首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Abstract Seasonal habitat use by over-yearling and under-yearling brook trout, Salvelinus fontinalis (Mitchill), was examined in a second-order stream in north-central Pennsylvania, USA. The habitat occupied by brook trout and available habitat were determined in a 0.5-km stream reach during the spring, summer and autumn of 1989 and the spring and summer of 1990. Cover, depth, substrate and velocity were quantified from over 2000 observations of individual brook trout. Habitat used by under-yearling brook trout was more uniform between seasons and years than that used by over-yearling brook trout. Over-yearling brook trout occupied areas with more cover and greater depth than did under-yearling brook trout, suggesting ontogenetic shifts in these variables. Differences for velocity and substrate were not as great as those for cover and depth. The selection of areas with low water velocities governed trout habitat use in spring, whereas cover and depth were the most important habitat variables in summer and autumn. Principal component analysis showed that available habitat and trout habitat centroids diverged most in spring, indicating that habitat selection by brook trout may be greatest at this time.  相似文献   

2.
Many bull trout populations have declined from non‐native brook trout introductions, habitat changes (e.g. water temperature) and other factors. We systematically sampled the distribution of bull trout and brook trout in the upper Powder River basin in Oregon in the 1990s and resampled it in 2013–2015, examined temperature differences in the habitats of the two species and analysed trends in temperatures in the light of possible increases associated with climate change. The species’ distributions are currently similar to those in the 1990s, except in one stream where bull trout declined. However, bull trout consisting of resident forms remain restricted to a few kilometres of habitat at the upper end of fish distribution. In streams where both species occur, the typical pattern was an intermediate zone of mixed bull trout, brook trout, and hybrids downstream of allopatric bull trout and allopatric brook trout extending farther downstream. Temperature differences between where bull trout and most brook trout occurred were small (0.5–1.0°C August mean). There were no statistical increases in water temperatures in nearby streams since the 1990s and no warming trends in air temperatures for the past 25–60 years. However, peak summer water temperatures are occurring about 3 weeks earlier than 25 years ago. Future effects of climate change, including possible increases in temperature, changes in timing and other factors (e.g. snowpack, flow and extreme events) remain a concern for the persistence of these populations. However, it is difficult to precisely predict where those changes will occur and what they will be.  相似文献   

3.
Abstract – Brook charr (Salvelinus fontinalis) is a sentinel fish species that requires clean, cold water habitats generally resulting from landscapes that allow for surface water flows devoid of sediment and contaminants and high groundwater discharge of cold water. As such, brook charr are impacted by land cover changes that alter stream temperature regimes. We evaluated brook charr populations across their eastern and midwestern range in the United States with reference to thermal habitat availability in relationship to land cover and per cent baseflow. We found that while forest cover does protect brook charr thermal habitat, high levels of groundwater discharge can allow for increased levels of agriculture within a watershed by keeping the water cold in spite of warm ambient summer temperatures. Our study concludes that with enhanced communication among land, water and fisheries managers, society can provide for sustainable stream salmonid populations despite increased threats on cold water resources.  相似文献   

4.
Brook trout are the one of the only Salvelinus species native to eastern North America and range from Canada to Georgia. Very little is known, however, about the ecology of the southern form of this species. We quantified microhabitat use of southern brook trout in Ball Creek NC, a third‐order stream, during six seasonal samples (summer 2010, autumn 2010, spring 2011, summer 2011, autumn 2011 and spring 2012). In general, trout preferentially occupied deeper microhabitats with lower mean velocities and higher amounts of erosional substrata than were randomly available. Older trout (1+ and 2+) occupied deeper microhabitats with lower mean velocities than yearling trout. These microhabitats typically represent ‘plunge pools’. Southern brook trout also occupied focal point velocities that were statistically indistinguishable from optimal velocities calculated for rainbow trout in the same system and thus may chose microhabitats that maximise net energy gain. Southern brook trout are found in isolated populations, and management strategies should focus on the preservation of plunge pool habitat for conservation of this subspecies.  相似文献   

5.
The sustainability of freshwater fisheries is increasingly affected by climate warming, habitat alteration, invasive species and other drivers of global change. The State of Michigan, USA, contains ecologically, socioeconomically valuable coldwater stream salmonid fisheries that are highly susceptible to these ecological alterations. Thus, there is a need for future management approaches that promote resilient stream ecosystems that absorb change amidst disturbances. Fisheries professionals in Michigan are responding to this need by designing a comprehensive management plan for stream brook charr (Salvelinus fontinalis), brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss) populations. To assist in developing such a plan, we used stream‐specific regression models to forecast thermal habitat suitability in streams throughout Michigan from 2006 to 2056 under different predicted climate change scenarios. As baseflow index (i.e., relative groundwater input) increased, stream thermal sensitivity (i.e., relative susceptibility to temperature change) decreased. Thus, the magnitude of temperature warming and frequency of thermal habitat degradation were lowest in streams with the highest baseflow indices. Thermal habitats were most suitable in rainbow trout streams as this species has a wider temperature range for growth (12.0–22.5 °C) compared to brook charr (11.0–20.5 °C) and brown trout (12.0–20.0 °C). Our study promotes resilience‐based salmonid management by providing a methodology for stream temperature and thermal habitat suitability prediction. Fisheries professionals can use this approach to protect coldwater habitats and drivers of stream cooling and ultimately conserve resilient salmonid populations amidst global change.  相似文献   

6.
Temperature increases due to climate change over the coming century will likely affect smallmouth bass (Micropterus dolomieu) growth in lotic systems at the southern extent of their native range. However, the thermal response of a stream to warming climate conditions could be affected by the flow regime of each stream, mitigating the effects on smallmouth bass populations. We developed bioenergetics models to compare change in smallmouth bass growth rate potential (GRP) from present to future projected monthly stream temperatures across two flow regimes: runoff and groundwater‐dominated. Seasonal differences in GRP between stream types were then compared. The models were developed for fourteen streams within the Ozark–Ouachita Interior Highlands in Arkansas, Oklahoma and Missouri, USA, which contain smallmouth bass. In our simulations, smallmouth bass mean GRP during summer months decreased by 0.005 g g?1 day?1 in runoff streams and 0.002 g g?1 day?1 in groundwater streams by the end of century. Mean GRP during winter, fall and early spring increased under future climate conditions within both stream types (e.g., 0.00019 g g?1 day?1 in runoff and 0.0014 g g?1 day?1 in groundwater streams in spring months). We found significant differences in change in GRP between runoff and groundwater streams in three seasons in end‐of‐century simulations (spring, summer and fall). Potential differences in stream temperature across flow regimes could be an important habitat component to consider when investigating effects of climate change as fishes from various flow regimes that are relatively close geographically could be affected differently by warming climate conditions.  相似文献   

7.
Abstract – Salmon and trout have been introduced to many ecosystems worldwide, yet the ecological impacts of salmonid introductions remain poorly understood. We investigated the effects of introduced Pacific salmon on stream‐resident fish in the Great Lakes basin by monitoring the movements of passive integrative transponder (PIT)‐tagged brook trout in a Lake Michigan tributary receiving a salmon spawning run and in a nearby stream not receiving salmon. Coincident with the September arrival of salmon, an estimated 52% of resident brook trout moved >200 m, while no such movements were detected in the nonsalmon stream. After 3–4 days, however, brook trout movement patterns became similar in the two streams, suggesting that salmon effects on brook trout movements were short‐lived. Movements in the salmon stream were predominantly upstream in direction, with 50% of the tagged brook trout travelling from below to above the stationary PIT tag readers during the study. Declining water temperatures with the onset of fall coincided with low levels of brook trout movement at both sites, likely due to relocation for spawning. Increased brook trout movements coincident with the arrival of salmon spawners could be driven by a combination of interference competition and egg consumption. Using a bioenergetics model, we estimated that the energy lost to movement was likely compensated by the energy obtained from consuming salmon eggs. We conclude that salmon spawners can substantially increase brook trout movement, but in our study, these effects were short‐lived and likely negligible from a bioenergetics perspective.  相似文献   

8.
Many investigators have examined the importance of suitable in‐stream habitat and flow regime to salmonid fishes. However, there is much less known about the use of small (<5 l·s?1 discharge) first‐order streams within a larger stream network by salmonids. The purpose of this study was to evaluate the use of small headwater streams by juvenile brown trout Salmo trutta in the Emmons Creek stream network in Wisconsin, USA, and to determine whether abundance was related to habitat variables in these streams. Fishes in eight spring‐fed first‐order streams were sampled during a 7‐month period using a backpack electroshocker and measured for total length. Habitat variables assessed included stream discharge, water velocity, sediment composition and the abundance of cover items (woody debris and macrophytes). Densities of YOY trout ranged from 0 to 1 per m2 over the course of the study and differed among first‐order streams. Stepwise multiple regression revealed discharge to be negatively associated with trout density in spring but not in summer. All other habitat variables were not significantly related to trout density. Our results demonstrate the viability of small first‐order streams as nursery habitat for brown trout and support the inclusion of headwater streams in conservation and stream restoration efforts.  相似文献   

9.
Wood in streams functions as fish habitat, but relationships between fish abundance (or size) and large wood in streams are not consistent. One possible reason for variable relationships between fish and wood in streams is that the association of fish with wood habitat may depend on ecological context such as large‐scale geomorphology. We studied the relationship between salmonid assemblages and large wood jams (LWJ) in four settings that differed geomorphically at the scale of the stream corridor along a tributary to Lake Superior in old‐growth conifer–hardwood forest in northern Michigan. The focal fish species of this study were brook trout (Salvelinus fontinalis), which were wild in the stream. Relocation efforts for coaster brook trout (an adfluvial life history variant of brook trout) were ongoing in the study stream. We measured fish abundance and length in pairs of pools of similar size and substrate, but varying in the presence of LWJ; this allowed us to evaluate associations of fish simply with the presence of LWJ rather than with other channel or flow‐shaping functions of LWJ. The length of Oncorhynchus spp. and young introduced brook trout was not strongly correlated with LWJ presence; however, the presence of LWJ in pools was positively correlated with larger wild brook trout. We also found that the correspondence of LWJ with the abundance of salmonids appears to be moderated by the presence of alternative habitat in this relatively natural, old‐growth forest stream.  相似文献   

10.
Seasonal patterns in growth, survival and movement of brook trout Salvelinus fontinalis were monitored in two southeastern Minnesota streams divided into study reaches based on brown trout Salmo trutta abundance. We estimated survival and movement while testing for effects of stream reach and time using a multistrata Cormack–Jolly–Seber model in Program MARK. Multistrata models were analysed for three age groups (age‐0, age‐1 and age‐2+) to estimate apparent survival, capture probability and movement. Survival varied by time period, but not brown trout abundance and was lower during flood events. Age‐0 brook trout emigrated from reaches with low brown trout abundance, whereas adult brook trout emigrated from downstream brown trout‐dominated reaches. Growth was highest in spring and summer and did not differ across streams or reaches for the youngest age classes. For age‐2+ brook trout, however, growth was lower in reaches where brown trout were abundant. Interspecific interactions can be age or size dependent; our results show evidence for adult interactions, but not for age‐0. Our results suggest that brook trout can be limited by both environmental and brown trout interactions that can vary by season and life stage.  相似文献   

11.
Abstract – We studied diel microhabitat use at the focal point of age‐0 bull trout, Salvelinus confluentus, in Indian Creek, Washington during mid‐summer and fall of 1997. Microhabitat variables included water depth and velocity, distance from the stream bottom, habitat and refuge use, substrate type, and substrate embeddedness. Age‐0 fish were located over fines and gravel substrates in shallow, low‐velocity water near stream margins, but were located in shallower water at night. Bull trout were highly associated with loose substrate, and used the substrate interstices for refuge cover. Diurnal bull trout counts decreased and no age‐0 fish were observed after 15 September at water temperatures below 6.1 °C. Nocturnal counts remained relatively constant throughout the study. Our results suggest that age‐0 bull trout surveys be conducted at night when summer water temperatures begin to decline.  相似文献   

12.
Abstract – We examined habitat factors related to reach‐scale brook trout Salvelinus fontinalis counts of four size classes in two headwater stream networks within two contrasting summers in Connecticut, USA. Two study stream networks (7.7 and 4.4 km) were surveyed in a spatially continuous manner in their entirety, and a set of Bayesian generalised linear mixed models was compared. Trout abundance was best described by a zero‐inflated overdispersed Poisson model. The effect of habitat covariates was not always consistent among size classes and years. There were nonlinear relationships between trout counts and stream temperature in both years. Colder reaches harboured higher trout counts in the warmer summer of 2008, but this pattern was not observed in the cooler and very wet summer of 2009. Amount of pool habitat was nearly consistently important across size classes and years, and counts of the largest size class were correlated positively with maximum depth and negatively with stream gradient. Spatial mapping of trout distributions showed that reaches with high trout counts may differ among size classes, particularly between the smallest and largest size classes, suggesting that movement may allow the largest trout to exploit spatially patchy habitats in these small headwaters.  相似文献   

13.
Advance knowledge of flow rate variations in the water supply to a spring-fed trout farm is of great value to the farm manager since the weight of stock that can be sustained at any one time is dependent on the discharge rate of the spring. Annual variations of flow rate in groundwater dominated streams and rivers follow a fairly regular pattern with a recession occurring from the highest flows in the spring to the lowest flows in the late summer and autumn. This paper describes a simple technique for predicting discharge rates during periods of recession. Use of the technique which is illustrated by data from Belleau springs in Lincolnshire would enable fish farm managers to obtain a conservative estimate of the flows during summer and autumn and give adequate forewarning of impending low flows.  相似文献   

14.
Rainbow trout habitat use is often described in high‐gradient, runoff‐driven, heterotrophic streams where geomorphic features and overhanging riparian vegetation provide channel complexity and cover. However, many rainbow trout populations thrive in rivers with contrasting aquatic habitat. We describe rainbow trout habitat use in a low‐gradient, groundwater‐dominated tailwater river where river flow management and macrophyte growth and senescence largely govern available trout habitat. In the summers of 2013 and 2014, available aquatic habitat (depth, velocity, macrophyte cover, substrate size) was quantified, while individual trout location was determined by radio telemetry and linked to environmental variables. Detailed habitat surveys indicate that macrophyte cover increases throughout the summer and is a strong determinant of in‐stream habitat characteristics. Paired logistic regression shows that adult rainbow trout prefer greater depths. Water depth increases with macrophyte abundance at both reach and local scales as plants restrict flow, and available trout habitat is linked to this seasonal pattern. When macrophyte abundance is high, adult trout show secondary preference for localised areas of lower macrophyte cover but otherwise show no selectivity for macrophyte cover, velocity or substrate size. Results suggest that submerged aquatic plants increased the quantity and quality of rainbow trout habitat as a source of channel complexity and cover. Macrophytes may play a similar role in other low‐gradient streams and should not be overlooked by fisheries managers considering habitat suitability.  相似文献   

15.
Abstract  This study investigated the effects of low summer discharge on habitat, prey use and prey availability for age 1 brook trout, Salvelinus fontinalis (Mitchill), in two small streams in Massachusetts, USA. Stream discharge declined substantially from June to August, with corresponding decreases in microhabitat depth and velocity; but fish habitat preferences were consistent throughout the summer, with fish selecting deep, low current velocity locations. Invertebrate drift rate, drift density and trout stomach fullness were significantly greater in June than August samples. Diets were dominated by aquatic-derived prey (chironomid larvae and adult blackflies) in June, but terrestrial invertebrates were the most frequent diet items in August. Consistent occupancy of low-velocity, deep microhabitats with low invertebrate flux rates indicated that, despite variation in habitat and prey conditions, trout adopted a habitat-use strategy of minimising risks and energy costs rather than maximising forage gain. This observation is consistent with, and provides a potential explanation for, the low summer growth rates of brook trout observed in small streams.  相似文献   

16.
Abstract  Movements by adult cutthroat trout, Oncorhynchus clarkii (Richardson), were assessed from autumn to summer in the Salt River watershed, Wyoming-Idaho, USA by radio telemetry. Adult cutthroat trout were captured during September and October 2005 in the main stem of the Salt River, surgically implanted with radio transmitters, and tracked through to August 2006. Adult cutthroat trout were relatively sedentary and resided primarily in pools from October to March, but their movement rates increased during April. Higher movement rates were observed among tagged fish during May and early June. Among 43 fish residing in the Salt River during April 2006, 44% remained in the river, 37% moved into mountain tributaries and 19% moved into spring streams during the spawning season. Fish did not use segments of mountain tributaries or the upstream Salt River where fish passage was blocked by anthropogenic barriers or the channel was dewatered during summer. Almost all the fish that moved into spring streams used spring streams where pools and gravel–cobble riffles had been constructed by landowners. The results suggest that adult Snake River cutthroat move widely during May and early June to use spawning habitat in mountain tributaries and improved spring streams. Maintaining the ability of adult fish to move into mountain streams with spawning habitat, preserving spawning habitat in accessible mountain tributaries and removing barriers to upstream movements, and re-establishing summer stream flows in mountain tributaries affected by dams appear to be habitat management alternatives to preserve the Snake River cutthroat trout fishery in the Salt River.  相似文献   

17.
Abstract – There has been little investigation of the winter ecology of adult trout during winter, especially in regard to concealment behavior. We compared day vs night underwater counts of adult rainbow trout and brook trout from four streams. At water temperatures between 1°C and 9°C, daytime counts accounted for 44% and 16% of nighttime snorkeling counts for rainbow trout and brook trout adults, respectively. As winter progressed, nighttime counts declined more so for brook trout than rainbow trout, but the decline was not significant for either species. Nocturnalism of both species was higher in streams with colder water temperatures. We observed few fish within concealment structure; however, by electrofishing concealment habitat during the day, we captured 10 times more adult trout than we counted immediately beforehand by snorkeling. Adult trout were concealed in cobble-boulder substrate and woody debris during the day. Note  相似文献   

18.
Understanding how changes in stream temperature affect survival and growth of coldwater fishes, including brown trout (Salmo trutta) and rainbow trout (Oncorhynchus mykiss), is important for conserving coldwater stream fisheries in a changing climate. However, some contemporary stream temperature models assume spatially uniform (i.e. unrealistic) air–stream temperature relationships or demand hydrometeorological predictors (e.g. solar radiation and convection) that are expensive and often impractical for fisheries managers to measure. As such, we produced a relatively cost-effective, management-relevant modelling approach for predicting effects of changes in air temperature, precipitation and groundwater inputs on stream temperature and, consequently, the survival and growth of brown trout and rainbow trout in Michigan, USA. We found that precipitation- and groundwater-corrected stream temperature models (mean adjusted R2 = .77, range = 0.65–0.88) performed better than linear air–stream temperature models (mean adjusted R2 = .59, range = 0.21–0.80). Stream temperature was projected to increase by 0.07–3.88°C (1%–22%) with simulated changes in air temperature, precipitation and groundwater inputs. The greatest warming was predicted for surface runoff-dominated sites with limited groundwater-driven thermal buffering, where thermal habitat suitability for salmonid survival and growth declined 20%–40%. However, groundwater-dominated sites may not be immune to temperature warming, especially if groundwater temperature increases or groundwater inputs decline in a changing climate. Our modelling approach provides a reliable, cost-effective method for predicting effects of climate change on brown trout and rainbow trout survival and growth, allowing for strategic management actions to increase the thermal resilience and sustainability of salmonid populations (e.g. groundwater conservation and riparian/watershed rehabilitation).  相似文献   

19.
Abstract Non‐native lake trout, Salvelinus namaycush (Walbaum), threaten native salmonid populations in the western United States. Effective management of lake trout requires understanding movements within connected lake and river systems. This study determined the seasonal movements of subadult lake trout in the Flathead River upstream of Flathead Lake, Montana, USA using radio telemetry. The spatiotemporal distribution of lake trout in the river was related to water temperature. Lake trout were detected in the river primarily during autumn, winter and spring, when water temperatures were cool. By contrast, fewer were detected when temperatures were warmest during summer and during high spring flows. Downriver movements to Flathead Lake occurred throughout autumn and winter when water temperature decreased below 5 °C, and in late spring as water temperature rose towards 15 °C and river discharge declined following spring runoff. Upriver movements occurred primarily in October, which coincided with migrations of prey fishes. These results suggest that lake trout are capable of moving throughout connected river and lake systems (up to 230 km) and that warm water temperatures function as an impediment to occupancy of the river during summer. Controlling source populations and maintaining natural water temperatures may be effective management strategies for reducing the spread of non‐native lake trout.  相似文献   

20.
Bull trout, Salvelinus confluentus (Suckley), populations are declining in many streams of North America and are listed under the Endangered Species Act in the United States. Many small populations are isolated in fragmented habitats where spawning conditions and success are not well understood. Factors affecting habitats selected for redds by spawning bull trout and redd habitat characteristics within Gold Creek, a headwater stream in the Yakima River within the Columbia River basin, Washington State, USA, were evaluated. Most spawning (>80% of the redds) occurred in upstream habitats after dewatering of downstream channels isolated fish. Habitats were selected or avoided in proportions different to their availability. For example, most bull trout selected pools and glides and avoided riffles despite the latter being more readily available. Although preferences suggest influences of prolonged fish entrapment, site fidelity could be important. A habitat with redds commonly contained abundant cover, gravel substratum and higher stream flows. The major factors influencing habitat selection by spawning fish and their persistence in streams of the Yakima and Columbia River regions include entrapment of fish by dewatering of channels and geographical isolation by dams. The goal of the US Government's recovery plan is ‘to ensure the long‐term persistence of self‐sustaining bull trout populations’. Recovery plans linked to provisions for protecting and conserving bull trout populations and their habitats were recommended. Landscape approaches are needed that provide networks of refuge habitats and greater connectivity between populations. Concurrent recovery efforts are encouraged to focus on protecting small populations and minimizing dangers of hybridization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号