利用率和产品附加值,研发了新型塑膜增强柔性薄木。试验采用自主研发的防卷曲热压辊压机将经空气等离子体预处理的低密度聚乙烯(LDPE)薄膜和花梨装饰薄木进行辊压复合,利用响应曲面法研究辊压压力、温度和进给速度等因素对塑膜增强柔性薄木剥离强度的影响,优化辊压法制备新型塑膜增强柔性薄木的工艺参数。结果表明:1)辊压法制备塑膜增强柔性薄木,可利用辊压设备的在线即时反向冷却和重力拉伸技术,显著缓解塑膜增强柔性薄木高温热压卷曲变形现象; 2)辊压法制备塑膜增强柔性薄木的较优工艺参数为:辊压压力0.6 MPa、温度140℃、进给速度1.6 m/min; 3)在优化工艺条件下制备的柔性装饰薄木,剥离强度达0.49 k N/m,横向抗拉强度达4.13 MPa,柔韧性可达钢棒直径4 mm,浸渍剥离性能达到国标I类试验要求。辊压法制备塑膜增强柔性装饰薄木,可实现工业化连续生产,大幅提高生产效率,解决卷曲变形问题,保证后续饰面质量。研究结果可为新型塑膜增强柔性薄木的制备和工业化应用提供重要技术支持和理论依据。  相似文献   

3.
采用改性低密度聚乙烯(LDPE)薄膜作为增强和胶粘材料制备柔性装饰薄木,探讨热压压力、温度、时间和LDPE膜厚等因素对薄木柔韧性、剥离强度等性能的影响。结果表明:塑膜增强柔性装饰薄木的较优工艺参数为:热压压力1.0 MPa、温度150℃、时间120 s,LDPE膜厚0.03 mm;在此工艺条件制备的装饰红栎薄木的柔韧性优良,柔韧性卷曲试验的钢棒直径可小至4 mm,浸渍剥离强度达到Ⅰ类胶试验要求,总体性能优于无纺布增强薄木。  相似文献   

4.
用聚醋酸乙烯酯乳液作为胶黏剂,将黑胡桃、红栎、白桦薄木与无纺布复合制备成无纺布基装饰薄木,探讨涂胶量、热压温度、热压时间和热压压力等因素对柔性装饰薄木剥离强度的影响规律,研究表明,柔性装饰薄木树种对剥离强度影响显著,工艺参数中涂胶量和热压温度对柔性装饰薄木剥离强度的影响显著。  相似文献   

5.
采用巨尾桉基材、胶合剂聚乙烯膜制备三层木塑复合材料,分析热压温度、热压时间、热压压力、施胶量这四个因素对复合材料胶合强度的影响。结果表明:在热压温度160℃、热压时间50s/mm、热压压力0.7MPa、施胶量为119g/m2的工艺条件下,巨尾桉/聚乙烯膜复合材料的胶合性能最优,能够达到II类胶合板标准。  相似文献   

6.
为了丰富竹地板的外观效果,扩大竹地板的种类,采用正交试验方法,探讨了竹地板表面进行0.6 mm榉木和2.0 mm枫木薄木贴面工艺。结果表明:利用榉木和枫木薄木贴面竹地板切实可行,其较佳工艺参数分别为:榉木热压压力0.8 MPa,热压温度100℃,热压时间240 s,涂胶量为120 g/m2;枫木热压压力1.2 MPa,热压温度120℃,热压时间360 s,涂胶量140 g/m2。  相似文献   

7.
借助CIE L*a*b标准色度学系统,研究了不同热压温度和热压时间条件下复合制备的塑膜增强柚木、花梨、红栎3种柔性装饰薄木材色的变化特征。结果表明:热压温度对塑膜增强柔性薄木的表面变色和明度变化均有显著影响。热压时间一定,随着热压温度的升高,柔性薄木的表面色差呈逐渐增大趋势,明度绝对增/减幅也呈增大趋势;当温度升至一定值后,其色差和明度变化相对稳定。热压时间对柔性薄木的变色也有一定影响,相同热压温度下,随着热压时间的延长,3种柔性薄木的表面色差均先增至最大后趋于平衡,但对应的时间峰值不同。研究结果可为塑膜增强柔性薄木表面修色处理和变色控制提供一定的理论支持。  相似文献   

8.
采用正交试验法探讨了各热压工艺因子对稻草刨花板薄木贴面的影响.试验结果表明:稻草刨花板表面饰贴薄木是切实可行的,进行0.2 mm厚水曲柳薄木贴面,在选用PVAC胶黏剂且涂胶量为100 g/m2的条件下,其较佳工艺参数分别为:热压压力为0.7 MPa、热压温度为100℃、热压时间为120 s;在选用GB-3胶黏剂且涂胶量为100 g/m2的条件下,其较佳工艺参数分别为:热压压力为0.8 MPa、热压温度为90℃、热压时间为180 s.进行0.6mm厚白橡薄木贴面,在选用PVAC胶黏剂且涂胶量为120g/m2的条件下,其较佳工艺参数分别为:热压压力0.8MPa、热压温度90℃、热压时间240 s;在选用GB-3胶黏剂且涂胶量为120g/m2的条件下,其较佳工艺参数分别为:热压压力0.7 MPa、热压温度90℃、热压时间180 s.  相似文献   

9.
选用不同配比的聚乙酸乙烯酯乳液和脲醛树脂胶,制备无纺布增强装饰薄木,分析影响其柔韧性的主要工艺参数。结果表明,采用聚乙酸乙烯酯乳液胶,在涂胶量30g/m2、热压温度115℃、热压时间150s的条件下,无纺布增强装饰薄木的柔韧性最优,且横向抗拉强度显著提高,达到薄木自身强度的5~8倍,满足木制品异形贴面要求。  相似文献   

10.
【目的】采用不同种类装饰薄木与塑膜热压复合,以卷曲曲率半径为表征,探寻塑膜与装饰薄木热压复合卷曲变形的影响因素,为控制塑膜增强柔性装饰薄木卷曲变形提供理论依据和实践支持。【方法】以红栎为试验对象,分析含水率、热压温度、塑膜和装饰薄木厚度等工艺条件对卷曲变形的影响,并以不同材质种类的柚木、水曲柳、红栎和花梨装饰薄木为试验材料,研究不同种类装饰薄木与塑膜热压复合的卷曲变形情况。【结果】热压温度对塑膜增强柔性装饰薄木卷曲变形具有显著影响,随热压温度增高,卷曲曲率半径逐渐减小,卷曲变形程度不断增大;装饰薄木与塑膜厚度比越大,塑膜增强柔性装饰薄木的卷曲变形相对越小,考虑成本和后续饰面加工,装饰薄木以0.3 mm厚为宜;含水率对塑膜增强柔性装饰薄木卷曲变形影响较小,实际生产中以8%~12%为宜;密度大、木材组织比率相对较大、结构致密的装饰薄木,热压复合卷曲变形相对较小。【结论】热压温度对塑膜增强柔性装饰薄木卷曲变形影响极显著,实际生产中,应尽可能降低热压温度,以增大曲率半径、减小卷曲变形。装饰薄木与塑膜厚度比对卷曲变形具有显著影响,一般而言,装饰薄木厚度越厚、塑膜厚度越薄,其热压复合卷曲变形程度越小,需结合生产实际进行厚度选择。本研究可为控制双层薄型材料热压复合特别是塑膜增强柔性装饰薄木卷曲变形提供思路。  相似文献   

11.
柔性人造装饰薄木是为克服人造薄木的脆性大、强度低、破损多等缺陷而研究开发的新型装饰材料.对人造薄木与无纺布胶合制造柔性人造装饰薄木的工艺及其参数和生产设备进行了研究,结果表明:用平压法生产柔性人造装饰薄木的工艺参数为上胶量20~30 g/m2,热压温度100°C,时间90 s,压力1.0 MPa. 该柔性人造装饰薄木具有良好的柔韧性能、外观质量和粘合性能,可广泛应用于室内装饰、直线和曲线封边及异型包覆等.  相似文献   

12.
利用单因素试验方法,研究了热压温度、热压时间、热压压力和施胶量对使用改性大豆蛋白胶黏剂制造的杨木胶合板胶合强度的影响规律.结果表明:在100~ 220℃热压温度范围内,随着热压温度的增加,胶合强度显著增大;在35~60 s/mm热压时间范围内,胶合强度随热压时间的增加呈上升趋势,当时间从60 s/mm升至85 s/mm,胶合强度几乎保持一致;热压压力在1.25 MPa时,胶合强度达到最大值;施胶量在130 ~430g/m2热压时间范围内,胶合强度随施胶量的增加呈上升趋势.由此得出最优工艺参数为:热压温度180℃,热压压力1.25 MPa,热压时间60 s/mm,施胶量为310g/m2.  相似文献   

13.
将表层橡木单板浸渍三聚氰胺树脂后,与桉木单板、三聚氰胺浸渍纸一次热压成型制作多层实木复合地板。采用正交试验方法,探讨橡木单板浸渍工艺及热压工艺对多层实木复合地板表面耐磨性等理化性能指标的影响。试验结果表明:浸渍温度对橡木单板浸渍质量增加率影响显著,浸渍浓度对橡木单板浸渍质量增加率影响一般显著,热压温度对多层实木复合地板的表面耐磨性能影响显著。在试验条件下,以浸渍时间20 min、浸渍浓度40%、浸渍温度45℃、热压温度145℃、热压时间0.8 min/mm、热压压力1.8 MPa和施胶量240 g/m2为较优工艺,压制所得多层实木复合地板的表面耐磨性能等理化性能较佳。  相似文献   

14.
以热压温度、热压压力、施胶量为影响因素设立正交试验,采用杉木芯板和桉木单板为原料,测试产品的横向静曲强度和浸渍剥离长度,对无醛大豆基胶黏剂细木工板热压工艺进行了研究。结果表明:当杉木板芯厚度为11.5 mm、桉木单板厚度为2.6 mm、热压时间为8 min时,最佳工艺参数为热压温度125℃、热压压力1.2 MPa、单面施胶量250 g/m2。各因素对细木工板力学性能和耐水性能影响的主次为施胶量热压温度热压压力。  相似文献   

15.
木粉/废旧橡胶粉/HDPE三元复合材料热压法制备工艺   总被引:1,自引:0,他引:1  
木材/橡胶/塑料三元复合材料是以塑料为基体相、木材为力学增强相、橡胶为缓冲功能相制成的新型复合材料,其成型常采用挤出成型工艺,但产品的幅面尺寸较小,约束了产品在大幅面装饰领域的应用。为此,笔者以废旧橡胶粉、高密度纤维板砂光粉和高密度聚乙烯(HDPE)为主要原料,马来酸酐改性聚乙烯(MA-PE)为偶联剂,尝试采用平压法工艺生产木橡塑三元复合材料,详细考察了热压温度、热压时间对复合材料物理力学性能的影响。结果表明:当热压压力不变,温度为185℃和195℃时条件下,物理力学性能随着热压时间的延长总体上呈现增强趋势;而当热压温度升至205℃时,力学性能则显著降低。说明不同的热压温度、热压时间对木橡塑复合材料的力学性能具有显著影响。由此确定压制密度为1 000kg/m3、厚度为5mm的木橡塑三元复合材料的较优热压工艺条件为:热压温度185℃、热压时间20min,或热压温度195℃、热压时间10min。在这两种工艺条件下,产品性能较优且相近。研究表明,采用热压法生产大幅面木橡塑复合材料技术完全可行,试验结果为工业化生产实践提供了有益的参考。  相似文献   

16.
薄木贴面是提升木塑复合材料(WPC)实木感、改善其装饰性能的有效方法。为了解决木纤维/聚乙烯复合材料(WF/PE)表面胶接困难的问题,选择两种热塑性树脂膜为胶接材料,采用分段热压工艺进行贴面加工,以外观质量、表面胶合强度和浸渍剥离长度为性能评价指标,探究热压工艺及胶接材料种类的影响。发现采用马来酸酐接枝聚乙烯(MAPE)膜为胶接材料,在两段式工艺:热压时间160+60 s、热压温度150 ℃、热压压力1.5 MPa条件下,薄木贴面WF/PE的综合性能最优。SEM表征证明,MAPE膜可以有效促使薄木和PE基WPC基材之间的界面结合。  相似文献   

17.
以塑膜增强红栎装饰薄木为贴面材料,以高密度纤维板(HDF)为基材,采用响应面方法优化贴面工艺,高温热压制备塑膜增强薄木贴面HDF。结果表明:塑膜增强薄木贴面HDF的表面胶合强度受热压温度的影响为极显著影响,受热压压力的影响显著,受热压时间和压力、温度和时间的交互作用影响亦显著。在优化工艺条件下,塑膜增强薄木贴面HDF的表面胶合强度达1.60 MPa,满足GB/T 15104-2006《装饰单板贴面人造板》的要求。  相似文献   

18.
研究了以烟秆碎料和聚乙烯(PE)为原料制造木塑复合材料的生产工艺,探讨了木塑配比、热压温度、热压时间及板材密度对复合材料性能的影响。结果表明:复合板材的最优工艺参数是烟秆碎料:聚乙烯为6:4、热压时间10 min、热压温度160℃、热压压力10 MPa、试验板密度0.8 g/cm3、酒精用量为聚乙烯用量的3%。  相似文献   

19.
快速固化水泥刨花板的性能和回弹特性   总被引:4,自引:1,他引:3  
以杉木机床刨花、42.5#普通硅酸盐水泥为主要原料,Na2SiO3、CaCl2、Na2SiO3 CaCl2快速固化添加剂,在热压温度100℃、热压时间15 min、热压压力3 MPa的条件下,研究了灰木比、快速固化添加剂对快速固化水泥刨花板的性能和回弹特性的影响.结果表明,灰木比、添加剂的种类对水泥刨花板的静曲强度(MOR)、弹性模量(MOE)、平面抗拉强度、回弹率和吸水厚度膨胀率都有显著的影响.  相似文献   

20.
通过正交实验分析表明,对7 mm中密度纤维板弹性模量最为显著的影响因素为热压温度、热压时间、热压压力、纤维初含水率、闭合速度。再通过单因素实验,最后得出热压工艺的最佳参数为:热压温度170℃,热压时间238 s,热压压力8 MPa,纤维初含水率8%,压板闭合速度9.67 mm/s。研究表明,按照正交实验得出的最佳工艺参数生产中密度纤维板,可适度提高其弹性模量,从而制造出质量更加优异的中密度纤维板。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号