首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到14条相似文献,搜索用时 375 毫秒
1.
应用小波谱白化对胶合木表面AE源定位算法的改进   总被引:1,自引:0,他引:1  
针对声发射(AE)信号在胶合木板表面各向异性传播时的AE源定位问题,提出一种小波谱白化与信号相关性分析相结合的胶合木板表面AE源定位算法.首先,根据ASTM-E976标准在橡木胶合木板表面产生AE源,并在橡木胶合木板表面相距固定距离的4个位置采集原始AE信号,设置采样率为500 kHz.其次,采用小波谱白化算法减少胶层的影响以及合理补偿AE信号的高频缺失,为降低噪声信号的影响,提出一种自适应的小波重构算法.最后,依据试验结果拟合得到AE信号由胶合木板顺纹理方向到横纹理方向的传播速度变化公式,在此基础上根据信号相关性分析法计算信号到达各传感器的传播时差,并采用基于时差的定位算法确定AE源的位置.结果表明:使用原始、自适应小波重构法、小波谱白化法重构的3种AE信号进行定位时,两处AE源的定位结果为100.0%、67.1%、6.0%和41.5%、66.3%、2.8%.AE信号的重构算法直接影响基于时差的AE源平面定位算法精度,特别是使用小波谱白化法能够有效降低噪声信号、胶层的影响,合理补偿AE信号的高频缺失,提升信号分辨率,同时提升计算时差的准确性进而提升AE源定位精度.  相似文献   

2.
针对胶合木损伤的声发射(AE)无损检测问题,研究胶合木表面AE信号波形特征及其沿顺纹和横纹方向的传播规律。首先,采用铅芯折断的方式在马尾松胶合木表面产生人工AE源,通过采样频率为500 k Hz的4通道高速采集系统收集原始AE信号。然后对采集的原始信号进行5层小波分解,通过对各层高频信号的分析获取AE信号的频域特征并进行AE信号重构。最后,根据信号相关性分析和时差定位方法研究AE信号沿顺纹和横纹方向的传播速度。试验结果表明AE信号在胶合木表面传播时,不仅信号幅值明显衰减,而且信号频率也会发生改变,并且AE信号在顺纹和横纹两个方向上的传播速度存在明显差异。  相似文献   

3.
针对木材断裂声发射(acoustic emission,AE)信号源定位问题,提出了一种基于小波谱白化与信号相关性分析的木材表面AE源直线定位算法。首先,为得到木材断裂时产生的AE信号,使用万能力学试验机进行三点弯曲加载试验,在试件表面相距固定距离的3个位置采集试件断裂时产生的AE信号,设置采样率为500 kHz。然后,为合理补偿AE信号在传播过程中损失的高频部分提升信号分辨率,提出一种小波谱白化算法。为降低噪声信号的影响,提出了一种自适应的小波重构算法。最后,通过信号相关性分析法,计算信号到达各传感器的传播时差,并采用基于时差直线定位算法进行AE源定位。结果表明,木材断裂过程中,AE信号通过木材表面和木材内部2种途径传播,由于传播介质不同造成不同的传播速度。使用原始、小波谱白化重构、自适应小波重构的3种AE信号进行AE源定位时,木材表面AE源的定位误差为11.3%、2.6%、3.7%,木材内部AE源的定位误差为10.7%、2.9%、4.5%。AE信号的重构算法直接影响基于时差的AE源定位算法精度,特别是使用小波谱白化法能够显著提升AE信号分辨率同时提升计算时差的准确性进而提升AE源定位精度。  相似文献   

4.
采用NI高速采集设备构建木材声发射信号采集平台,通过铅芯折断的方式在马尾松胶合木表面模拟产生AE源。然后对采集的原始信号进行5层小波分解并重构AE信号波形,进而获得AE信号的时频域特征。最后,根据信号相关性分析和时差定位方法,研究AE信号沿胶接横纹和指接横纹方向上的传播速率。研究表明,AE信号在胶合木表面传播时,AE信号中频率较低的成分在通过胶层时能量衰减更加显著,并且在胶接横纹和指接横纹方向上的传播速率存在明显差异,进一步指出指接胶层对信号传播速率的影响比胶接胶层更明显。  相似文献   

5.
针对信号噪声显著影响木材表面声发射(AE)源定位精度的问题,提出了一种应用小波谱白化与信号互相关分析的木材表面AE源直线定位算法.首先,依据ASTM-E976标准采用折断铅芯的方式在木材表面产生模拟声发射源,在试件表面相距固定距离的两个位置采集AE信号,采样频率设定为500 kHz.然后,提出一种应用信号相关度的自适应小波重构算法,用于降低噪声影响并重构AE波形,为了补偿AE传播过程高频部分的衰减,提出了一种小波谱白化重构算法.最后,通过信号相关性分析,计算AE信号到达两个传感器的时差,进而计算AE信号的传播速度,并依据直线定位法计算AE源的位置.试验结果表明:使用原始、自适应小波重构、小波谱白化重构的3种AE信号进行AE源定位时,两组试验的误差分别为42.9%、25.1%、2.5%和37.7%、35%、4.1%.AE信号重构算法将直接影响定位算法精度,特别是使用小波谱白化法能够显著提高AE源定位算法精度.  相似文献   

6.
木材表面声发射信号源的三角形定位方法   总被引:1,自引:0,他引:1  
为了确定木材表面声发射源的发生位置,首先采用高速采集设备设计了基于Lab VIEW的多通道声发射信号采集平台,并采用小波分析方法从原始声发射信号中析取有用信号;然后根据信号传播的时延差确定声发射信号在木材表面的平均传播速率;最后依据基于时差的三角形几何定位原理,提出木材表面声发射信号源定位方法,并通过铅芯模拟声发射源的测试试验加以验证。结果表明该方法能够以较高的精度确定木材表面声发射信号源位置。  相似文献   

7.
针对木材声发射(acoustic emission,AE)信号的随机特性,提出了一种基于奇异谱和信号相关性分析的木材表面AE源直线定位算法。首先,依据ASTM标准通过折断铅芯的方式分别在樟子松和榉木试件表面产生AE源,并在顺纹理方向布置2个AE传感器,其中采样频率设置为500 kHz。然后,采用奇异谱分析(singular spectrum analysis,SSA)算法提高AE信号的信噪比,再分别基于信号相关性和最大值分析2种方法计算AE信号在木材表面顺纹理方向的传播速度。最后,依据AE信号传播时差和计算速度,基于时差定位原理设计AE源定位算法。并针对SSA处理前后的AE信号,采用不同定位算法进行比较试验。结果表明,直接对原始AE信号采用基于信号相关性和最大值分析方法确定信号传播速度时,樟子松试件2个不同位置AE源的定位误差分别为51.8%、55.7%和75.7%、46.6%;榉木试件2个不同位置AE源的定位误差分别为52.0%、44.8%和37.7%、45.5%。而对于经SSA处理后的AE信号,樟子松试件相应的定位误差分别为5.1%、33.2%和2.6%、31.7%;榉木试件相应的定位误差分别为3.1%、54.9%和5.1%、22.9%。因此,对原始AE信号进行SSA降噪处理后,再基于信号相关性分析方法确定信号传播速度,能够显著提高木材表面AE源的定位精度。  相似文献   

8.
针对胶合木梁声发射无损检测问题,研究花旗松胶合木梁声发射信号时频域特征及其传播规律,以及微弱声发射信号的小波分析方法。首先采用NI高速数据采集设备及LabVIEW软件构建木材声发射信号采集平台,然后通过铅芯折断模拟声发射源,分析声发射信号在表面和厚度方向上的时频域特征及传播速率,最后针对铅芯滑动引起的微弱声发射信号,采用小波分析方法重构声发射信号波形。研究表明,采用铅芯折断模拟声发射源时,花旗松胶合木梁表面和厚度方向的声发射信号频率都集中在70kHz左右,且声发射信号沿表面传播速率更大,但沿厚度方向的信号衰减更加明显。对于"淹没"在噪声中的微弱声发射信号,采用小波分析的方法能够有效重构声发射信号波形。研究结果为花旗松胶合木梁声发射无损检测提供必要的基础理论依据。  相似文献   

9.
针对木材结构尺寸及介质改变对应变能传播的影响,研究应力波在变结构的L型试件中的声发射(acoustic emission,AE)特性。首先,参照ASTM-E976标准,在樟子松L型试件表面不同位置产生AE源,并利用采样频率为500 kHz的AE采集系统获取试件表面4个固定位置的AE信号。其次,依据小波分析原理对原始AE信号进行降噪并重构AE波形,进而研究木材结构变化对AE信号频域特征的影响。最后,基于对比分析,研究空气介质对于信号传播特性的影响。结果表明,当AE源位于锯材处时,信号以纵波和横波混合的形式单向传播,木材的结构变化主要影响低频信号成分,使得信号呈现高频带分布;而空气介质对于其时频域均有显著影响;当AE源位于薄板时,木材结构变化、传播路径及空气介质对于AE信号时频域特性均有显著影响。  相似文献   

10.
为准确计算樟子松断裂时在表面和内部传播的声发射(acoustic emission,AE)信号传播速度,对樟子松表面和内部传播AE信号的有效频段进行研究。为得到樟子松断裂时候产生的AE信号,使用万能力学试验机进行三点弯曲压断试验,并在试件表面相距固定距离的2个点采集原始AE信号。为得到不同频段的AE信号,对原始AE信号进行小波分解并重构AE波形。针对不同频段的AE信号,采用信号相关性分析法计算信号到达2个传感器的传播时差,以此计算AE信号的传播速度。根据AE信号在不同介质中的传播规律以及AE信号的传播速度判断AE信号的传播介质和AE信号的主要频率。结果表明,当AE信号在樟子松表面传播时,AE信号的有效频段为15~62 kHz。当AE信号在樟子松内部传播时,AE信号的有效频段为125~250 kHz。使用有效频段内信号计算AE信号的传播速度,可显著提升计算得到的AE信号传播速度的准确性。  相似文献   

11.
为研究木材损伤断裂时的声发射(AE)信号所激发的驻波信号特征与木材固有特性之间的关系,采用薄木条折断的方式产生AE源,在小波变换的基础上分析驻波频率,并计算纵波传播速率,依据弹性波理论计算出木材顺纹弹性模量(MOE)。首先,在2种不同长度的木材试件一端分别加工出8根80 mm×10 mm的薄木条,通过外加冲击力折断木条以产生AE源,通过放置在试件端面的2个传感器采集原始AE信号,采样频率设定为500 kHz。然后,根据驻波特性确定原始信号的驻波阶段,进而对该阶段AE信号进行4层小波分解,依据分解后信号的时频域特征析取驻波信号波形。最后,依据驻波产生原理计算纵波传播速率,并结合弹性波理论计算试件的MOE。结果表明,拉伸试验测得樟子松和榉木试件的MOE分别为9.30 GPa和11.63 GPa, 800 mm樟子松和榉木试件通过驻波计算所得MOE分别为9.37 GPa和12.34 GPa,与实测MOE的误差分别为0.75%和5.24%;600 mm的樟子松和榉木试件通过驻波计算所得MOE分别为9.31 GPa和11.81 GPa,与实测MOE的误差分别为0.10%和1.55%。  相似文献   

12.
针对木材害虫声发射(AE)信号检测问题,研究杨树木段中麻点豹天牛幼虫AE信号波形特征及其信号的能量,为钻蛀害虫声音的监测提出一种新的方法。取一段具有麻点豹天牛幼虫的杨树木段,通过采样频率为500 kHz的2通道木材蠕变声发射信号采集系统采集原始AE信号。对采集到的原始信号滤波后进行小波分解,通过对各层高频信号的分析获取AE信号的频域特征,并对其进行重构与信号解析。结果表明,麻点豹天牛幼虫AE信号的主频主要集中在30 kHz附近,其信号的能量在16:00最高,反映了该幼虫在15:00-16:00较活跃。  相似文献   

13.
由于木结构榫卯接合的部位属于隐藏部位,当其发生损伤时,肉眼无法观测。为了准确地预测榫卯结构的健康状况, 可以根据榫卯结构在破坏前,木材所释放出来的声发射能量传播特性进行信息源位置的判定。为此, 本研究提出并验证了木材的声发射信号符合能量衰减规律,并且利用能量衰减模型对榫卯结构的声发射源(破坏源)进行定位。首先,采用直径0.5 mm的铅芯为模拟声发射源,探讨了声发射波在木材中的传播和衰减特性,然后进行了榫卯结构弯曲破坏实验,实验中将目标声发射源限定于两个传感器之间,利用两点定位法确定破坏源的位置, 经比较计算值与实测值较一致。结果表明:基于AE信号能量衰减模型和两点定位法进行榫卯结构的损伤定位,能得到较准确的破坏源位置,而且外界环境对结果的影响较小。   相似文献   

14.
建立了工程陶瓷高速深磨中声发射的实验系统,自主开发了其中的声发射信号虚拟仪器采集系统.对部分稳定氧化锆(PSZ)和氧化铝进行了高速深磨声发射的实验研究,分析了磨削参数和工程陶瓷材料对声发射信号的影响.研究了砂轮修整前后声发射信号的变化.结果表明,即使在砂轮超高速和大切深下,声发射增加仍较小.选择砂轮超高速、大切深和小的工作台速度对高效低成本磨削工程陶瓷是有利的.运用声发射还可对砂轮磨损状态进行在线监测.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号