首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 689 毫秒
1.
The sustainability of freshwater fisheries is increasingly affected by climate warming, habitat alteration, invasive species and other drivers of global change. The State of Michigan, USA, contains ecologically, socioeconomically valuable coldwater stream salmonid fisheries that are highly susceptible to these ecological alterations. Thus, there is a need for future management approaches that promote resilient stream ecosystems that absorb change amidst disturbances. Fisheries professionals in Michigan are responding to this need by designing a comprehensive management plan for stream brook charr (Salvelinus fontinalis), brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) populations. To assist in developing such a plan, we used stream‐specific regression models to forecast thermal habitat suitability in streams throughout Michigan from 2006 to 2056 under different predicted climate change scenarios. As baseflow index (i.e., relative groundwater input) increased, stream thermal sensitivity (i.e., relative susceptibility to temperature change) decreased. Thus, the magnitude of temperature warming and frequency of thermal habitat degradation were lowest in streams with the highest baseflow indices. Thermal habitats were most suitable in rainbow trout streams as this species has a wider temperature range for growth (12.0–22.5 °C) compared to brook charr (11.0–20.5 °C) and brown trout (12.0–20.0 °C). Our study promotes resilience‐based salmonid management by providing a methodology for stream temperature and thermal habitat suitability prediction. Fisheries professionals can use this approach to protect coldwater habitats and drivers of stream cooling and ultimately conserve resilient salmonid populations amidst global change.  相似文献   

2.
Abstract – In the Logan River, UT, USA, exotic brown trout demonstrate a strong allopatric distribution and occur at high densities at low‐elevation sites and in tributaries, and in low densities at native trout dominated, high‐elevation sites. Summer temperatures and discharge do not appear limiting for growth; adult growth rates were high overall and were greatest when fish were held experimentally at high elevation where they do not occur naturally. Brown trout are superior competitors; competition for space or food was stronger with their own con‐specifics than with other species. Evidence of density dependence was not observed at the juvenile life stage; no consistent relationships were detected between brown trout density and age‐1 condition or lagged, age‐0 weight (g). In contrast, adult brown trout demonstrated density‐dependent effects on condition and growth when reared experimentally. Field estimates of adult growth rates (g·day?1), although variable, declined subtly with increasing density, and annual survival was significantly greater in the mainstem sites (mean = 52%) relative to a high‐density tributary site (mean = 22%). Annual predicted age‐0 brown trout growth potential was four‐times greater at the lowermost site, compared with the highest elevation site, although fish lost weight over winter months at all sites. While adult density dependence may influence population abundance at some sites, extreme spring–winter conditions may ultimately limit the upper elevational extent of brown trout in this system. With changing climatic conditions and the potential for habitat degradation in the future, these results have important implications for native fish conservation.  相似文献   

3.
Abstract – In-stream habitat was measured and trout density was estimated in Merrick Brook (105 habitat units) and the Tankerhoosen River (135 habitat units), Connecticut to determine relationships between habitat use of brook trout Salvelinus fontinalis and brown trout Salmo trutta and woody debris. In each habitat unit, woody debris was inventoried, and length, width, depth, area, width : depth ratio and undercut bank area were estimated. Trout abundance was estimated by snorkeling. Multiple regression was used to test relationships between trout density and principal components describing habitat unit variables. In Merrick Brook, habitat unit size and shape explained most of the variability in density of brook trout (<130 and ≥130 mm) and brown trout (<150 mm) among habitat units, although principle components describing large woody debris or fine woody debris contributed significantly to variations in density of brook trout (≥130 mm) and brown trout (<150 and ≥150 mm). In the Tankerhoosen River, fine woody debris explained most of the variability in density of brook trout (<130 and ≥130 mm), followed by habitat unit size and shape. Both large woody debris and fine woody debris contributed significantly to variations in density of brown trout (≥150 mm). These results suggest that woody debris is an important component of wild trout habitat above that provided by habitat unit shape and size alone.  相似文献   

4.
There is concern that expanding beaver (Castor fiber) populations will negatively impact the important economic, recreational and ecological resources of Atlantic salmon (Salmo salar) and sea trout (Salmo trutta) populations in Europe. We studied how beaver dams influenced habitat, food resources, growth and movement of juvenile Atlantic salmon and trout on three paired beaver-dammed and beaver-free (control) tributaries of important salmon rivers in central Norway. Lotic reaches of beaver-dammed and control sites were similar in habitat and benthic prey abundance, and ponds were small (<3,000 m2). Though few juvenile salmonids were detected in ponds, trout and salmon were present in habitats below and above ponds (comprising 9%–31% and 0%–57% of the fish collected respectively). Trout dominated control sites (79%–99%), but the greatest proportion of Atlantic salmon were upstream of beaver ponds (0%–57%). Growth rates were highly variable, with no differences in growth between lotic reaches of beaver-dammed and control sites. The condition and densities of juvenile salmon and trout were similar in lotic reaches of beaver-dammed and control sites, though one beaver-dammed site with fine sediment had very few juvenile salmonids. Beaver dams did not block the movement of juvenile salmonids or their ability to use upstream habitats. However, the degree of repeated movements and the overall proportion of fish moving varied between beaver-dammed and control sites. The small scale of habitat alteration and the fact that fish were able to move past dams makes it unlikely that beaver dams negatively impact the juvenile stage of salmon or trout populations.  相似文献   

5.
Abstract –  The role of endogenous and exogenous factors in regulating population dynamics of freshwater salmonids is still a matter of debate. The aim of the present work was to assess the relative importance of density-dependent and -independent factors in determining the survival of marble trout ( Salmo marmoratus ) yearlings in two populations living in Slovenian streams (Zakojska and Gorska). The investigation was performed by combining a classical life table analysis with Monte Carlo simulation. Size-dependent fecundity was estimated by stripping wild adults in the fish farm. A significant positive relationship was found between length of marble trout females and the number of eggs produced. Egg density was the major determinant of survival from eggs to age 1+ ( σ 0) in both streams. Residuals of the relationship between σ 0 and egg density were positively correlated with rainfall only in Zakojska, probably because, within a certain range, more intense rainfalls increases stream flow and, consequently, suitable habitat for trout. Our study shows how density-dependent and environmental factors can interact to determine the survival of marble trout during the first year of life.  相似文献   

6.
The key role of hydrological variability in structuring brown trout populations is well established. However, the influence of additional drivers is more difficult to identify. The implementation of long‐term monitoring and the development of reliable tools can help to reveal fine local drivers structuring fish populations in contrasted flow regimes. This study used data series for nine reaches monitored for nine to nineteen years in four French salmonid streams. Study reaches were within five bypassed sections influenced by instream flow. A deterministic trout population dynamics model was applied on each reach, with calibration and validation procedures. Results revealed that biological drivers structured all reaches similarly. In addition, seven other drivers were identified. Among these additional drivers, hydrology mainly explained temporal fluctuations in trout density, regardless of reach. Three drivers independent of hydrology were also revealed: poor water quality, limited spawning area and the effect of power plant operations (overtopping, flushing or plant shutdown). All drivers influenced the whole bypassed section and were never limited to the scale of the reach (sampling area). Further analyses of each driver are now needed, to regionalise and quantify their respective impact precisely. Thus, assessment of trout population status would be simplified, enabling implementation of efficient management rules.  相似文献   

7.
Understanding resident fish population responses to restored connectivity would enhance decision-making on dam removal and fish passage. Since such evaluations are limited in the Great Lakes region of North America, we compared abundance, survival, and growth of resident brook trout and brown trout between sets of Michigan streams where populations were or were not interacting with salmonid species that might be present if connectivity existed. We analysed data from 34 electrofishing index sites to compare resident trout populations between streams without versus with Great Lakes access (and migratory Pacific salmonids), and brook trout populations in Great Lakes inaccessible (land-locked) streams where brown trout were present versus absent. Great Lakes accessibility effects on fish density became increasingly positive for older age groups of brown trout while generally negative for all age classes of brook trout. Brown trout had consistently negative effects on brook trout density in land-locked streams. Increased connectivity had significant effects on annual survival for only one of seven trout age classes modelled, while intraspecific density-dependent effects on survival were significant in six models. Significant intraspecific effects on resident trout growth occurred for seven of eleven age classes examined. Negative interspecific effects of Great Lakes access on resident trout growth were most noticeable for age-0 and age-1 resident trout, age classes that likely compete with juvenile Pacific salmonids. Our findings provide a more robust understanding of how Great Lakes connectivity affects resident trout populations, highlighting negative influences of brown trout on brook trout and intraspecific density-dependent effects.  相似文献   

8.
Dam removals allow fish to access habitats that may provide ecological benefits and risks, but the extent of fish movements through former dam sites has not been thoroughly evaluated for many species. We installed stationary PIT antennas in 2016 and 2017 to evaluate movements and survival of brook trout Salvelinus fontinalis in the West Branch of the Wolf River (WBWR) in central Wisconsin following removal of two dams and channel modifications designed to promote fish movement. These changes provided access to lacustrine habitats that might provide suitable winter habitat or act as ecological sinks. We used multistate models to estimate transition probabilities between river sections, to determine whether brook trout: (a) moved between multiple river sections and (b) entered lacustrine habitats as seasonal refuges, but eventually returned to lotic habitat. We also used a Cormack-Jolly-Seber model to evaluate whether apparent survival of brook trout in the WBWR was comparable to other populations. Few fish moved among river sections or used lacustrine habitat (<5% of tagged fish); most brook trout remained in sections where they were initially tagged, potentially due to quality habitat located throughout the river. Like other studies, brook trout in the WBWR appear to experience high mortality based on low number of detections, few physical recaptures and an estimated eight-month apparent survival rate of 0.27. In scenarios where fish can already access suitable habitat, removal of dams may not result in substantial increases in fish movement and colonisation of newly accessible habitat may not occur immediately.  相似文献   

9.
Interactive segregation has been suggested as the ruling competition mechanism determining niche and niche segregation between juvenile Atlantic salmon (Salmo salar) and brown trout (Salmo trutta). Results from allopatry–sympatry observations of habitat use in both nature and in experiments were contrary to predictions derived from the interactive segregation hypothesis. Habitat use parameters under natural conditions such as distance to shore for Atlantic salmon parr were nearly identical in allopatric (mean ± SD; 3.2 ± 1.4 m) and sympatric (3.3 ± 1.4 m) situations. Occupied water depths largely reflected available water, but water depths <15 cm were avoided by salmon parr. Under experimental conditions, habitat use of allopatric salmon was density independent and salmon size had only minor effects, with smaller fish being more likely to occur in the shallow. Habitat use of salmon in sympatry with trout did not differ from allopatric salmon habitat use, and only salmon size had minor effects on depth choice – occurrence of trout or fish density had no effect. Allopatric trout was in general more frequent in the shallow habitat than salmon. Habitat use of sympatric trout was affected by the occurrence of salmon and trout size, resulting in a higher use of the shallow habitats for small trout. To conclude, selective segregation has a dominant role in salmon habitat use (not affected by trout occurrence), whereas a mixed situation occurs in trout habitat use with elements of interactive segregation when competing with Atlantic salmon (affected by salmon occurrence).  相似文献   

10.
Several habitat models have been proposed to predict population size for stream fishes and to guide habitat assessment and monitoring techniques. However, most models do not incorporate the potential advantage of molecular genetic markers. We conducted a field survey and microsatellite DNA analyses to quantify the relationships among genetic diversity, census/effective population size and habitat variables in fragmented populations of white‐spotted charr (Salvelinus leucomaenis). The census population size significantly increased with the stream length, the number of pools and a pool‐riffle sequence index, a proxy for channel‐unit habitat type complexity within reaches. Population density was correlated with the pool‐riffle sequence index only. Genetic diversity and effective population size were not correlated with the habitat variables or census population size. There was a lack of isolation‐by‐distance population structure in the studied populations. Our results suggest that stream length and the number of pools within reaches associated with habitat complexity are the habitat variables that explain the majority of variation in population size of white‐spotted charr. Our findings provide further evidence that census population size per se is a poor indicator of the inclusive genetic diversity within populations in a fragmented landscape.  相似文献   

11.
As a key parameter in the management of fish populations, individual growth rate (GR) variations were examined in the European eel (Anguilla anguilla; > 150 mm) using extensive mark–recapture surveys in the lotic habitats of two small rivers of western France: the Frémur, supposed to be saturated, and at the same latitude, the Oir with densities fivefold lower than those of the Frémur. In both systems, generalised linear models were used to test whether spatiotemporal factors such as dominant habitat type or local density affect GR variability. In the presumed unsaturated system, the Oir, GR variability is mainly explained by a set of habitat suitability drivers (density, dominant habitat type). In the Frémur, GRs appear independent of differences in habitat density or productivity. Below saturation, an increase in density will decrease the GR through intraspecific competition. At saturation, intraspecific competition reaches such high levels that regardless of eel density and productivity, the resources available by individual are similar throughout the system. In these circumstances, the effect of density on growth was presumed undetectable. Despite these contrasted results, mean GRs observed in both catchments were closed (~20 mm·year?1). This is an unexpected result as GR is expected to be higher in unsaturated systems. This similarity could be explained by the difference between the two systems in terms of: (i) sex ratio (the Frémur is dominated by male, whereas the female is dominant in the Oir), (ii) habitat type distribution or (iii) possible interspecific competition (important salmonid populations in the Oir).  相似文献   

12.
为研究塔里木河流域叶尔羌高原鳅(Triplophysa yarkandensis)群体的遗传多样性,基于高通量测序平台,对叶尔羌高原鳅基因组进行测序,并筛选出符合条件的微卫星位点,设计100对用于PCR扩增的引物,最终筛选出39对具有多态性的引物,挑选多态性较高的15对在5个河段叶尔羌高原鳅种群中进行扩增,分析不同种群的遗传多样性和种群分化情况。结果显示,5个叶尔羌高原鳅群体的平均等位基因数(Na)和有效等位基因数(Ne)分别为48.467和15.181,平均观测杂合度(Ho)和期望杂合度(He)分别为0.578和0.929,多态性信息含量(PIC)为0.893,种群间遗传分化系数(Fst)为0.102。其中,车尔臣河群体等位基因数最多(18.143),阿克苏河群体等位基因数最少(10.429);阿克苏河群体的观测杂合度最高(0.706),台特玛湖群体的观测杂合度最低(0.517);阿尔干群体的多态信息含量最高(0.877),阿克苏河群体的多态信息含量最低(0.760);阿克苏河与台南河群体的遗传距离最小(0.606),阿尔干与台南河群体遗传距离最大(1.901);阿尔干群体与台南河群体遗传相似度最低(0.149),阿克苏河与台南河群体的遗传相似度最高(0.545)。群体遗传结构显示,车尔臣河与台特玛湖、阿克苏河与台南河、阿尔干群体分别聚为独立分支。研究表明,塔里木河各个河段叶尔羌高原鳅之间虽然有一定的差异,但仍然有基因交流现象。  相似文献   

13.
Atlantic salmon, Salmo salar L., and brown trout, Salmo trutta L., fry were point and scatter stocked in the early part of June at densities of 63–263 fry 100 m−2 per species in the River Viantienjoki, a small river in northern Finland, and their population densities were assessed in late summer. Both species were always stocked together in similar quantities. Point stocking was used in the first 2 years and scatter stocking in the following 2 years. In point stocking, there was no correlation between the distance from the stocking sites (maximum = 250 m) and parr density in census sites ( r = −0.013 and 0.019 for brown trout and Atlantic salmon, respectively). The stocking density of fry did not influence parr density in August by either method or by species. Stocking density explained only from 11% to 23% of the parr survival depending on the species or stocking method. The mean densities of Atlantic salmon and brown trout parr did not differ significantly from each other at any fishing site ( P > 0.05). Both point and scatter stocking appear to be suitable methods for use in small rivers. The parr densities depend more on the other factors (e.g. habitat quality) than the stocking method, and the choice between methods could be based on the time and labour available.  相似文献   

14.
Withdrawal of water from streams and groundwater is increasing in Midwestern North America and is a potential threat to coldwater fishes. We examined the effects of summer water withdrawals on brook trout Salvelinus fontinalis populations and water warming rates by diverting 50–90% of summer baseflow from a 602‐m treatment zone (TZ) in a groundwater‐influenced Michigan stream during 1991–1998. We compared density of brook trout in fall, and spring‐to‐fall growth and survival of brook trout, between the TZ and an adjacent reference zone (RZ) whose flows were not altered. Flow reductions had no significant effects on the density of brook trout in fall or spring‐to‐fall survival of brook trout. However, spring‐to‐fall growth of brook trout in the TZ declined significantly when 75% flow reductions occurred. Cold upstream temperatures and the relatively short study reach kept thermal habitat conditions excellent for brook trout in the TZ throughout the dewatering experiments. These findings suggest that brook trout can tolerate some seasonal loss of physical habitat if temperature conditions remain suitable. In summer 1999, we experimentally assessed the influence of flow reduction on the warming rate through the TZ by diverting from 0% to 90% of flow around the TZ in 3‐ or 4‐day trials on a randomised schedule. Average daily temperature increased exponentially as stream flows declined from normal summer levels. Our findings suggest the risk of trout habitat loss from dewatering is potentially large and proportional to the magnitude of withdrawal, especially as thermal conditions approach critical levels for trout.  相似文献   

15.
Variation in brown trout (Salmo trutta L.) population recruitment and structure is related to migratory patterns, which should depend on ease of access to habitats providing increased opportunity for growth. We quantified the number of young of year (YOY) as a proportion of the total number of brown trout at 24 locations on 11 streams within the Taieri catchment, New Zealand, including back calculated growth rates and emergence dates from otoliths. Locations with high absolute and relative abundance of YOY fish were related to elevation and distance from the river mainstem (habitat used by migratory fish), fish density, and the interaction between invertebrate food biomass, distance and elevation. Hatch date and growth were not related to the proportion of YOY fish, though growth was negatively correlated to total fish density. We suggest landscape features play a large role in determining recruitment and population structure. Locations at lower elevations have a high YOY density, high competition and lower growth, likely prompting out‐migration. These conditions could be created by successful return migration and spawning of large fecund fish resulting in YOY densities exceeding the habitat carrying capacity. Environmental factors, such as food availability, also played a role in determining population structure. These results provide an example of how population structure and recruitment might be controlled by local conditions and access to high growth environments in wild populations of introduced brown trout across a catchment.  相似文献   

16.
Understanding how changes in stream temperature affect survival and growth of coldwater fishes, including brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss), is important for conserving coldwater stream fisheries in a changing climate. However, some contemporary stream temperature models assume spatially uniform (i.e. unrealistic) air–stream temperature relationships or demand hydrometeorological predictors (e.g. solar radiation and convection) that are expensive and often impractical for fisheries managers to measure. As such, we produced a relatively cost-effective, management-relevant modelling approach for predicting effects of changes in air temperature, precipitation and groundwater inputs on stream temperature and, consequently, the survival and growth of brown trout and rainbow trout in Michigan, USA. We found that precipitation- and groundwater-corrected stream temperature models (mean adjusted R2 = .77, range = 0.65–0.88) performed better than linear air–stream temperature models (mean adjusted R2 = .59, range = 0.21–0.80). Stream temperature was projected to increase by 0.07–3.88°C (1%–22%) with simulated changes in air temperature, precipitation and groundwater inputs. The greatest warming was predicted for surface runoff-dominated sites with limited groundwater-driven thermal buffering, where thermal habitat suitability for salmonid survival and growth declined 20%–40%. However, groundwater-dominated sites may not be immune to temperature warming, especially if groundwater temperature increases or groundwater inputs decline in a changing climate. Our modelling approach provides a reliable, cost-effective method for predicting effects of climate change on brown trout and rainbow trout survival and growth, allowing for strategic management actions to increase the thermal resilience and sustainability of salmonid populations (e.g. groundwater conservation and riparian/watershed rehabilitation).  相似文献   

17.
本文采用鱼类形态度量学和框架度量学相结合的方法,对五个不同虹鳟养殖群体(1.渤海群体2.丹麦群体3.道氏群体4.挪威群体5.加州群体)20个比例性状进行了主成分分析,结果表明:虹鳟的形态指标大致可归纳为“大小因子”、“摄食因子”、“游泳因子”、“形态因子”和“头型因子”能较完整(82.66%)地描写虹鳟的外形特征;道氏以外的4个虹鳟群体的形态学特征存在较大的相似性,道氏群体与其他4个虹鳟群体的形态差异较大;通过比较其形态性状以便评估其种内的变异以及各个性状伴随着生长而产生的变化,为今后虹鳟的选育方案设计及选择应答的预测提供参考。  相似文献   

18.
19.
This study was based on genotyping eight microsatellite loci of 463 brown trout, Salmo trutta L., sampled in nine differently sized tributaries in three areas on the eastern shore of Lake Mjøsa, south‐eastern Norway. The populations were genetically structured, and Mantel's test showed that genetic distance correlated positively with geographical distance. Temporal differentiation FST over a 2‐year period was estimated in five streams and was non‐significant after Bonferroni correction. Effective population size Ne was positively correlated with the habitat length available from the lake (0.3–22 km) and negatively with the number of full sib pairs in the sample. There was no correlation between Ne and genetic diversity, and private alleles were recorded in three medium‐sized streams, but not in the largest two. The importance of small spawning and nursery streams for the maintenance of genetic diversity of brown trout was demonstrated.  相似文献   

20.
Abstract  Proper interpretation of measures used to describe fish populations requires knowledge of the measure's inherent spatial and temporal variation. Proportional stock density (PSD), the ratio of 'quality-length' fish to 'stock-length' fish multiplied by 100, is commonly used as a measure of population size structure; PSD values range from 0 to 100. Spatial and temporal variation in brook trout, Salvelinus fontinalis (Mitchill), and brown trout Salmo trutta L., PSD scores in Wisconsin are described and tested to determine if variation differed by stream order and ecoregion. Neither stream order nor ecoregion significantly affected variation of PSD scores. The mean standard deviation of PSD scores over time at a site was 12.49 for brook trout populations and 12.95 for brown trout populations. The mean standard deviation of PSD scores between sites in the same stream was 15.07 for brook trout populations and 12.50 for brown trout populations. Sampling frequency required to characterise a PSD score of a single population of trout in Wisconsin streams with a degree of precision equal to the amount of observed temporal variation is approximately 14 sites for brook trout and 20 sites for brown trout.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号